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Abstract 

One of the most common causes of death worldwide is heart disease, including arrhythmia. Today, sciences such 
as artificial intelligence and medical statistics are looking for methods and models for correct and automatic diag‑
nosis of cardiac arrhythmia. In pursuit of increasing the accuracy of automated methods, many studies have been 
conducted. However, in none of the previous articles, the relationship and structure between the heart leads have 
not been included in the model. It seems that the structure of ECG data can help develop the accuracy of arrhythmia 
detection. Therefore, in this study, a new structure of Electrocardiogram (ECG) data was introduced, and the Graph 
Convolution Network (GCN), which has the possibility of learning the structure, was used to develop the accuracy 
of cardiac arrhythmia diagnosis. Considering the relationship between the heart leads and clusters based on different 
ECG poles, a new structure was introduced. In this structure, the Mutual Information(MI) index was used to evaluate 
the relationship between the leads, and weight was given based on the poles of the leads. Weighted Mutual Infor‑
mation (WMI) matrices (new structure) were formed by R software. Finally, the 15‑layer GCN network was adjusted 
by this structure and the arrhythmia of people was detected and classified by it. To evaluate the performance 
of the proposed new network, sensitivity, precision, specificity, accuracy, and confusion matrix indices were used. Also, 
the accuracy of GCN networks was compared by three different structures, including WMI, MI, and Identity. Chapman’s 
12‑lead ECG Dataset was used in this study. The results showed that the values of sensitivity, precision, specificity, 
and accuracy of the GCN‑WMI network with 15 intermediate layers were equal to 98.74%, 99.08%, 99.97% & 99.82%, 
respectively. This new proposed network was more accurate than the Graph Convolution Network‑Mutual Informa‑
tion (GCN‑MI) with an accuracy equal to 99.71% and GCN‑Id with an accuracy equal to 92.68%. Therefore, utilizing 
this network, the types of arrhythmia were recognized and classified. Also, the new network proposed by the Graph 
Convolution Network‑Weighted Mutual Information (GCN‑WMI) was more accurate than those conducted in other 
studies on the same data set (Chapman). Based on the obtained results, the structure proposed in this study increased 
the accuracy of cardiac arrhythmia diagnosis and classification on the Chapman data set. Achieving such accuracy 
for arrhythmia diagnosis is a great achievement in clinical sciences.
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Introduction
Diagnosis and prevention of diseases are one of the most 
important goals of medical sciences. One of the most 
common causes of death worldwide is heart disease, 
including arrhythmia [1–3]. Cardiac arrhythmia and its 
type are usually diagnosed using a 12-lead Electrocar-
diogram (ECG) [4]. Types of arrhythmias include Sinus 
Bradycardia (SB) and Atrial Tachycardia (AT) with an 
excessively slow or fast heartbeat, or Premature Ven-
tricular Contraction (AVC) with an irregular rhythm and 
missing or distorted intervals. The most common and 
most dangerous type of arrhythmia is Atrial Fibrillation 
(AFIB). This type of arrhythmia carries the risk of severe 
heart dysfunction and stroke [5]. Other types of arrhyth-
mias include Sinus Tachycardia (ST), Sinus Irregular-
ity (SI), Supraventricular Tachycardia (ST), Atrial Nodal 
Reentrant Tachycardia (AVNRT), Atrioventricular Reen-
trant Tachycardia (AVRT), sinus-atrial-to-atrial tachycar-
dia, and Atrial Wandering Rhythm (AWR).

First, the prediction of heart diseases is very important 
to prevent mortality. Second, the diagnosis of arrhyth-
mia and its type with ECG requires knowledge and 
experience and is influenced by individual experience 
and expertise [3, 6–8]. Third, using traditional statistical 
methods to predict heart diseases has limitations. There-
fore, it is not without reason that nowadays sciences such 
as artificial intelligence and medical statistics seek to 
introduce methods and models for correct and automatic 
diagnosis of cardiac arrhythmia [9–14].

Many studies have used Deep Learning Neural Net-
work (DNN) and Convolution Neural Network (CNN) 
to detect cardiac arrhythmia [15–30]. In 2020, an artifi-
cial neural network model called DNN was proposed by 
Yıldırım et al. to identify different classes of ECG rhythm 
[26]. Shaker et al. also proposed a GAN network in 2020 
to detect and classify the type of rhythm [31]. In 2020, 
Yao et  al. presented an ATI-CNN network aimed at 
detecting arrhythmia type based on multi-channel ECG 
signal, in which 6877 12-lead ECG records were included 
and 8 types of arrhythmia were finally classified [20]. 
In 2020, Zhou & Tan presented a method for combin-
ing Convolutional Neural Network (CNN) and Extreme 
Learning Machine (ELM) with the aim of automatic 
identification and classification of ECG signals [5]. CNN 
has been used in many studies to detect and classify car-
diac arrhythmias. CNN is one of the methods of artificial 
neural networks in which an operation called convolu-
tion is used in its layers. This network performs feature 
selection simultaneously with network learning and does 
not require complex data preprocessing [32, 33].

ECG measures the intensity of the electrical current 
of the heart from different angles; therefore, the car-
diac leads in the 12-lead ECG are related to each other. 

However, in all the mentioned studies, this very impor-
tant relationship has been neglected. It seems that 
considering this relationship in neural network adjust-
ment increases the accuracy of arrhythmia detection. 
To achieve this goal, the Graph Convolution Network 
(GCN) was used in this study. Unlike CNN or DNN net-
works, GCNs have the relative advantage of being able 
to learn the structure. In the GCN network, instead of 
performing the convolution operation on the images 
consisting of pixels, this operation is performed on the 
graph [34]. To implement this network, the data and the 
structure between them must be designed in the form of 
a graph; i.e. the graph is formed from nodes and edges. 
Edges show the connection between nodes, and its infor-
mation is introduced to GCN by a matrix called adja-
cency matrix [35].

In this study, to convert ECG into a graph, the leads 
were introduced as nodes, and the relationship between 
them was introduced as an adjacency matrix by 
Weighted Mutual Information (WMI). WMI was used 
as a weighted correlation structure for ECG data. From 
a statistical point of view, each lead can be considered a 
time series, and thus a 12-lead ECG can be considered a 
12-variable time series [10]. In time series, the measure-
ments have self-correlation, so the correlation between 
leads cannot be measured by Pearson or Spearman cor-
relation indices, which do not have the independent and 
identically distributed (iid) assumption. Mutual Informa-
tion (MI) is a statistical index that measures the linear 
and non-linear dependencies between two-time series 
and calculates the common information between them 
using the definition of entropy [36]. A 2 × 12 matrix is 
formed for each 12-lead ECG. To form the Weighted 
Mutual Information (WMI), the MI matrix is weighted. 
The weight applied to MI is based on the category of 
cardiac leads (precordial leads, unipolar limb leads, and 
bipolar limb leads) (Fig. 1).

It contains 6 limp leads and 6 precordial leads. Limb 
leads include 3 bipolar leads and 3 unipolar leads. Bipo-
lar leads I-II-III have two positive and negative poles and 
record the potential difference between the two poles. 
Unipolar leads are  aVR,  aVL, and  aVF, which, unlike bipo-
lar leads, measure the potential difference between a 
positive point and the average potential of the other two 
points [37].

In this study, the proposed new GCN-WMI network 
structure was implemented, adjusted, and applied to 
detect and classify the type of arrhythmia. Figure 2 shows 
a general block diagram for the classification process.

Considering that one of the factors to increase the 
accuracy of learning in neural networks is the volume of 
data, the latest ECG data set with more than 10,000 cases 
was used in this research.
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In previous studies, the relationship between cardiac 
leads has not been investigated by a suitable and relevant 
statistical index. In this study, for the first time, we pro-
posed a suitable statistical index to evaluate the relation-
ship between cardiac leads used it in the GCN network 
to detect arrhythmia.

It is very important, from a clinical point of view, to 
diagnose all types of arrhythmias with accuracy and 
speed by ECG tools, which are cheap and available. The 
practical goal of this research is to increase the accuracy 

of this diagnosis and the practical use of this network in 
hospital systems.

Innovative aspects of this study

• Each person’s ECG information was defined in the 
form of a chart.

• A new structure (WMI) was introduced for ECG 
data.

Fig. 1 Clustering of heart leads based on the ECG pole

Fig. 2 General block diagram for the classification process
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• For the first time, the proposed new GCN-WMI net-
work structure was used to detect and classify peo-
ple’s arrhythmia types.

Methods
ECG data
The 12-Lead ECG is one of the most widely used diag-
nostic tools for heart diseases and types of arrhythmias. 
In a 12-lead ECG machine, over a period of time (usu-
ally ten seconds), the total value of the electrical potential 
of the heart is recorded from twelve different angles by 
attaching ten electrodes to the chest and limbs [38]. Fig-
ure 3 shows different angles of electrical measurement of 
the heart in ECG.

The electrical waves of the heart are drawn by the ECG 
machine at a regular rate on a special paper. Diagnosing 
the type of cardiac arrhythmia according to the drawn 
shapes requires expertise. Figure 4 shows a 12-lead ECG 
with a normal rhythm.

In this study, the 12-Lead ECG data of 10,646 people 
were used. The data were related to the research data-
base under the supervision of Chapman University and 
People’s Hospital (Zhaiyang Medical University School 
of Medicine, Shaoxing Hospital) [5]. The sampling rate of 
these ECGs was 500  Hz for 10  s. This means that 5000 
samples per lead are available per person. The arrhythmia 
type of these ECGs was labeled by professional experts. 

Of the subjects, 17% had normal sinus rhythm and 83% 
had at least one abnormality. Figure  5 shows the fre-
quency diagram of rhythms.

In the present study, data related to seven types of 
arrhythmias were used, and data related to four types 
of arrhythmias, including AT, AVNRT, AVRT, and SAA, 
were excluded because the frequency ratio of these four 
types of arrhythmias was less than 2% of the total fre-
quencies. When there is a class imbalance in the train-
ing data, learning is done more for high-volume classes, 
and as a result, the classification error is greater for items 
belonging to the minority group than for items belonging 
to the majority group [39].

Structure between data
Clinically, there is a connection between the ECG leads, 
because the ECG acts like a camera that observes the 
heart’s function from different angles (leads). In this 
study, the MI index was used to introduce the new struc-
ture. The available data for each lead is a time series, so 
the use of Pearson and Spearman correlation coefficients 
is not allowed due to the non-establishment of the iid 
assumption, and the MI index measures the linear and 
non-linear relationship between two-time series. The MI 
index can be measured for the connection between two 
leads, so a 12 × 12 matrix shows the connection between 
12 ECG leads.

Fig. 3 12 different angles of measuring electric potential in ECG
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Mutual information
Mutual Information (MI) originates from the definition 
of entropy. The joint entropy of a pair of random vari-
ables (X, Y) expresses uncertainty about the combination 
of these variables.

H[X, Y] = −

∑

x∈X ,y∈Y

Pr[X = x, Y = y] · log Pr[X = x, Y = y]

The conditional entropy of a random variable X with 
respect to another variable Y expresses the uncertainty of 
X that remains after Y is known:

MI is a measure of dependence between two variables. 
This is the amount of information obtained by observing 

H[X|Y] = −

x∈X ,y∈Y

Pr[X = x, Y = y] · logPr[X = x|Y = y]

Fig. 4 A 12‑lead electrocardiogram on admission revealing a normal sinus rhythm with non‑specific ST elevation (I, II, III, aVF, and V2‑V6 leads)

Fig. 5 The frequency of rhythms
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Y from X. In discrete mode, the mutual information of 
two variables X and Y is obtained as follows:

MI can also be written in terms of conditional 
probability:

This relationship can be written in terms of Shannon’s 
entropy as follows:

MI is always greater than or equal to zero and will be 
zero if X and Y are independent. For the continuous state, 
all relations can be expressed by integrals [40–42]. In this 
study, the  MIN×N matrix was calculated for 12 ECG leads 
by R software. That is, based on each person’s ECG, MI 
is measured between 12 heart leads (each lead contains 
5000 measured values). Figure 6 shows an example of this 
matrix.

The new structure of WMI
According to the poles of the electrocardiogram, in this 
study, the MI matrix was weighted. Precordial leads, 

I(X; Y) =
∑

x∈X ,y∈Y

Pr[X = x, Y = y] · log

(
Pr[X = x, Y = y]

Pr[X = x] · Pr[Y = y]

)

I(X; Y) =
∑

x∈X

Pr [X = x]
∑

y∈Y

Pr [Y = y|X = x] · log

(
Pr [Y = y|X = x]

Pr [Y = y]

)

I(X; Y) = H[X]−H[X|Y]
= H[X]+H[Y]−H[X, Y]

= H[X, Y]−H[X|Y]−H[Y|X]

including V1, V2, V3, V4, V5, and V6, unipolar limb 
leads, including aVR, aVL, and aVF, and bipolar limb 
leads, including I, II, and III, are considered three clus-
ters (Fig. 7).

In this way, by the following indicator function, more 
weight is assigned to the mutual information between 
the leads located in a cluster, which indicates the 

importance of the polarity of the electrocardiogram 
leads in the data structure.

Q is the lead pole symbol. i = 1, 2, …, 12 and j = 1, 
2, …, 12 represent the rows and columns of the MI 
matrix. That is, if each of the two ECG leads is placed in 
the same pole (cluster), the MI index will be calculated 
between them doubles, otherwise, it does not change.

To clarify the discussion, by this proposed structure, 
the connection (MI) between the leads, marked with 
the same color in Fig.  6 (having the same polarity), is 
doubled, but the connection between the leads whose 
colors are different does not change, because clinically, 

A
(
i, j
)
= MI12×12 ×

[
1+ r

(
Qi,Qj

)]

r
(
Qi,Qj

)
=

{
1 if Qi = Qj

0 if Qi �= Qj

Fig. 6 A 12 × 12 matrix of mutual information between cardiac leads for one person
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leads that are in the same polarity are more similar. Fig-
ure 8 shows an example of a WMI matrix.

GCN
By displaying data in graph form, structural informa-
tion can be encoded to model the relationships between 
data and provide better insight into the underlying 

data [34]. An undirected, connected, weighted graph 
is denoted by G=(V, E, W) with a vertex set V with 
|V|=N, an edge set E, and a weighted adjacency matrix 
W. If there is an edge between two vertices i, j, e=(i, j), 
its weight is  Wi, j, otherwise  Wi, j=0 [43].

Graph Neural Network (GNN) forms the basis of all 
types of graph networks. This network was introduced to 

Fig. 7 The 12‑Lead ECG with weighted mutual information structure

Fig. 8 A 12 × 12 matrix of weighted mutual information
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the literature in this field in 2008 based on graph theory. 
Graph Convolutional Network (GCN) is one of the most 
famous graph networks that mainly uses the combination 
of Fourier transform and Taylor expansion formula to 
improve the filter performance. This network learns fea-
tures by examining adjacent nodes and performs a math-
ematical operation called convolution on the graphs [44]. 
The main purpose of this type of network can be the clas-
sification of graphs, nodes, or connections [45]. GCNs 
themselves can be divided into two main categories of 
algorithms, Spectral Graph Convolutional Networks 
(SGCNs) and Spatial Graph Convolutional Networks 
(SGCNs). In this study, Spatial Graph Convolutional Net-
works were used to classify graphs.

Graph convolution
The data of a graph is related to the information on the 
edges and vertices (nodes) of that graph. The convolu-
tion filtering method is used to process and learn this 
information. In this method, both edge information and 
vertex information are considered for the filter. A convo-
lutional filter method is a spatial approach that follows a 
local neighborhood graph filtering strategy.

The graph convolution operation is performed using 
a polynomial which is formed based on the adjacency 
matrix of the graph. Using this polynomial, the features 
of each vertex (node) are combined with the features of 
the neighboring vertices.

These polynomials can be considered equivalent to 
filters in CNN and hi coefficients as weights. In Eq.  1, 
the largest power of the polynomial, K, determines the 
number of neighborhood steps from a vertex, so the fil-
ter matrix is obtained as H ∈ RN × N. The convolution of 
vertices V with filter H is a matrix multiplication shown 
below, where Vout, Vin ∈ RN. Vin is the initial vertex matrix 
and Vout is the vertex matrix after the filter operation.

The proposed architecture for the GCN network algorithm 
with three steps
In the first step, in order to prepare the graph, the active 
and inactive nodes are equalized and considered aligned. 
However, a separate entry will be regarded as a label next 
to it. The output of this step will be included in the next 
step as graph  Z0.

Then, in the second step, in several layers, the convo-
lution operation will be performed on the graph. In this 
way, the desired filter will be applied to each node by 
considering the neighboring edges. Figure  9 shows this 
architecture for a GCN network with two convolution 
layers and graphs with 12 nodes. In the convolution lay-
ers, the nodes that have undergone operations are shown 
in red at each step.  Z1 is the output of the first layer of 

(1)H = h0I + h1A
1
+ h2A

2
+ h3A

3
+ · · · + hkA

k

Vout = HVin

Fig. 9 The network architecture for GCN with two layers of convolution
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convolution, which is considered the input of the second 
layer, and  Z2 is created as the output of the second layer.

In the third step, using all the graphs created in the 
previous steps and their permutations from  Z0 to  Z2, 
several linear vectors are created, which are called linear 
features. This operation is performed in two stages of the 
Concatenate operation. The output of these two stages 
is fed into the fully connected neural network at the last 
level. Finally, by using the network known as Softmax, 
the decision about the response variable is made.

Methodology
This study aimed to set up a GCN network with a new 
structure to automatically detect the type of arrhythmia 
in people based on 12-Lead ECG. Therefore, the data 
available in the Chapman research database were used, 
which includes the 12-Lead ECG information of 10,494 
people. In each lead, the electrical potential of the heart 
is measured 5000 times (every ten seconds). That is, the 
feature matrix for each person is a 5000 × 12 matrix.

Zheng et al. collected and presented these data and per-
formed the pre-processing operation. For this purpose, 
noise reduction operations were performed. Sources of 
noise pollution include power line interference, motion 
artifacts, electrode contact noise, baseline drift, muscle 
contraction, and random noise. Zhang et al. [5] proposed 
and implemented a sequential denoising approach to 
remove noise from raw ECG data. In convolution-based 
networks, the feature selection operation is performed 
at the same time as the network training, and there is no 
need to pre-process the complexity of the data.

In the next step, the 12 × 12 MI matrix was calculated 
by R software to determine the relationship between the 
pairs of leads. Then, the new structure introduced in this 
article was applied to this matrix, and the WMI 12 × 12 
matrix was formed. GCN was set with adjacency matri-
ces,  WMI12 × 12,  MI12 × 12, and identity matrix (in this case 
the relationship between leads is ignored). At first, suit-
able GCN networks were selected in terms of the number 
of layers and parameters, with all three types of adjacency 
matrices. Next, all individuals were classified by the 
selected networks. Finally, to choose the best adjacency 
matrix, the performance of the three networks was com-
pared with the mentioned adjacency matrices.

The cross-validation method with 4 folds was used to 
evaluate the model. To select the number of network lay-
ers, GCN was trained with 5, 10, and 15 layers. To select 
the most suitable accuracy network, the three mentioned 
networks were compared two by two by independent 
t-test.

Network performance evaluation criteria included 
accuracy, specificity, precision, and sensitivity in test sets. 

Also, to evaluate the classification of all people by the 
selected networks, a confusion matrix was prepared.

Considering True Positive (TP), True Negative (TN), 
False Positive (FP) and False Negative (FN), the calcula-
tion formula of these criteria are as follows:

Experimental results
WMI matrices were calculated using R software. The 
GCN network was set up and implemented with the 
WMI adjacency matrix with 5, 10, and 15 layers. The 
adjusted parameters are shown in Table 1. The learning 
curve to compare the cross-validation precision of GCN-
WMI with 5, 10, and 15 layers showed that the accuracy 
of GCN-WMI with 15 layers was higher (Fig. 10).

It is obvious that adding more layers increases the 
accuracy of feature extraction, but we should consider 
the possible overfitting by adding layers and be aware of 
possible overfitting. Considering the accuracy and other 
predictive performance values of GCN-WMI with differ-
ent layers and the slight increase in computational cost, 
GCN-WMI with 15 intermediate layers was selected 
and configured using cross-validation. Therefore, the 
GCN-WMI network was set with 15 layers, and the 
arithmetic type of all data (10,494) was predicted by this 
network. Confusion matrix results showed that 99.8% 
of GCN-WMI network predictions were correct for SB 
arrhythmia. The percentages were 99.6%, 99%, 99.5%, 
96.8%, 97%, and 99.6% for SR, AFIB, ST, AF, SI, and SVT 
arrhythmias, respectively (Fig. 11).

The results of network evaluation indices showed that 
the said network had the highest sensitivity (99.87%) for 
SB arrhythmia detection, the highest precision (99.87%) 
for ST detection, the highest specificity (99.95%) for SI 
& SVT detection, and the highest accuracy (99.95%) for 
SVT (Table 2).

Accuracy = (TP + TN)/Total
Sensitivity = TP/(TP+ FN)

Specificity = TN/(FP+ TN)

Precision = TP/(TP+ FP)

Table 1 The parameter of the GCN‑WMI network

Parameter Value

Learning Rate 0.02

Epochs 600

Hidden2 5

Hidden2 10

Hidden2 15

Dropout 0.2

Weight Decay 0.0005

Early Stopping 10
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Fig. 10 Learning curve to compare the cross‑validation precision of GCN‑WMI with 5, 10 and 15 layers

Fig. 11 Confusion matrix for all records using GCN‑WMI
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Finally, three GCN-WMI, GCN-MI, and GCN-Id net-
works with 15 layers were compared with WMI, MI, and 
identity adjacency matrices, respectively. The sensitivity, 
precision, specificity, and accuracy of the GCN-WMI 
network with 98.74%, 99.08%, 99.97%, and 99.82% were 
more than those of the other two networks (Table 3). It 
seems that the structure introduced in this article has 
been effective in increasing the accuracy of detecting and 
classifying the type of arrhythmia.

Discussion
This study aimed to detect the type of arrhythmia in 
people through a new GCN-WMI network, according 
to the type of ECG data and the relationship between 
heart leads. For this purpose, using the Chapman dataset, 

7 types of arrhythmias were recognized and classified 
by GCN-WMI with 15 layers. Several studies have used 
this data set to diagnose cardiac arrhythmia and have 
diagnosed and classified 7 types of arrhythmia by the 
proposed methods. Yıldırım et  al. introduced the DNN 
method to detect the type of cardiac arrhythmia with an 
accuracy of 92.24% [46]. Meqdad et al. used CNN Trees 
and Meta CNN Trees methods and detected the type of 
cardiac arrhythmia, with accuracy rates of 97.60% and 
98.29%, respectively [47, 48]. Mehari et  al. also intro-
duced the Single Classifier method for this purpose, 
whose accuracy value was equal to 92.89% [49]. Rahul 
et al. proposed a 1-D CNN method with an accuracy of 
94.01% [50], Kang et al. employed the RNN method with 
an accuracy of 96.21% [51], Domazetoski et  al. applied 
XGBoost method with an accuracy equal to 89.40% [52], 
and Sepahvand et  al. introduced two methods, Teacher 
model and Student model, with accuracies of 98.96% and 
98.13%, respectively [53]. The accuracy of the GCN-WMI 
method (99.82%) that was introduced in the present 
study was higher than those of the aforementioned meth-
ods (Table 4).

In several other studies, new methods have been pro-
posed to detect cardiac arrhythmia, and the accuracy of 
none of these methods has been higher than that of our 
proposed method. In a similar work by Jiang et al. [54], 
two networks CNN and then GCN were used to detect 
multiple heart disorders. They used GCN to determine 
the relationship between arrhythmia classes when more 

Table 2 The performance values of all records for each class 
separately using GCN‑WMI

Sensitivity(%) Precision(%) Specificity(%) Accuracy(%)

SB 99.87 99.51 99.71 99.77

SR 99.67 99.18 99.69 99.80

AFIB 99.05 99.44 99.77 99.74

ST 99.50 99.87 99.89 99.90

AF 96.42 96.63 99.75 99.70

SI 97.06 99.50 99.95 99.86

SVT 99.66 99.15 99.95 99.95

Table 3 The performance values for all records using GCN‑WMI, GCN‑MI and GCN‑Id

Sensitivity Precision Specificity Accuracy

Overall GCN-WMI 0.9874 ± 0.63 0.9908 ± 0.64 0.9997 ± 0.35 0.9982 ± 0.38
GCN-MI 0.9845 ± 0.55 0.9789 ± 0.52 0.9985 ± 0.37 0.9971 ± 0.41
GCN(Identity) 0.6824 ± 0.51 0.7283 ± 0.44 0.9524 ± 0.48 0.9268 ± 0.48

Table 4 Performance comparison of the proposed method with other state‑of‑the‑art using the Chapman dataset

Ref Study Dataset Num. of subjects Year Method Classes Performance

 [46] Yildirim et al. Chapman 10,646 2020 DNN 7 Acc = 92.24%

 [47] Meqdad et al. Chapman 10,646 2022 CNN Trees 7 Acc = 97.60%

 [48] Meqdad et al. Chapman 10,646 2022 Meta CNN Trees 7 Acc = 98.29%

 [49] Mehari et al. Chapman 10,646 2022 Single Classifier 7 Acc = 92.89%

 [50] Rahul et al. Chapman 10,646 2022 1‑D CNN 7 Acc = 94.01%

 [51] Kang et al. Chapman 10,646 2022 RNN 7 Acc = 96.21%

 [52] Domazetoski et al. Chapman 10,646 2022 XGBoost - Acc = 89.40%

 [53] Sepahvand et al. Chapman 10,646 2022 Teacher model 7 Acc = 98.96%

Student model 7 Acc = 98.13%

Proposed Chapman 10,646 2022 GCN-WMI 7 Acc = 99.82%
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than one cardiac disorder was present during ECG signal 
collection and used binary cross-entropy loss for correla-
tion between labels. However, the structure between the 
heart leads was ignored. This can be another strength of 
our proposed method, where each ECG is defined as a 
graph and directly expressed by GCN to detect and clas-
sify the type of arrhythmia.

Shaker et  al. proposed a GAN method, and the accu-
racy of this method for classifying MIT-BIH data into 15 
classes was equal to 98.30% [31]. In their study, Zhao and 
Ban proposed the CNN + ELM method to classify MIT-
BIH data into 4 classes. This method is a combination 
of Convolutional Neural Network (CNN) and Extreme 
Learning Machine (ELM), with an accuracy of 97.5% 
[30]. Other researchers have also proposed methods for 
arrhythmia classification on the MIT-BIH dataset, which 
includes 48 ECG data. Gao et al. proposed the LSTM, FL 
method to detect 5 types of arrhythmia, the accuracy of 
which was equal to 99.26% [55]. Oh et al. also proposed 
the Modified U-net method for the automatic detec-
tion and encoding of 5 types of ECG arrhythmias, and 
the accuracy of this method was equal to 97.32% [56]. Li 
et al. [57] used the ResNet method with 99.38% accuracy, 
Yildirim et  al. [58] used the CNN method with 91.33% 
accuracy, Xu et al. [59] used the DNN method with 93.1% 
accuracy, and Acharya et al. [60] suggested CNN method 
with 94.03% accuracy.

Conclusion
The aim of this study was the simultaneous use of all 
ECG leads and the connection between them. It is highly 
important to detect the right relationship between the 
leads and consequently form the right structure. It seems 
that the proposed structure for communication between 
ECG leads was effective in this study. The results showed 
that the proposed method in this research is more accu-
rate than the ones reported in the above studies. The 
present study is the first study that focuses on the rela-
tionship between cardiac leads. It has improved the 
diagnosis of arrhythmia in people by presenting a new 
structure and using it in the GCN network. The pro-
posed models in different studies can provide a basis for 
developing future diagnostic applications. Therefore, it is 
important to increase the accuracy of models with new 
suggestions.

Limitation
The implementation of DL methods, including the 
method proposed in this article, requires strong systems.

Another limitation of using the proposed method is 
the limitation of its application to wearable ECG data 
because this type of ECG is a single signal.
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