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Abstract 

Background  Propensity score weighting is a useful tool to make causal or unconfounded comparisons 
between groups. According to the definition by the Institute of Medicine (IOM), estimates of health care dispari-
ties should be adjusted for health-status factors but not for socioeconomic status (SES) variables. There have been 
attempts to use propensity score weighting to generate estimates that are concordant with IOM’s definition. How-
ever, the existing propensity score methods do not preserve SES distributions in minority and majority groups unless 
SES variables are independent of health status variables.

Methods  The present study introduces a deweighting method that uses two types of propensity scores. One 
is a function of all covariates of health status and SES variables and is used to weight study subjects to adjust for them. 
The other is a function of only the SES variables and is used to deweight the subjects to preserve the original SES 
distributions.

Results  The procedure of deweighting is illustrated using a dataset from a right heart catheterization (RHC) study, 
where it was used to examine whether there was a disparity between black and white patients in receiving RHC. The 
empirical example provided promising evidence that the deweighting method successfully preserved the marginal 
SES distributions for both racial groups but balanced the conditional distributions of health status given SES.

Conclusions  Deweighting is a promising tool for implementing the IOM-definition of health care disparities. The 
method is expected to be broadly applied to quantitative research on health care disparities.

Keywords  Absolute standardized mean difference, Balancing weight, Deweighting, Health care disparity, Health 
status, Propensity score, Socioeconomic status

Introduction
Evaluating racial disparities needs specific statisti-
cal approaches to quantify and find solutions to reduce 
them. For example, Jackson and VanderWeele [1] investi-
gated how disparities in wages would change if disparities 
in education were removed while preserving the associa-
tion of childhood SES with race. This approach allows us 

to estimate how well removing disparities in education, 
but not childhood SES, reduces disparities in adult-
hood wages. Ben-Michale et al. [2] evaluated differences 
between black and white patients in common outcomes 
after emergency general surgery (EGS) treatment using 
an administrative database of hospital claims. They used 
linear weighting estimators that re-weight white patients 
to have a similar distribution of the adjustment set to 
black patients. They found that adjusting for hospitals in 
addition to patient characteristics substantially reduced 
the disparity estimate resulting from adjusting for basic 
demographics (age and sex). This finding implied that 
hospital-specific factors are important sources of racial 
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disparities in EGS, and thus, interventions targeted at 
hospital quality may be critical.

In this study, we utilize the definition of the Institute 
of Medicine (IOM) to propose new disparity estimators. 
The Institute of Medicine (IOM) defines a health care 
disparity as the difference in the quality of health care 
provided to members of racial or ethnic minorities that 
is not due to their health status, clinical needs, or treat-
ment preferences [3]. To implement the IOM definition, 
a group of researchers proposed a specific statistical 
approach that adjusts for health-status factors but not for 
nonhealth variables, i.e., socioeconomic status (SES) vari-
ables, such as education, income, and geographic region 
[4–6]. The rationale of this approach is that the IOM defi-
nition of disparities should include all racial differences 
in use mediated through SES-related factors. However, 
we acknowledge that this approach, adjusting for only 
health-status variables, is one of the ways to implement 
the IOM definition. Considering such a limitation and 
the complexity of disentangling the effects of race/eth-
nicity from SES factors, we have compared the proposed 
approach with those adjusting for all covariates and 
investigated how these methods give different results in a 
real data example.

Several researchers devised statistical models based 
on PS models to address the needs required by the IOM 
definition of racial disparities. Cook et al. [5] defined dis-
tributional properties necessary for a disparity method 
to be concordant with the IOM definition of racial dis-
parities in health care use. Specifically, they compared a 
counterfactual white population with black health status 
and white SES with the factual black population. This 
white distribution is counterfactual because it has black 
health status but white SES. One of their disparity meth-
ods to construct the hypothetical white distribution is 
the health-status PS method. In racial disparity studies, 
minority race is the “treatment” of interest for the PS. 
The health-status PS uses only the health-status variables 
to predict the probability of minority race. Motivated by 
a disparity study of Li et al. [7], Choi et al. [8] extended 
the health-status PS method by adopting the balancing 
weights approach [9] to address the broader range of dis-
parity measures. However, the fundamental limitation of 
the health-status PS method is that SES variables are not 
preserved unless they are independent of health status.

In this study, we propose weights that can realize IOM-
concordant joint distributions of health status and SES. 
The key idea is that we weight the groups with the PSs 
using all covariates but deweight them with the PSs based 
on only SES. In this way, we directly undo the undesired 
weighting of the SES variables. Considering this feature of 

our approach, we call it a deweighting approach. Impor-
tantly, we formally define the target estimands for health 
disparities and corresponding consistent estimators based 
on the proposed weights.

The deweighting approach is illustrated in a study of 
right heart catheterization (RHC) [10] to investigate 
whether there was a disparity between black and white 
patients, admitted to the intensive care unit, in receiving 
RHC. Based on unadjusted proportions, black patients 
were 1.86% less likely to receive RHC than white patients. 
However, this unadjusted difference does not account 
for differences in health status or clinical needs, which 
do not contribute to disparities. In the RHC study, white 
patients tended to have lower blood pressure than black 
patients, and this could contribute to apparent dispari-
ties for black patients in receiving RHC. Because the 
disparities due to clinical needs such as low blood pres-
sure are allowable, these factors need to be adjusted for. 
Traditional multivariable methods adjust for all available 
covariates, which also removes differences due to non-
clinical needs. Thus, the controlled differences will better 
represent racial disparities if the SES variables are pre-
served in both racial groups so that the SES variables can 
mediate the relationship between race and RHC treat-
ment. This motivates the development of our dweighting 
approach.

Methods
Notation
We introduce notation to describe our deweighting 
approach. For unit i = 1, . . . ,N  , let Zi be the binary 
variable for minority race/ethnicity and Yi be the 
observed health care outcome. In our numerical study, 
we assessed whether there was a disparity in receiving 
RHC at the time of admission to the intensive care unit 
between black and white patients: Yi = 1 if the patient 
received RHC, and Yi = 0 otherwise. Therefore, in our 
analysis, Zi = 1 and Zi = 0 indicate black and white 
patients, respectively. For causal inference, Y (1) and 
Y (0) are defined as the potential outcomes correspond-
ing to treatment levels 1 and 0. The observed outcome 
is then Y = ZY (1)+ (1− Z)Y (0) under the consistency 
assumption.

Let Xi be a row vector of J + K  covariates consisting of 
SES and health-status variables: Xi = (Xs

i ,X
h
i ) , where 

Xs
i = Xs

i1, . . . ,X
s
iJ  is a row vector of J SES variables, and 

Xh
i =

(
Xh
i,J+1, . . . ,X

h
i,J+K

)
 is a row vector of K  health-sta-

tus variables. Let f (x) and fz(x) denote the densities of X 
in the whole population and subpopulation of Z = z , and 



Page 3 of 15Choi ﻿BMC Medical Research Methodology          (2024) 24:106 	

f (xs) and fz(xs) denote those of Xs in the whole population 
and subpopulation of Z = z , respectively, where z ∈ {0, 1} . 
We also define f

(
xh | xs

)
 and fz

(
xh | x

s
)
 to be the condi-

tional densities of Xh given Xs = xs for the whole popula-
tion and subpopulation of Z = z.

Propensity scores
We define the full PS as a function of all available 
covariates:

In health disparities research, we are interested in com-
paring health care outcomes between the minority group 
(coded as Z = 1) with the majority group (coded as Z = 0 ). 
Therefore, in our study, the PS represents the probability of 
being in the minority group conditional on the covariates. 
The standard causal inference approach adopts the full 
PS to balance all covariates between comparison groups. 
However, balancing all covariates does not comply with 
the IOM’s definition because the original differences in the 
SES variables cannot be preserved. To overcome this issue 
from using the full PS, Cook et al. [5] proposed using the 
health-status PS, which is a function of only the health-sta-
tus variables:

Choi et al. [8] extended the approach of Cook et al. [5] to 
study various estimands of health care disparities. Weight-
ing based on the health-status PS is optimal if the health 
status and SES variables are independent of each other, but 
it generally alters the SES variables, as demonstrated by 
Choi et al. [8]. To address this issue, Choi et al. [8] intro-
duced a data-adaptive method to find the balancing weights 
that minimize the alternations of the SES variables while 
preventing severe imbalance in the health-status variables. 
This data-adaptive method might be effective in overcom-
ing the inherent limitation of the health-status PS method 
but is still an indirect way to preserve SES variables.

Rather than using the health-status PSs, the proposed 
deweighting approach weights the subjects with the full 
PSs but deweights them using the PSs based on only the 
SES variables. Because the SES variables are involved in the 
weights, the proposed approach directly preserves the SES 
variables, while adjusting for the health-status variables. 
We will refer to the PS using only the SES variables as the 
SES-PS, defined as:

e(x) = Pr(Z = 1 | X = x).

e
(
xh
)
= Pr

(
Z = 1|Xh = xh

)
.

e
(
xs
)
= Pr

(
Z = 1|Xs = xs

)
.

Balancing weights
To use the PSs to study health disparities, we adopt the 
balancing weights approach [9]. The balancing weights 
based on the full PSs are defined as

where g(x) is a selection function that determines the tar-
get population of interest. If we weight the treated group 
by ωB

1 (x) and the control group by ωB
0 (x) , then f1(x) and 

f0(x) will be balanced toward t(x) = g(x)f (x)/E
{
g(x)

}
 . 

Typically, g(x) is a function of e(x) . Therefore, it is worth-
while to look at the target population when g(x) is equal 
to e(x) or 1− e(x):

Based on Eq.  (2), we can demonstrate that 
f1(x)ω

B
1 (x) ∝ g(x)f (x) and f0(x)ω

B
0 (x) ∝ g(x)f (x) , and 

therefore ωB
1 (x) and ωB

0 (x) are called the balancing weights.
The specification of g(x) determines the target 

populations and estimands, as shown in Table  1 of 
Li et  al. [9]. For example, when g(x) = 1 , the esti-
mand is the average treatment effect (ATE), and 
the weights are the inverse probability weights 
(IPWs), 

{
ωB
1 (x),ω

B
0 (x)

}
= {1/e(x), 1/(1− e(x))} . When 

g(x) = e(x) , the estimand is the average treatment 
effect on the treated (ATT), and the weights are 
the standardized mortality ratio weights (SMRWs), {
ωB
1 (x),ω

B
0 (x)

}
= {1, e(x)/(1− e(x))} . Li et  al. [9] 

introduced overlap weights to identify the average 
treatment effect in the overlap population (ATO), 
where g(x) = e(x){1− e(x)} , and the weights are {
ωB
1 (x),ω

B
0 (x)

}
= {1− e(x), e(x)} . The overlap weights 

are useful to address extreme PSs [11].
Let τ (x) = E[Y | Z = 1,X = x]− E[Y | Z = 0,X = x] 

denote the conditional average controlled difference 
given X = x [12]. Based on Hirano et al. [13] and Li et al. 
[9], we can express the target estimand as the weighted 
average of τ (x) over the target population, g(x)f (x):

In causal inference, τg is called the weighted average 
treatment effect (WATE). The necessary conditions to 
identify the WATE from the observed data include the 
assumptions of unconfoundedness and positivity [14]. 
For descriptive comparisons, we will call it the weighted 

(1)ωB
1 (x) =

g(x)
e(x) , and ωB

0 (x) =
g(x)

1−e(x)

(2)f1(x) ∝ e(x)f (x), and f0(x) ∝ {1− e(x)}f (x)

(3)τg =

∫
τ(x)g(x)f (x)dx∫
g(x)f (x)dx
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average controlled difference (WACD). Because race/
ethnicity is not manipulable, the estimand more related 
to health care disparity is the WACD. However, we 
will adopt the terminologies used for the WATE. For 
example, we will use the terms ‘ATE’ and ‘ATT’ to rep-
resent the measures of health care disparity in the com-
bined (minority plus majority) and minority groups, 
respectively.

Following Theorem 1 of Li et al., the consistent esti-
mator for τg is

Our proposed approach is based on the balanc-
ing weights in Eq.  (1) but needs additional balancing 
weights based on the SES-PSs:

τ̂g =

∑
i ω

B
1 (Xi)ZiYi∑

i ω
B
1 (Xi)Zi

−

∑
i ω

B
0 (Xi)(1− Zi)Yi∑

i ω
B
0 (Xi)(1− Zi)

.

Table 1  Baseline characteristics of the overall, black non-RHC, black RHC, white non-RHC, and white RHC patients

Overall Black non-RHC Black RHC Whie non-RHC White RHC

N 5380 585 335 2753 1707

Age (mean (SD)) 61.99 (16.46) 57.42 (17.79) 54.88 (16.87) 63.45 (16.64) 62.60 (14.90)

Sex = Male (%) 2994 (55.7) 290 (49.6) 165 (49.3) 1505 (54.7) 1034 (60.6)

Cancer (%)

  Metastatic 362 (6.7) 49 (8.4) 18 (5.4) 198 (7.2) 97 (5.7)

  No cancer 4105 (76.3) 466 (79.7) 276 (82.4) 2029 (73.7) 1334 (78.1)

  Localized 913 (17.0) 70 (12.0) 41 (12.2) 526 (19.1) 276 (16.2)

Disease category (%)

  ARF 2354 (43.8) 255 (43.6) 121 (36.1) 1244 (45.2) 734 (43.0)

  CHF 422 (7.8) 42 (7.2) 37 (11.0) 193 (7.0) 150 (8.8)

  MOSF 1504 (28.0) 146 (25.0) 140 (41.8) 557 (20.2) 661 (38.7)

  Other 1100 (20.4) 142 (24.3) 37 (11.0) 759 (27.6) 162 (9.5)

Number of comorbidities (mean (SD)) 1.51 (1.16) 1.42 (1.17) 1.35 (1.07) 1.56 (1.17) 1.50 (1.14)

Duke activity status index (mean (SD)) 20.48 (5.31) 20.45 (5.81) 20.82 (5.25) 20.30 (5.39) 20.73 (5.00)

APACHE score (mean (SD)) 54.59 (19.88) 52.56 (19.99) 62.82 (20.94) 50.48 (18.30) 60.31 (20.21)

Glasgow coma score (mean (SD)) 21.03 (30.48) 26.06 (32.47) 21.63 (30.65) 21.50 (31.26) 18.44 (28.14)

Mean blood pressure (mean (SD)) 78.56 (38.16) 93.76 (42.08) 70.64 (39.42) 83.10 (38.00) 67.59 (33.28)

WBC (mean (SD)) 15.77 (11.98) 15.87 (13.25) 16.54 (14.36) 15.27 (11.09) 16.40 (12.36)

Heart rate (mean (SD)) 114.98 (41.52) 113.88 (42.04) 118.64 (46.20) 112.58 (40.93) 118.52 (41.06)

Respiratory rate (mean (SD)) 28.05 (14.12) 29.86 (15.16) 26.63 (15.29) 28.74 (13.74) 26.61 (13.98)

Temperature (mean (SD)) 37.61 (1.78) 37.53 (1.92) 37.34 (2.01) 37.65 (1.71) 37.64 (1.79)

PaO2/FiO2 ratio (mean (SD)) 221.31 (114.15) 261.19 (121.04) 214.19 (118.05) 234.86 (114.28) 187.20 (101.30)

Albumin (mean (SD)) 3.09 (0.79) 3.13 (0.63) 2.88 (0.76) 3.17 (0.68) 2.99 (0.97)

Hematocrit (mean (SD)) 31.95 (8.38) 31.06 (8.72) 29.52 (7.71) 33.19 (8.75) 30.75 (7.40)

Bilirubin (mean (SD)) 2.11 (4.37) 2.04 (4.54) 2.25 (3.95) 1.82 (3.81) 2.58 (5.12)

Creatinine (mean (SD)) 2.13 (2.05) 2.49 (2.82) 2.87 (2.51) 1.81 (1.80) 2.38 (1.92)

Sodium (mean (SD)) 136.81 (7.63) 138.21 (7.69) 136.42 (7.69) 136.81 (7.59) 136.42 (7.60)

Potassium (mean (SD)) 4.07 (1.02) 4.11 (1.14) 4.13 (1.09) 4.07 (1.00) 4.03 (0.99)

PaCO2 (mean (SD)) 38.80 (13.15) 38.30 (13.24) 36.77 (10.93) 40.40 (14.34) 36.78 (11.00)

PH (mean (SD)) 7.39 (0.11) 7.39 (0.10) 7.37 (0.11) 7.39 (0.11) 7.38 (0.11)

Weight (mean (SD)) 68.25 (29.05) 65.43 (30.83) 75.01 (27.10) 65.46 (29.17) 72.40 (27.89)

‘Do not resuscitate’ status on day 1 = Yes (%) 626 (11.6) 63 (10.8) 16 (4.8) 414 (15.0) 133 (7.8)

Insurance (%)

  Government 2338 (43.5) 361 (61.7) 186 (55.5) 1196 (43.4) 595 (34.9)

  Private 2752 (51.2) 174 (29.7) 111 (33.1) 1440 (52.3) 1027 (60.2)

  Uninsured 290 (5.4) 50 (8.5) 38 (11.3) 117 (4.2) 85 (5.0)

High school education or more (%) 1527 (28.4) 102 (17.4) 69 (20.6) 779 (28.3) 577 (33.8)

Income >=$25k (%) 1258 (23.4) 63 (10.8) 44 (13.1) 649 (23.6) 502 (29.4)
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The key contribution of this study is to demonstrate 
that the following weights ω1(x) =

ωB
1 (x)

ωB
1 (x

s)
 and 

ω0(x) =
ωB
0 (x)

ωB
0 (x

s)
 , can create joint distributions aligned 

with the IOM’s definition. Before we discuss these pro-
posed weights, we will define the estimands for health 
care disparities.

Estimands for health care disparities
It is important to note that the WATE or WACD in (3) 
is obtained by averaging τ (x) over the common target 
joint distribution of health status and SES. Accordingly, 
the estimand in (3) may not be appropriate as a meas-
ure of health care disparities because the SES variables 
are altered. Because the IOM definition requires SES to 
be preserved but health status to be balanced between 
groups, it would be desirable to balance health status 
conditional on SES. Therefore, our target population 
for each group is represented by the target conditional 
health-status distribution given SES times its own mar-
ginal SES distribution.

Let fg
(
xh | xs

)
 denote a target conditional distri-

bution of health status given SES. We will show that 
fg
(
xh | xs

)
= f

(
xh|xs

)
g(x)/g(xs) , where g(x) is a selec-

tion function used to define the WATE in (3). The selection 
function g(xs) is a function of e(xs) but with the same form 
as g(x) . A simple example arises when g(x) = g(xs) = 1 ; 
the target conditional distribution of health status is 
f
(
xh|xs

)
 , which is for the combined population. In this 

case, the target conditional distribution is the combined 
distribution of health status from minority and major-
ity subjects, and thus, we will refer to the corresponding 
estimand as the ATE measure of health disparity. When 
g(x) = e(x) and g(xs) = e(xs) , the target conditional distri-
bution of health status is f1

(
xh|xs

)
 , which is for the minor-

ity population. Because the target conditional distribution is 
for minority health status, we will refer to the correspond-
ing estimand as the ATT measure of health disparity. From 
the fact that a joint distribution is a conditional distribution 
of health status given SES times a marginal distribution of 
SES, the target joint distribution for the group Z = z can 
be written as tz(x) = fg

(
xh | xs

)
fz(x

s)/E
[
fg
(
xh | xs

)
fz(x

s)
]
 , 

where E
[
fg
(
xh | xs

)
fz(x

s)
]
 are normalizing constants for 

z = 0,1 . These joint distributions have the common condi-
tional distribution of health status fg

(
xh | xs

)
 but their own 

original marginal distributions f1(xs) and f0(xs) for minor-
ity and majority groups, respectively.

Now we define the estimand for disparity as 
τg = µg1 − µ

g0
 , where µg1 and µg0 are:

ωB
1

(
xs
)
=

g(xs)

e(xs)
, and ωB

0

(
xs
)
=

g(xs)

1− e(xs)
.

and

Note that µg1 and µg0 are defined by averaging the con-
ditional expectation of Y  over the same target conditional 
distribution of health status but different marginal distri-
butions of SES. Our hypothesis of interest is that this τg is 
equal to 0 or not.

In the next section, we will discuss important exam-
ples of the proposed weights to demonstrate how µg1 and 
µg0 can be estimated for the ATE and ATT measures of 
health disparities, aligned with IOM’s definition.

Proposed weights
We illustrate our approach with two important examples, 
the ATE and ATT measures of health disparity. Suppose 
that we used the IPWs, {1/e(x), 1/(1− e(x)) }, to esti-
mate the ATE. Because the full PS includes SES variables, 
they could be altered by the weighting. To alleviate the 
impacts of the IPWs on the SES variables, we deweight 
the subjects based on the SES-PSs. That is, we multiply 
the SES-PSs to the minority group and the ‘1 minus SES-
PSs’ to the majority group. As a result, we have the fol-
lowing weights:

First, we demonstrate that the joint distribution result-
ing from weighting the minority group with ω1(x) is equal 
to the conditional distribution of health status given SES 
in the combined group times the minority distribution of 
SES:

This resultant joint distribution, f
(
xh|xs

)
f1(x

s) , is 
counterfactual because the conditional health-status dis-
tribution is from the combined population, but the mar-
ginal SES distribution is from the minority group.

In the same way, we can show that the joint distribu-
tion resulting from weighting the majority group with 
ω0(x) is equal to the conditional distribution of health 
status given SES in the combined group times the major-
ity distribution of SES:

(4)µg1 =

∫
E[Y |Z=1,X=x]fg

(
xh|xs

)
f1(x

s)dx
∫
fg(xh|xs)f1(xs)dx

(5)µg0 =

∫
E[Y |Z=0,X=x]fg

(
xh|xs

)
f0(x

s)dx
∫
fg(xh|xs)f0(xs)dx

.

(6)ω1(x) =
e(xs)
e(x) , and ω0(x) =

1−e(xs)
1−e(x) .

f1(x)ω1(x) ∝ f (x)e
(
xs
)
= f

(
xh|xs

)
f
(
xs
)
e
(
xs
)
∝ f

(
xh|xs

)
f1
(
xs
)
.
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Therefore, the proposed weights in Eq. (6) generate hypo-
thetical distributions aligned with the IOM’s definition 
because the marginal SES distributions for both groups are 
kept but the target conditional distribution of health status 
coincides with f

(
xh|xs

)
 . Therefore, the original SES differ-

ences between the groups can contribute to the ATE esti-
mate of health disparity, while adjusting for health status.

Now we discuss the racial disparity in the minority 
group, the ATT measure of health disparity. Suppose that 

we used the SMRWs, {1, e(x)/(1− e(x))} , to estimate the 
ATT. In this case, we do not deweight the minority group 
because all the weights are 1, which does not alter the 
SES variables. Because the majority subjects are weighted 
by e(x)/(1− e(x)) , we multiply the majority group by the 
inverse of e(xs)

{1−e(xs)} to deweight them. As a result, we have 
the following weights:

We can show that the joint distribution resulting from 
weighting the majority group with ω0(x) in Eq. (7) is equal 
to the conditional distribution of health status given SES in 
the minority group times the majority distribution of SES:

This resulting joint distribution f1
(
xh|xs

)
f0(x

s) is clearly 
counterfactual because the conditional health-status is for 
the minority, but the marginal SES is for the majority.

Generalization
We can generalize the weights for the ATE and ATT as 
follows:

f0(x)ω0(x) ∝ f (x)
{
1− e

(
xs
)}

= f
(
xh|xs

)
f
(
xs
){

1− e
(
xs
)}

∝ f
(
xh|xs

)
f0
(
xs
)
.

(7)ω1(x) = 1, and ω0(x) =
e(x)

1−e(x)

{
e(xs)

1−e(xs)

}−1

.

f0(x)ω0(x) ∝ f1(x)

{
e(xs)

1− e(xs)

}−1

= f1

(
xh|xs

)
f1
(
xs
)1− e(xs)

e(xs)
∝ f1

(
xh|xs

)
f0
(
xs
)
.

(8)ω1(x) =
ωB
1
(x)

ωB
1
(xs)

, and ω0(x) =
ωB
0
(x)

ωB
0
(xs)

.

For the ATE, 
{
ωB
1 (x),ω

B
0 (x)

}
= {1/e(x), 1/(1− e(x))}  and {

ωB
1 (x

s),ωB
0 (x

s)
}
= {1/e(xs), 1/(1− e(xs)) }. For 

the ATT, 
{
ωB
1 (x),ω

B
0 (x)

}
= {1, e(x)/(1− e(x))}  and {

ωB
1 (x

s),ωB
0 (x

s)
}
= {1, e(xs)/(1− e(xs))}.

The weighted minority distribution by ω1(x) is

In the same way, we can show that the weighted 
majority distribution by ω0(x) is

Previously, we let fg
(
xh | xs

)
≡ f

(
xh|xs

)
g(x)/g(xs) 

define the target conditional distribution of health 
status. Thus, the proposed weights realize the tar-
get populations, expressed as fg

(
xh | xs

)
f1(x

s) and 
fg
(
xh | xs

)
f0(x

s) , for minority and majority groups, 
respectively.

An important example arises when g(x) = g(xs) = 1 
for the ATE, where the target distribution of condi-
tional health-status is easily obtained as f

(
xh|xs

)
 . For 

the ATT, g(x) = e(x) and g(xs) = e(xs) , and therefore, 
the target conditional distribution of health-status is

which is of the minority group.
We can demonstrate that the marginal distributions 

of health status variables are not necessarily the same 
between the groups in the hypothetical populations 

generated by the proposed weights:

The above inequality holds unless health status and 
SES variables are independent or two racial groups 
have the same SES distribution. Therefore, we do not 
focus on balancing the marginal distributions of health 
status. Instead, we seek to balance the conditional dis-
tributions of health status given SES.

f1(x)ω1(x) = f1(x)
g(x)

e(x)

e(xs)

g(xs)
∝ f (x)e

(
xs
) g(x)

g(xs)
∝

{
f
(
xh|xs

) g(x)

g(xs)

}
f1
(
xs
)
.

f0(x)ω0(x) = f0(x)
g(x)

1− e(x)

1− e(xs)

g(xs)
∝ f (x)

{
1− e

(
xs
)} g(x)

g(xs)
∝

{
f
(
xh|xs

) g(x)

g(xs)

}
f0
(
xs
)
.

fg

(
xh | xs

)
= f

(
xh|xs

) e(x)

e(xs)
= f (x)e(x)

{
f
(
xs
)
e
(
xs
)}−1

∝ f1(x)f1
(
xs
)−1

= f1

(
xh|xs

)
,

∫
fg
(
xh | xs

)
f1(x

s)

E
[
fg
(
xh | xs

)
f1(xs)

]dxs �=
∫

fg
(
xh | xs

)
f0(x

s)

E
[
fg
(
xh | xs

)
f0(xs)

]dxs .
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The ATO has been used as an estimand to address 
lack of overlap [15], which often occurs when some 
covariates are highly correlated with the treat-
ment variable. To identify the ATO measure of 
racial disparity, we let g(x) = e(x){1− e(x)} and 
g(xs) = e(xs){1− e(xs)} . Then, the corresponding over-
lap weights are ω1(x) = {1− e(x)}/{1− e(xs)} and 
ω0(x) = e(x)/e(xs) . Notably, the target population for 
the original overlap weights is

which is the product of the minority and majority den-
sities divided by the marginal density of the combined. 
We can show that the target conditional distribution of 
health status has the same form as Eq. (9):

Therefore, the target conditional distribution is the 
overlapped conditional distribution of health status given 
SES between the groups.

Estimation of health disparity measures
Based on Eqs.  (4) and (5), we can construct consist-
ent estimators for µg1 and µg0 . Using our result that 
f1(x)ω1(x) ∝ fg

(
xh | xs

)
f1(x

s) , we can write µg1 in Eq. (4) 
as

Using our result that f0(x)ω0(x) ∝ fg
(
xh | xs

)
f0(x

s) , we 
can also write µg0 in Eq. (5) as

Therefore, we use the following consistent estimator for 
τg:

Estimation of the propensity scores
In the proposed framework, the important task is to bal-
ance the conditional distributions of health status given 
SES between minority and majority groups. Usual meth-
ods for PS estimation may not be effective in achieving 
this task. However, we can view this task as estimating 
the PSs within each subgroup defined by SES variables, 

(9)f (x)e(x){1− e(x)} ∝ f1(x)f0(x)/f (x),

fg

(
xh | xs

)
= f

(
xh|xs

) e(x){1− e(x)}

e(xs){1− e(xs)}
∝

f1(x)f0(x)/f (x)

f1(xs)f0(xs)/f (xs)
=

f1
(
xh|xs

)
f0
(
xh|xs

)

f
(
xh|xs

)

µg1 =

∫
E[Y | Z = 1,X = x]f1(x)ω1(x)dx∫

f1(x)ω1(x)dx
.

µg0 =

∫
E[Y | Z = 0,X = x]f0(x)ω0(x)dx∫

f0(x)ω0(x)dx
.

(10)τ̂g =

∑
i ω1(Xi)ZiYi∑
i ω1(Xi)Zi

−

∑
i ω0(Xi)(1−Zi)Yi∑
i ω0(Xi)(1−Zi)

.

where the PSs are intended to balance health-status vari-
ables. Several researchers have investigated PS methods 
for subgroup analysis. Dong et al. [16] demonstrated that 
fitting the PS models by strata yields better covariate bal-
ance within the strata than fitting the main-effects model 
on the whole data. Therefore, we propose to fit the full 
PS model to each subgroup defined by all SES variables. 
As shown by Yang et al. [17], the overlap weights achieve 
exact balance within each subgroup when the PS mod-
els are fitted by strata and maximum likelihood (ML) is 
used for parameter estimation. However, exact balance 
is not guaranteed for the other weights, such as the IPW 
weights, when ML is used for parameter estimation. In 
their simulation study, Dong et  al. [16] showed that the 
covariate balancing propensity score (CBPS) [18] is effec-
tive in balancing the covariates within strata when it is 

used to estimate the stratum-specific PS models. To have 
a better finite balance for the weights other than the over-
lap weights, we use CBPS for PS estimation.

Measuring concordance with IOM’s definition
In typical PS-weighted analysis, we can use the absolute 
standardized mean difference (ASMD) [19] to evaluate 
whether the covariates are balanced between groups in 
the target population. If Xij indicates covariate j of sub-
ject i , then the ASMD of Xij is

where s2
1(j)

 is the sample variance of unweighted Xij in the 
minority group, and s2

0(j)
 is the sample variance of 

unweighted Xij in the majority group.
Following IOM’s definition, we do not balance all covar-

iates, pursued by typical causal inference approaches. 
Therefore, we need to modify D

(
Xij

)
 for health dispari-

ties research. First, we adopt the metrics introduced by 
Choi et  al. [8] to measure the degree to which the pro-
posed weights alter the minority SES:

where j = 1, . . . , J  . The metric to measure the degree to 
which the proposed weights alter the majority SES is:

D
(
Xij

)
=

∣∣∣∣∣

∑N
i=1

XijZiω
B
1 (Xi)∑N

i=1
Ziω

B
1 (Xi)

−

∑N
i=1

Xij (1−Zi)ω
B
0 (Xi)∑N

i=1(1−Zi)ω
B
0 (Xi)

∣∣∣∣∣
√(

s2
1(j)

+s2
0(j)

)

2

,

(11)
D1

(
Xs
ij

)
=

∣∣∣∣∣

∑N
i=1

XsijZi
∑N

i=1
Zi

−

∑N
i=1

XsijZiω1(Xi)
∑N

i=1
Ziω1(Xi)

∣∣∣∣∣
s1(j)

,
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where j = 1, . . . , J .
We demonstrated that the marginal distributions of 

health status are generally not balanced if the weights 
preserve the original SES distributions. Thus, we seek 
to measure the extent to which health-status variables 
are balanced within the SES subgroups. Without loss of 
generality, assume that the SES variables are categorical, 
and the total number of subgroups that can be generated 
by them is R = 2K  . In our application to the RHC data, 
we consider four subgroups defined based on two binary 
SES variables, education and income. Let Gi ∈ {1, . . . ,R} 
denote the subgroup indicator for subject i . Define an 
indicator function 1(A) , equal to 1 if statement A is true 
and 0 otherwise. Adopting Eq. (6) of Yang et al. [17], we 
modify D

(
Xij

)
 to measure the balance in the health-sta-

tus variables in subgroup r:

where j = J + 1, . . . , J + K  , r = 1, . . . ,R , s2
r1(j)

 is the sam-
ple variance of unweighted Xij in the minority group 
belonging to SES subgroup r , and s2

r0(j)
 is the sample vari-

ance of unweighted Xij in the majority group belonging 
to SES subgroup r.

In this section, we have discussed three ASMD meas-
ures, D1

(
Xs
ij

)
 , D0

(
Xs
ij

)
 , and Dr

(
Xh
ij

)
 , to evaluate whether 

given weights create target populations concordant with 
IOM’s definition. Smaller values of these three indicate 
that the given weights are reliable. Austin and Stuart [19] 
recommended using 0.1 as a threshold to detect covariate 
imbalance. Following this recommendation, if there are 
any covariates whose ASMD values are greater than 0.1, 
this will indicate that the weights may not achieve the 
IOM’s definition successfully.

Characterizing target populations
It would be important to characterize the target popula-
tions identified by the proposed weights because they are 
usually hypothetical and not directly observable from the 
data. Adopting the estimators for µg1 and µg0 in (10), we 
can estimate the means of Xij in the target joint distri-
butions. The estimator for the mean of Xij the weighted 
minority group is

(12)
D0

(
Xs
ij

)
=

∣∣∣∣∣

∑N
i=1

Xsij (1−Zi)
∑N

i=1
(1−Zi)

−

∑N
i=1

Xsij (1−Zi)ω0(Xi)
∑N

i=1
(1−Zi)ω0(Xi)

∣∣∣∣∣
s0(j)

,

(13)

Dr

(
Xh
ij

)
=

∣∣∣∣∣

∑N
i=1

Xij1(Gi=r)Ziω1(Xi)
∑N

i=1
1(Gi=r)Ziω1(Xi)

−

∑N
i=1

Xij1(Gi=r)(1−Zi)ω0(Xi)
∑N

i=1
1(Gi=r)(1−Zi)ω0(Xi)

∣∣∣∣∣
√(

s2
r1(j)

+s2
r0(j)

)

2

,

and that for the weighted majority group is

The estimators m1

(
Xij

)
 and m0

(
Xij

)
 are obtained by 

replacing outcome Yi with covariate Xij in those of µg1 
and µg0.

Application to right heart catheterization data
Connors et  al. [10] examined the effectiveness of RHC 
on critically ill patients during the first 24 h after admis-
sion to the intensive care unit. The authors compared 
survival outcomes and found that patients managed with 
RHC had poorer survival outcomes than those without 
RHC. The original study [10] and other studies [9, 20, 21] 
focused on whether RHC was beneficial or harmful for 
critically ill patients. In this study, we examined whether 
there was a disparity in receiving RHC between black 
and white patients admitted to the intensive care unit. If 
there is a difference in the probabilities of receiving RHC 
even after adjusting for the variables relating to clinical 
needs and health status, while keeping the original SES 
distributions, that difference would indicate some racial 
disparities in receiving RHC. Because physicians believed 
that management with RHC leads to better patient out-
comes at the time of the RHC study [10], even though 
the actual RHC study demonstrated that it was not ben-
eficial in general, reduced use of RHC by black patients 
would reflect disparities. We compared the unadjusted 
proportions of patients receiving RHC, which indicated 
that black patients were 1.86% less likely to receive RHC 
than white patients. This proportion difference was not 
statistically significant, with a p-value of 0.286 at a 5% 
level. However, this estimate did not account for the dif-
ferences in clinical needs and health status, which should 
not contribute to health disparity measures.

The original data includes 920 blacks, 4460 whites, 
and 335 others, but we considered only black and white 
patients to illustrate our methods. Thus, our data con-
sisted of 5380 patients. We considered twenty continuous 
(age, number of comorbid illnesses, and baseline labora-
tory values) and four categorical (sex, primary disease 
category, cancer, and ‘do not resuscitate’ (DNR) status) 
variables for health status. After generating the dummy 
variables for the categorical variables, we obtained 
twenty-seven health-status variables. Table S1  provides 
a full list of the health-status variables. For SES, we con-
sidered years of education and income. We converted 

(14)m1

(
Xij

)
=

∑
i ω1(Xi)ZiXij∑
i ω1(Xi)Zi

,

(15)m0

(
Xij

)
=

∑
i ω0(Xi)(1−Zi)Xij∑
i ω0(Xi)(1−Zi)

.
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years of education to a binary variable, equal to 1 if high 
school education or more and 0 otherwise. Income had 
four categories, but these categories were pooled to have 
the following two categories: ‘less than $25K’ and ‘$25K 
or greater’. Table 1 presents the baseline characteristics of 
non-RHC and RHC patients by race. Table  2 shows the 
frequency distribution of the SES subgroups.

In the context of this analysis, the PS was defined as 
the probability of being a black patient conditional on the 
covariates. The goal of this analysis was to demonstrate 
the use of the deweighting approach to estimate the ATE, 
ATT, and ATO measures of health disparities in receiv-
ing RHC. The full PS model for the deweighting approach 
included the main effects of all health-status variables but 
was estimated within each of the SES subgroups, using 
the CBPS. Thus, the full PSs were obtained from these 
SES Stratum-specific Health-Status (SSHS)-PS mod-
els. The SES-PS model was fitted with the main effects 
of education and income, and their interaction term. 
Because the SES variables were categorical, the model 
was saturated. Finally, the proposed weights for the ATE, 
ATT, and ATO were calculated using the estimated full 
PSs and SES-PSs.

Based on Eq.  (10), the proposed weights were used 
to estimate the ATE, ATT, and ATO measures of racial 

disparities. We used the survey R package [22] to calcu-
late 95% confidence intervals and presented inference 
results in Table  3. We used four methods to estimate 
each disparity measure: (i) full PS using the main effects 
of health-status and SES variables, (ii) full PS based on 
SSHS-PS, (iii) health-status PS, and (iv) deweighting. 
These full or health-status PSs were estimated using the 
CBPS. Note that methods (i) and (ii) used the PSs adjust-
ing for all covariates, and methods (iii) and (iv) adjusted 
for only the health-status variables. Even though all esti-
mates were not statistically significant at a 5% level, we 
observed meaningful differences between the methods 
regarding point estimates. The ATT estimates based on 
the full PS and SSHS-PS were positive, indicating that 
black patients were more likely to receive RHC by 1.51% 
and 0.64%, respectively. Therefore, using all covariates 
over-adjusted the crude difference, and as a result, the 
sign of the estimate was reversed. The ATT estimates 
based on the health-status PS and deweighting reduced 
the disparities to -0.14% and − 0.35%, respectively, from 
− 1.86%. Similar observations were found for the ATO 
estimates. For the ATE, only the deweighting estimate 
(-2.44%) represented a larger disparity than the unad-
justed estimate (-1.86%).

We used our three metrics in Eqs. (11, 12, 13) to exam-
ine how better the proposed weights achieved the IOM’s 
definition than the balancing weights based on the SSHS-
PS, which we will call SSHS weights. Note that the pro-
posed weights are obtained as the SSHS weights divided 
by the balancing weights based on the SES-PS. First, we 
checked whether the marginal SES distributions of blacks 
and whites were preserved in the ATE weighted data. To 
this end, we looked at whether the values of D0

(
Xs
ij

)
 were 

sufficiently small for education and income. The values of 

Table 2  Joint distribution of education and income in right 
heart catheterization data

Education Income

Less than $25K $25K or greater

Less than high school 3321 532

High school or more 801 726

Table 3  Racial disparity estimates (%), as measured by the average controlled differences, in receipt of a right heart catheterization

NA Not available, ATE Average treatment effect, ATT Average treatment effect in the treated, ATO Average treatment effect in the overlap population, PS Propensity 
score, SES Socioeconomic status

Estimand Method Point estimate Lower bound Upper bound

NA Unadjusted difference -1.86 -5.25 1.59

ATE Full PS -0.16 -4.70 4.38

SES stratum-specific health-status PS -1.33 -6.27 3.62

Health-status PS -0.03 -3.75 3.69

Deweighting -2.44 -6.65 1.77

ATT​ Full PS 1.51 -2.28 5.30

SES stratum-specific health-status PS 0.64 -3.13 4.41

Health-status PS -0.14 -3.76 3.47

Deweighting -0.35 -4.12 3.41

ATO Full PS 0.98 -2.69 4.64

SES stratum-specific health-status PS 0.27 -3.38 3.92

Health-status PS -0.48 -4.05 3.08

Deweighting -0.88 -4.54 2.77
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D0

(
Xs
ij

)
 for education and income were (0.020, 0.050) 

when the proposed weights were used and (0.024, 0.008) 
when the SSHS weights were used. The values of D1

(
Xs
ij

)
 

for education and income were (0.019, 0.035) when the 
proposed weights were used and (0.275, 0.426) when the 
SSHS weights were used. Therefore, the black distribu-
tion of SES was significantly changed by the SSHS 
weights. Next, we investigated whether the values of 
D0

(
Xs
ij

)
 were sufficiently small for education and income 

in the ATT weighted data. The values of D0

(
Xs
ij

)
 were 

approximately 0.0003 for education and income when the 
proposed weights were used and (0.257, 0.324) with the 
SSHS weights. Thus, the white distribution of SES was 
significantly changed by the SSHS weights. All values of 
D1

(
Xs
ij

)
 were 0 because a unit weight was applied to all 

black patients. Finally, we checked both D1

(
Xs
ij

)
 and 

D0

(
Xs
ij

)
 in the ATO population. The values of D0

(
Xs
ij

)
 

were (0.004, 0.0001) with the proposed weights and 
(0.229, 0.290) with the SSHS weights. Those of D1

(
Xs
ij

)
 

were (0.008, 0.002) with the proposed weights and (0.088, 
0.122) with the SSHS weights. These numerical results 
demonstrated that the proposed weights sufficiently pre-
served the original SES distributions for both groups in 
the ATE, ATT, and ATO populations, while the SSHS 
weights failed to do so.

In addition to the degree to which SES variables were 
altered, we checked the covariate balance of the health-
status variables after the proposed weights were applied. 
Particularly, we investigated how CBPS and ML per-
formed differently in terms of balancing health status 
variables when they were used to estimate the SSHS 
weights. In the ATE population, within each SES sub-
group, we checked whether the health-status variables of 

Fig. 1  Absolute standardized mean differences (Eq. 13) of the health-status variables in the combined group within each of the four subgroups 
defined by education and income in right heart catheterization data. The full propensity scores of black patients were estimated by maximum 
likelihood
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blacks and whites were balanced. When ML was used, 
there was a severe imbalance in the health-status varia-
bles between groups: except for the SES subgroup that 
was educated less than high school and had an income of 
less than $25K, many health-status variables had the val-
ues of Dr

(
Xh
ij

)
 over 0.1 (Fig.  1). However, when CBPS 

was used, all values of Dr

(
Xh
ij

)
 across the SES subgroups 

were smaller than 0.1. In the ATT population, within 
each of the SES subgroups, we checked whether the 
health-status variables of whites became similar to those 
of blacks after weighting. When ML was used, all values 
of Dr

(
Xh
ij

)
 for the health-status variables within each SES 

subgroup were smaller than 0.1, but a few values were 
near 0.1 (Fig. 2). For example, the values of Dr

(
Xh
ij

)
 for 

Glasgow Coma Score and temperature were 0.099 and 
0.084, respectively, in the subgroup that was educated 
less than high school but had an income of $25K or 

greater. However, when CBPS was used, the covariate 
balance of all health-status variables in the ATT popula-
tion was satisfactory with all values of Dr

(
Xh
ij

)
 almost 0. 

Those of all health-status variables in the ATO popula-
tion were also almost 0.

We used the estimators m1

(
Xij

)
 and m0

(
Xij

)
 in Eqs. (14) 

and (15) to characterize black and white patients in the 
ATE, ATT, and ATO populations. Table  4 shows the 
characteristics of the ATE-weighted black and white 
patients, and the combined sample. The marginal means 
of the health-status variables between the weighted black 
and white patients were similar to those of the combined 
sample. The education and income of the weighted white 
patients were minimally altered. In the original samples, 
18.6% of black patients had a high-school education or 
more, but 30.4% of white patients were so educated. After 
the proposed weighting, those percentages were changed 
to 19.3% and 31.3%, respectively. Regarding income, 

Fig. 2  Absolute standardized mean differences (Eq. 13) of the health-status variables in the black group within each of the four subgroups defined 
by education and income in right heart catheterization data. The full propensity scores of black patients were estimated by maximum likelihood
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11.6% of black patients earned $25K or greater, while 
25.8% of white patients earned so. After the proposed 
weighting, those percentages were changed to 12.8% and 
28.0%, respectively. Table 5 shows the original covariates 
of black patients, and the ATT-weighted and original 
covariates of white patients. The marginal means of the 
health-status variables between the black and weighted 
white patients were similar. The education and income of 
the weighted white patients were completely unaltered. 
As a result, the original differences in these SES variables 
were preserved. Table 6 shows the ATO-weighted covari-
ates in black and white patients. Again, we observed that 

education and income were not altered, and the marginal 
distributions of the health-status variables were similar 
between the weighted groups.

Discussion
In our empirical example, to balance health status condi-
tional on SES, we fitted the full PS model to each of the 
four strata based on education and income. However, if 
the number of SES subgroups is large, then fitting the 
full PS models by the SES strata can produce unstable 
PS estimates, which results in poor balance of health sta-
tus. This problem can occur if some strata sizes are too 

Table 4  Characteristics of the ATE-weighted black and white patients, and the original combined sample in right heart catheterization 
data

Weighted  black patients Weighted  white patients Overall

N 940.74 4652.67 5380

Age (mean (SD)) 62.28 (16.75) 61.04 (16.79) 61.99 (16.46)

Sex = Male (%) 511.1 (54.3) 2552.5 (54.9) 2994 (55.7)

Cancer (%)

  Metastatic 62.2 (6.6) 353.7 (7.6) 362 (6.7)

  No cancer 721.8 (76.7) 3506.4 (75.4) 4105 (76.3)

  Localized 156.7 (16.7) 792.6 (17.0) 913 (17.0)

Disease category (%)

  ARF 410.5 (43.6) 2029.8 (43.6) 2354 (43.8)

  CHF 71.7 (7.6) 353.5 (7.6) 422 (7.8)

  MOSF 260.2 (27.7) 1343.8 (28.9) 1504 (28.0)

  Other 198.4 (21.1) 925.6 (19.9) 1100 (20.4)

Number of comorbidities (mean (SD)) 1.53 (1.16) 1.49 (1.15) 1.51 (1.16)

Duke activity status index (mean (SD)) 20.23 (5.36) 20.59 (5.36) 20.48 (5.31)

APACHE score (mean (SD)) 54.98 (19.91) 55.10 (20.06) 54.59 (19.88)

Glasgow coma score (mean (SD)) 21.78 (29.75) 21.76 (31.25) 21.03 (30.48)

Mean blood pressure (mean (SD)) 79.26 (40.22) 78.91 (38.59) 78.56 (38.16)

WBC (mean (SD)) 15.85 (13.10) 15.64 (11.65) 15.77 (11.98)

Heart rate (mean (SD)) 114.17 (43.36) 114.92 (41.87) 114.98 (41.52)

Respiratory rate (mean (SD)) 27.96 (14.94) 27.93 (14.06) 28.05 (14.12)

Temperature (mean (SD)) 37.59 (1.79) 37.65 (1.78) 37.61 (1.78)

PaO2/FiO2 ratio (mean (SD)) 223.90 (111.31) 223.53 (120.81) 221.31 (114.15)

Albumin (mean (SD)) 3.08 (0.65) 3.07 (0.81) 3.09 (0.79)

Hematocrit (mean (SD)) 32.01 (8.43) 31.76 (8.38) 31.95 (8.38)

Bilirubin (mean (SD)) 2.05 (4.18) 2.13 (4.41) 2.11 (4.37)

Creatinine (mean (SD)) 2.20 (2.06) 2.19 (2.18) 2.13 (2.05)

Sodium (mean (SD)) 136.91 (7.52) 136.83 (7.67) 136.81 (7.63)

Potassium (mean (SD)) 4.08 (1.02) 4.07 (1.03) 4.07 (1.02)

PaCO2 (mean (SD)) 39.11 (13.28) 38.62 (13.29) 38.80 (13.15)

PH (mean (SD)) 7.38 (0.10) 7.39 (0.11) 7.39 (0.11)

Weight (mean (SD)) 68.45 (29.27) 68.36 (29.22) 68.25 (29.05)

‘Do not resuscitate’ status on day 1 = Yes (%) 112.1 (11.9) 508.4 (10.9) 626 (11.6)

High school education or more (%) 182.0 (19.3) 1457.2 (31.3) 1527 (28.4)

Income >=$25k (%) 120.1 (12.8) 1301.7 (28.0) 1258 (23.4)
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small, or extreme PSs exist. In such a case, more sophis-
ticated methods than the subgroup fits would be needed. 
For example, Dong et al. [16] devised a stochastic search 
algorithm that selects one of two competing models for 
each subgroup, where model comparisons are performed 
based on covariate balance. Yang et al. [17] demonstrated 
that LASSO [23] is effective in reducing the number of 
interactions between the covariates to be balanced and 
strata variables for subgroup analysis of ATO. Validating 
the use of these methods for the deweighting approach 
merits further investigation.

As in traditional associational or causal analyses, the 
interpretation and validity of our approach depend on 

what data are measured. Both the health-status PS and 
deweighting approaches commonly adjust for health-
status variables, and thus, the resultant estimates repre-
sent racial differences when the observed health status or 
clinical needs are balanced toward a specific target popu-
lation. However, these approaches are different in terms 
of how unmeasured SES variables affect their interpreta-
tions and validities. In the health-status PS approach, the 
PS model is fitted using only the health-status variables, 
and SES variables are not directly involved in the estima-
tion of the PSs. This approach theoretically captures all 
measured and unmeasured SES variables in the analysis. 
However, it is impossible to assess how the unobserved 

Table 5  Characteristics of black, the ATT-weighted, and original white patients in right heart catheterization data

Black patients Weighted  white patients White patients

N 920 4461.97 4460

Age (mean (SD)) 56.50 (17.50) 55.01 (17.78) 63.13 (16.00)

Sex = Male (%) 455.0 (49.5) 2215.0 (49.6) 2539 (56.9)

Cancer (%)

  Metastatic 67.0 (7.3) 357.3 (8.0) 295 (6.6)

  No cancer 742.0 (80.7) 3563.5 (79.9) 3363 (75.4)

  Localized 111.0 (12.1) 541.2 (12.1) 802 (18.0)

Disease category (%)

  ARF 376.0 (40.9) 1865.8 (41.8) 1978 (44.3)

  CHF 79.0 (8.6) 389.9 (8.7) 343 (7.7)

  MOSF 286.0 (31.1) 1412.9 (31.7) 1218 (27.3)

  Other 179.0 (19.5) 793.4 (17.8) 921 (20.7)

Number of comorbidities (mean (SD)) 1.39 (1.13) 1.34 (1.11) 1.54 (1.16)

Duke activity status index (mean (SD)) 20.58 (5.61) 20.97 (5.58) 20.46 (5.25)

APACHE score (mean (SD)) 56.30 (20.92) 56.12 (20.60) 54.24 (19.64)

Glasgow coma score (mean (SD)) 24.45 (31.87) 23.72 (32.46) 20.33 (30.14)

Mean blood pressure (mean (SD)) 85.34 (42.59) 85.71 (40.84) 77.16 (37.04)

WBC (mean (SD)) 16.12 (13.66) 16.21 (12.34) 15.70 (11.60)

Heart rate (mean (SD)) 115.61 (43.64) 117.06 (41.78) 114.85 (41.08)

Respiratory rate (mean (SD)) 28.68 (15.28) 28.83 (14.16) 27.93 (13.87)

Temperature (mean (SD)) 37.46 (1.95) 37.54 (1.92) 37.65 (1.74)

PaO2/FiO2 ratio (mean (SD)) 244.08 (122.02) 241.38 (130.85) 216.62 (111.90)

Albumin (mean (SD)) 3.04 (0.69) 3.04 (0.92) 3.10 (0.81)

Hematocrit (mean (SD)) 30.50 (8.39) 30.52 (8.31) 32.25 (8.34)

Bilirubin (mean (SD)) 2.12 (4.33) 2.12 (4.10) 2.11 (4.37)

Creatinine (mean (SD)) 2.63 (2.71) 2.54 (2.76) 2.03 (1.87)

Sodium (mean (SD)) 137.56 (7.74) 137.35 (8.00) 136.66 (7.59)

Potassium (mean (SD)) 4.12 (1.12) 4.14 (1.11) 4.06 (1.00)

PaCO2 (mean (SD)) 37.74 (12.46) 37.33 (12.71) 39.02 (13.28)

PH (mean (SD)) 7.38 (0.11) 7.39 (0.11) 7.39 (0.11)

Weight (mean (SD)) 68.92 (29.87) 69.18 (29.98) 68.11 (28.88)

‘Do not resuscitate’ status on day 1 = Yes (%) 79.0 (8.6) 347.9 (7.8) 547 (12.3)

High school education or more (%) 171.0 (18.6) 1356.0 (30.4) 1356 (30.4)

Income >=$25k (%) 107.0 (11.6) 1151.0 (25.8) 1151 (25.8)
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SES variables are affected by weighting. In the deweight-
ing approach, the SES variables are directly involved in 
preserving the SES distributions in comparison groups. 
Therefore, it can efficiently protect the observed SES dis-
tributions from being altered by weighting. However, this 
theoretically focuses only on the measured SES variables, 
which excludes the existence of potential unmeasured 
SES variables.

It must be beneficial to investigate other relevant defi-
nitions of health disparities. For example, the World 
Health Organization (WHO) defines health inequities as 

“unfair, avoidable, or systematic differences in the health 
status and access to health resources of different popu-
lation groups, whether those groups are defined socially, 
economically, demographically, or geographically or by 
other dimensions of inequality (e.g., sex, gender, ethnic-
ity, disability, or sexual orientation)” [24]. The WHO also 
states that “health and health inequity are determined 
by the conditions in which people are born, grow, live, 
work, play and age, as well as biological determinants” 
[24]. Therefore, the WHO definition includes a broader 
range of SES factors as determinants of health inequities. 

Table 6  Characteristics of the ATO-weighted black and white patients in right heart catheterization data

Weighted  black patients Weighted  white patients

N 823.21 3979.7

Age (mean (SD)) 58.38 (17.16) 56.80 (17.36)

Sex = Male (%) 417.4 (50.7) 2019.3 (50.7)

Cancer (%)

  Metastatic 59.1 (7.2) 312.3 (7.8)

  No cancer 652.3 (79.2) 3127.5 (78.6)

  Localized 111.8 (13.6) 539.9 (13.6)

Disease category (%)

  ARF 346.0 (42.0) 1700.0 (42.7)

  CHF 70.7 (8.6) 346.6 (8.7)

  MOSF 242.9 (29.5) 1205.9 (30.3)

  Other 163.6 (19.9) 727.2 (18.3)

Number of comorbidities (mean (SD)) 1.43 (1.14) 1.38 (1.12)

Duke activity status index (mean (SD)) 20.44 (5.57) 20.83 (5.47)

APACHE score (mean (SD)) 55.47 (20.55) 55.43 (20.53)

Glasgow coma score (mean (SD)) 23.40 (30.99) 22.99 (31.91)

Mean blood pressure (mean (SD)) 83.39 (41.54) 83.68 (40.02)

WBC (mean (SD)) 15.94 (13.30) 15.88 (11.89)

Heart rate (mean (SD)) 115.38 (43.53) 116.74 (41.58)

Respiratory rate (mean (SD)) 28.47 (15.22) 28.64 (14.14)

Temperature (mean (SD)) 37.52 (1.89) 37.59 (1.85)

PaO2/FiO2 ratio (mean (SD)) 235.88 (117.25) 234.07 (122.65)

Albumin (mean (SD)) 3.05 (0.68) 3.05 (0.88)

Hematocrit (mean (SD)) 31.08 (8.40) 31.01 (8.25)

Bilirubin (mean (SD)) 2.09 (4.30) 2.12 (4.15)

Creatinine (mean (SD)) 2.37 (2.30) 2.33 (2.40)

Sodium (mean (SD)) 137.31 (7.57) 137.13 (7.85)

Potassium (mean (SD)) 4.08 (1.06) 4.09 (1.07)

PaCO2 (mean (SD)) 38.35 (12.78) 37.86 (13.02)

PH (mean (SD)) 7.38 (0.11) 7.39 (0.11)

Weight (mean (SD)) 68.70 (29.94) 68.89 (29.82)

‘Do not resuscitate’ status on day 1 = Yes (%) 74.9 (9.1) 322.3 (8.1)

High school education or more (%) 150.3 (18.3) 1201.9 (30.2)

Income >=$25k (%) 95.7 (11.6) 1029.1 (25.9)
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The proposed approach could implement the WHO 
definition by using more extensive SES measurements, 
including sex, elderly, housing, occupation, and disability, 
to generate the SES subgroups and SES-PS. Numerical 
evaluations of the deweighting approach using racial dis-
parity data with comprehensive SES measurements merit 
future investigation.

Conclusion
In this study, we proposed a novel PS approach for esti-
mating health disparities concordant with IOM’s defi-
nition. The existing PS methods suffer from the critical 
limitation that SES variables cannot be preserved reliably. 
The approach overcomes this limitation by deweighting 
the subjects by SES-based PSs. We formally defined the 
estimands of health disparities and presented consistent 
estimators based on the proposed weights. Our analysis 
of RHC data demonstrated that the proposed deweight-
ing is an effective method to estimate the measures of 
health care disparities.
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