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Abstract 

Background Survival prediction using high-dimensional molecular data is a hot topic in the field of genomics 
and precision medicine, especially for cancer studies. Considering that carcinogenesis has a pathway-based patho-
genesis, developing models using such group structures is a closer mimic of disease progression and prognosis. Many 
approaches can be used to integrate group information; however, most of them are single-model methods, which 
may account for unstable prediction.

Methods We introduced a novel survival stacking method that modeled using group structure information 
to improve the robustness of cancer survival prediction in the context of high-dimensional omics data. With a super 
learner, survival stacking combines the prediction from multiple sub-models that are independently trained using 
the features in pre-grouped biological pathways. In addition to a non-negative linear combination of sub-models, 
we extended the super learner to non-negative Bayesian hierarchical generalized linear model and artificial neural 
network. We compared the proposed modeling strategy with the widely used survival penalized method Lasso Cox 
and several group penalized methods, e.g., group Lasso Cox, via simulation study and real-world data application.

Results The proposed survival stacking method showed superior and robust performance in terms of discrimina-
tion compared with single-model methods in case of high-noise simulated data and real-world data. The non-
negative Bayesian stacking method can identify important biological signal pathways and genes that are associated 
with the prognosis of cancer.

Conclusions This study proposed a novel survival stacking strategy incorporating biological group information 
into the cancer prognosis models. Additionally, this study extended the super learner to non-negative Bayesian model 
and ANN, enriching the combination of sub-models. The proposed Bayesian stacking strategy exhibited favorable 
properties in the prediction and interpretation of complex survival data, which may aid in discovering cancer targets.
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Introduction
Survival prediction using high-dimensional omics data 
has been a widely discussed topic in the field of preci-
sion medicine, particularly when it comes to cancer 
research [1–3]. Genomic data that contains abundant 
hereditary information largely determines the phenotype 
heterogeneity of cancer patients [4, 5]. In recent years, 
high-throughput sequence technologies facilitate the 
extensive application of genomic information to predict 
the patient’s prognosis [6]. The challenge lies in how to 
construct efficient and robust models for survival predic-
tion in the context of high-dimensional data.

Regularization methods, such as Lasso, relaxed Lasso, 
and elastic-net, are recognized as powerful modeling 
tools yielding predictive and interpretable models [7]. 
These methods were extended to the Cox model for bet-
ter handling the survival data [8]. When using genomic 
data, these methods construct models based on indi-
vidual genes, treating them as independent predictors. 
However, the progression and prognosis of cancer are 
regulated by multiple biological signaling pathways, 
and thus incorporating pathway-level information into 
model building can be a more accurate representation of 
the underlying biological processes [9–11]. In this light, 
several extensions, such as the group Lasso (grlasso) and 
composite minimax concave penalty (cMCP), are able to 
integrate the biological pathway information as group 
structure into the modeling procedure [12, 13]. Besides, 
several attempts have been made to build pathway-based 
modeling strategies. Chen and Wang proposed to inte-
grate prior defined biological pathway information and 
gene expression profiles for cancer prognosis [14]. Zhang 
et  al. proposed a two-stage strategy integrating risk 
scores derived from pathway-based models to make can-
cer survival prediction [15]. Kim et al. utilized a directed 
random walk algorithm that navigates through the path-
way network, generating an effective genomic feature 
extraction [16]. However, the majority of these are single-
model based methods, usually leading to unstable pre-
diction. Others employ similar concepts with the naive 
stacking learning.

Stacking strategy is a wise ensemble learning method 
that combines cross-validated (CV) predictions from 
multiple varied algorithms or models [17]. By leveraging 
the strengths of different models, stacking methods often 
yield more robust and accurate predictions than using 
a single model [18]. However, the implementation of 
stacking methods to survival data is more complex since 
the predicted survival probability is varied across time. 
Andrew Wey, et al. proposed using the inverse probabil-
ity of censoring weighted Brier Score (IPCW-BS) as the 
objective function for survival stacking models based on 
multiple time points [19]. Golmakani and Polley assumed 

that candidate models were all on the condition of pro-
portional hazards and used cross-validated negative log 
partial likelihood as an optimization function [20]. Rob-
ert Tibshirani, et al. demonstrated that the logistic regres-
sion estimation fitting the events of different time points 
is the approximate estimation of the Cox model and thus 
one can cast survival analysis as a stacking classification 
problem [21]. Ginestet, et al. proposed an ensemble pro-
cedure based on the pseudo-observation-based-AUC loss 
to optimally stack predictions from survival algorithms 
[22].

In the present study, we introduced a novel survival 
stacking method that integrated group structure infor-
mation to improve the robustness of cancer survival 
prediction using high-dimensional omics data. Our 
approach involved grouping genomic data into multi-
ple sub-data based on biological pathway knowledge. 
Sub-models were then independently trained using the 
features in each sub-data. In addition to a non-negative 
linear combination of sub-models using a traditional 
optimization method based on the integrated Brier Score 
(IBS) loss function, we also proposed a Bayesian hierar-
chical generalized linear model (BhGLM) using the non-
negative mixture double-exponential (DE) prior, as well 
as an artificial neural network (ANN), to ensemble the 
predictions of sub-models. We compared the proposed 
methods to several competitors, including the widely 
used survival penalized method and the extensions that 
consider the group structures, through simulation study 
and real-world data application. The results showed that 
the proposed survival stacking strategy exhibited favora-
ble properties in prediction and interpretability.

The paper is organized as follows: In Section  2, we 
presented a detailed illustration of the proposed strat-
egy. Section  3 compared the prediction performance of 
the proposed method and existing methods through a 
simulation study. In Section  4, the proposed methods 
were applied to several real-world data. Lastly, Section 5 
concluded the paper and discussed several critical issues 
related to our methods.

Materials and methods
Pathway‑based survival stacking strategy
Supposing a right-censored survival data of n sub-
jects consists of triplets {(yi,  δi, xi)}, for i = 1, 2, …, n. 
Denote the observed survival time yi = min(ti, ci), where 
ti and ci are event time and censored time, respectively. 
δi = I(ti < ci) indicates the occurrence of events. The goal 
is to estimate the survival function of the event-time 
random variable Y that depends on p covariates x, i.e. 
S(y| x) = P(Y > y| x). In this study, we aim to predict the 
survival of cancer patients using genomics data.
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The proposed survival stacking method is a two-layer 
learning structure consisting of multiple base learners (sub-
models) and a super learner (meta-model). See Fig.  1 for 
the framework flow.

We first transform the genomics data into J sub-data 
containing genes in each pathway. Then, in the first layer, 
sub-models are independently trained for each sub-data. 
The resulting sub-models represent the predictive capac-
ity of pathways. To mitigate overfitting, we calculate the 
cross-validated survival predictions based on sub-mod-
els. Specifically, in each pathway, samples of original data 
are randomly partitions into K subsets (folds) of (rough) 
equal size. The kth fold is used as the validation data, V(k), 
while the remaining folds are the training data, T(−k), 
k = 1, 2, …, K. In the training data, penalty Cox model 
can be used to fit sub-model and the baseline hazard 
h0

−k(y−k) can be estimated by the breslow method. Then 
the linear predictor (lpk) in the validation data is esti-
mated by the fitted sub-model. The estimated survival 
probabilities Ŝk

(

yk |x
)

 in V(k) can be calculated using lpk 
and h0

−k(y−k), that is

where H−k y−k = H−k
0 y−k × elp

k , H−k
0

(

y−k
)

 is cumu-
lative baseline hazard, i.e. the integral of h0

−k(y−k). The process 
is repeated for all K folds, yielding the CV predictive survival 
probabilities of all cases. For J sub-models, we can obtain 
J predictions ŜCVj

(

y|x
)

=
∑K

k=1 Ŝ
k
j

(

yk |x
)

, j = 1, 2, . . . , J  . 
The second layer uses a super learner to fit the CV sur-
vival predictions of J sub-models over a set of time points. 
The resulting coefficients are the estimated weights ŵj 
for J sub-models. The predictive survival function Ŝ

(

y|x
)

 
can be estimated by combining the predictions of J 
sub-models Ŝj

(

y|x
)

 (refit in the original data) using the 
weights ŵj.

Method to estimate weights ŵj

Linear combination approach
Typically, the predictive survival function Ŝ

(

y|x
)

 is a linear 
combination of the predictions of J candidate sub-models 
given as,

(1)Ŝk
(

yk |x
)

= e
−H−k

(

y−k
)

Fig. 1 The algorithm flow plot of the proposed survival stacking model. CV: cross-validated
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We optimize the weights ŵ by minimizing the IBS loss. 
The other loss function, such as, AUC-based loss, should 
be a favorable alternative [22]. IBS measures the squared 
distance between the probabilities and observed events 
over a set of time points y1, …, ys [23], which can be writ-
ten as,

where R(yr) represents patients who are still at risk at 
the time yr, Zi(yr) = I(yi > yr). We can estimate ŵ by mini-
mizing IBS. Generally, the estimated weights ŵj are con-
strained to non-negative for lower variance and better 
prediction. This constraint can be achieved by employing 
a nonlinear optimization algorithm based on the aug-
mented Lagrange method which can be implemented in 
R function solnp [24]. Concerning the selection of time 
sets y1, …, ys, we use nine evenly spaced quantiles of the 
observed event distribution as Andrew Wey advocated 
[19].

Bayesian combination approach
In addition to the IBS solutions, if we treat the survival 
predictions of the sub-models as covariates, and treat the 
time-dependent status Zi(yr) (0 for dead and 1 for alive 
at each time point yr) as a binary outcome, the predicted 
survival can be expressed as,

which is a generalized linear model (GLM). h is a link 
function such as a sigmoid function, to ensure the 
expected predicted survival probability to be 0–1.

Non‑negative lasso (nLasso) The advance of formula 
(4) is that we can add the l1 penalty term into the above 
GLM and thereby expanding the usage of the survival 
stacking, such as handling numerous sub-models (in 
a high-dimensional scenario), which is impractical for 
solnp.

It is well known that the Lasso is equivalent to a Bayes-
ian hierarchical model with DE prior on coefficients [25], 
with coefficients qualified as non-negative in this study,

(2)Ŝ
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ŵj Ŝj
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where the scale, s, controls the degree of shrinkage; a 
smaller scale induces stronger shrinkage, driving the esti-
mates of wj toward zero. The weights fitted with nLasso 
are given by,

The weights above can be estimated by the cyclic coor-
dinate descent algorithm using the glmnet package in R. 
The restriction of w to be non-negative can be conveni-
ently performed using the glmnet package.

Non‑negative spike‑and‑slab lasso (nsslasso) We further 
extended the non-negative DE prior to the non-negative 
spike-and-slab mixture DE prior (Supplementary Fig. 1),

where sj = (1 − γj)s0 + γjs1 is called the total scale param-
eter; γj is an indicator (γj ∈ {0, 1}) following a binomial 
distribution; s0 and s1 (s1 > s0 > 0) are the scale parameters 
for spike and slab distribution, respectively. s1 applies 
weaker compression to the pathways of strong effects and 
is usually fixed at a larger value, say s1 = 1; while s0 gives 
stronger compression to the pathways of weak effects 
(or even compress to zero) and is a flexible smaller value 
selected from a set of predefined candidate values via 
cross-validation. Usually, spike-and-slab Lasso is more 
adaptive than Lasso [26]. The weights can be estimated 
by the EM coordinate descent algorithm [26] using 
the glmnet package and the BhGLM package in R. The 
restriction of weights to be non-negative can also be per-
formed with the glmnet package.

Artificial neural network
Considering that the ANN can act as a classifier and give 
restricted (non-negative) weights to the input data, we 
can use it as a super learner. ANN uses backpropagation 
algorithm and gradient descent algorithm to iteratively 
estimate the weights.

Evaluation of model performance
In principle, the survival stacking model is a binary classi-
fication problem for a given time [21]. Here, we employed 
the time-dependent AUC and time-dependent Brier Score 
(BS), which calculate the AUC and BS of the objects in the 
risk set of any time point, as recomended by Robert 

(5)wj | s ∼ DE
(

wj|0, s
)

=
1

2s
exp

(

−
wj
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)

, wj ≥ 0
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Tibshirani [21]. The time-dependent AUC is used to 
examine a model’s ability to discriminate between differ-
ent outcomes at a given time point. The time-dependent 
BS is used to measure the calibration performance at a 
given time point: BS(y) = 1

n

∑n
i=1

(

Zi(y)− Ŝ
(

y|x
)

)2

 . We 
selected three evaluated time points, namely 25, 50, and 
75% quantiles of the total observation time of the test 
data.

Competitive statistical methods
In our proposed survival stacking model, Lasso Cox 
was used to build pathway-based sub-models. To com-
bine sub-models, we used the solnp (implemented by R 
function solnp), nLasso/nsslasso (implemented in the 
package glmnet and BhGLM), and ANN (implemented 
using TensorFlow library (2.3.0) of Python (3.7), the 
weights can be limited to non-negative by using ker-
nel_constraint = non_neg()) as super learners. The fit-
ting process of ANN see Supplementary Fig. 2 & 3. For 
time points, we used nine evenly spaced quantiles of 
the observed event distribution, that is {0, 0.125, 0.25, 
0.375, 0.5, 0.625, 0.75, 0.875, 1}. We compared the per-
formance of our proposed method with several exist-
ing single-model approaches, including the widely used 
Lasso Cox regression (glmnet) [27] and extensions that 
incorporate the group structures: the group spike-
and-slab Lasso (gsslasso) (BhGLM) [28], overlap group 
Lasso (grlasso), overlap group cMCP, and overlap group 
smoothly clipped absolute deviation (grSCAD) (grpre‑
gOverlap) [29]. The performance of these methods was 
evaluated using simulated and real-world data. All sin-
gle-model methods are executed using default param-
eters. All analyses were performed using the R (4.1.3) 
software on Dale T7920 INTEL Windows 10 Gold 5117 
CPU @ 2.00GHz.

Simulation study
Simulation design
The present study designed six scenarios with varied 
theoretical generalized R2 and covariate coefficients (β) 
(Table  1). In each scenario, we generated two homoge-
neous datasets with equal sample sizes, one for training 
data and the other for test data. To assess the perfor-
mance of the methods, we conducted 100 duplicated 
runs in each scenario and calculated the average results 
for comparison. This process is conducted using the R 
package BhGLM.

Specifically, in each dataset, we generated 500 samples, 
each with a survival outcome of di = {(yi, δi)} and 1000 con-
tinuous covariates xi = (xi, 1, xi, 2, .., xi, 1000), for i = 1, 2, …, 500. 
The vector xi was randomly sampled from the multivariate 
normal distribution i.e. xi~N(0, Σ), where Σ ∈ R1000×1000 is 
the variance-covariance matrix. These covariates were 
assigned to 20 distinct groups, allowing for overlap between 
the groups, which is a mimic of pathway overlapping (Sup-
plementary Table 1). The correlation coefficient r of covari-
ates within groups was 0.6, and covariates between groups 
were independent. The observed survival time yi was gener-
ated from the Weibull distribution [30]: yi =

(

−
log(U)

�exp(zi)

)1/ν
 

and the censored ratio was set to 50%. δi = 1 indicates the 
occurrence of events and δi = 0 indicates censored. The vari-
able U was uniformly distributed over an interval between 0 
to 1; We set the scale parameter λ = 3; shape parameter ν = 3; 
and intermediate variable zi followed a univariate normal 
distribution zi~N(μi, σ2), where µi =

∑1000
l=1 xilβl . σ2 denotes 

the residual variance, which was determined by fixing three 
theoretical generalized  R2: 0.50, 0.25, and 0.10. We set eight 
non-zero covariate coefficients of two types: the absolute 
values of one range between 0.7 to 1, and the other range 
from 0.2 to 1.5.

Table 1 The preset parameter settings of the six different simulation scenarios (N = 500, M = 1000)

a Generalized R2 was obtained by fitting all variables (M = 1000) with the Cox regression model using a large sample (N = 20,000) and the adjusted σ

Scenarios Non‑zero coefficients Correlation 
coefficient r

Residual 
variance σ

aAdjusted
generalized R2

β5 β20 β40 β210 β220 β240 β975 β995

1 0.80 −0.70 1.00 −0.90 −0.80 0.90 −1.00 0.70 0.60 0.35 0.50

2 0.80 −0.70 1.00 −0.90 − 0.80 0.90 −1.00 0.70 0.60 2.47 0.25

3 0.80 −0.70 1.00 −0.90 − 0.80 0.90 −1.00 0.70 0.60 5.14 0.10

4 0.80 −0.30 1.40 −0.90 − 0.80 0.90 −1.50 0.20 0.60 1.35 0.50

5 0.80 −0.30 1.40 −0.90 − 0.80 0.90 −1.50 0.20 0.60 3.50 0.25

6 0.80 −0.30 1.40 −0.90 − 0.80 0.90 −1.50 0.20 0.60 6.80 0.10
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Results of the simulation
Prediction performance
Table 2 summarizes the average time-AUC and time-BS 
of each method at 50% quantiles of the total observation 
time in the test data under six simulation scenarios. The 
results of the other two time points are shown in Sup-
plementary Table  2. According to the simulation, the 
methods considering group structures, e.g., grlasso, and 
grSCAD, did not exhibit apparent advantages over Lasso 
Cox. However, gsslasso Cox and cMCP were competitive 
across all scenarios.

All the four survival stacking methods outper-
formed the single-model methods except for Scenario 
1 and 4. However, there was no significant differ-
ence between the four stacking methods based on 
AUC. The calibration of solnp(Lasso) performed well 
across all scenarios at 25 and 50% time points while 
nLasso(Lasso) / nsslasso(Lasso) performed superior 
at 75% time point. ANN(Lasso) performed moder-
ately at the three time points. Of note, although the 
AUCs of the three time points are very close, the BS 
increases with the time.

Distribution of estimated weights
We further compared the estimated weights between super 
learners. Theoretically, the weights for group1, group5, 
and group20 should be non-zero due to the presence of 
relevant non-zero variables. In general, all of the four 
super learners consistently identified the non-zero weights 
across most scenarios (Fig.  2 and Supplementary Fig.  4). 
solnp(Lasso) did a good job of giving very small weights to 
zero weights (Fig.  2C/D) while ANN(Lasso) had the nar-
rowest interval range of non-zero weights. nLasso(Lasso) 
and nsslasso(Lasso) presented moderate results.

Applications to real data
We applied the proposed method to three real-world 
cancer datasets with survival records and large-scale 
gene expression profiles. For these datasets, gene expres-
sion data were standardized using covariates function 
in BhGLM package. We randomly partitioned the origi-
nal data into two subsets of equal sample size: one for 
training models and the other for evaluating model per-
formance. The process was repeated 100 times in case 
of casual results due to data split. To ensure a balanced 

Table 2 Comparison of different methods with time-AUC and time-BS (mean(SD)) at 50% quantiles of the observed event distribution 
over 100 replicates under six simulation scenarios

a In parentheses is the basic learner algorithm and out parentheses is the meta learner algorithm

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Time-AUC of penalty and group penalty methods

Lasso 0.891(0.018) 0.731(0.027) 0.604(0.041) 0.873(0.020) 0.727(0.031) 0.612(0.081)

gsslasso 0.914(0.015) 0.727(0.029) 0.606(0.039) 0.879(0.022) 0.726(0.030) 0.613(0.036)

grlasso 0.859(0.023) 0.706(0.030) 0.563(0.048) 0.844(0.022) 0.698(0.033) 0.563(0.136)

grSCAD 0.845(0.024) 0.709(0.029) 0.565(0.048) 0.837(0.027) 0.700(0.033) 0.560(0.132)

cMCP 0.912(0.016) 0.729(0.028) 0.595(0.049) 0.874(0.021) 0.723(0.030) 0.610(0.081)

Time-AUC of pathway-stacking  methodsa

solnp(Lasso) 0.874(0.018) 0.748(0.026) 0.627(0.041) 0.877(0.020) 0.747(0.031) 0.636(0.033)

nLasso(Lasso) 0.878(0.018) 0.752(0.026) 0.629(0.042) 0.879(0.019) 0.752(0.031) 0.636(0.033)

nsslasso(Lasso) 0.878(0.018) 0.752(0.026) 0.629(0.041) 0.879(0.019) 0.751(0.031) 0.636(0.033)

ANN(Lasso) 0.878(0.018) 0.754(0.025) 0.634(0.038) 0.879(0.019) 0.754(0.030) 0.638(0.033)

Time-BS of penalty and group penalty methods

Lasso 0.118(0.007) 0.183(0.007) 0.203(0.031) 0.129(0.010) 0.181(0.008) 0.203(0.059)

gsslasso 0.101(0.007) 0.181(0.008) 0.202(0.007) 0.123(0.011) 0.178(0.009) 0.201(0.008)

grlasso 0.135(0.007) 0.190(0.007) 0.213(0.106) 0.144(0.009) 0.190(0.007) 0.215(0.119)

grSCAD 0.153(0.007) 0.192(0.006) 0.212(0.109) 0.165(0.011) 0.191(0.007) 0.215(0.115)

cMCP 0.102(0.007) 0.182(0.008) 0.206(0.086) 0.126(0.011) 0.181(0.008) 0.204(0.059)

Time-BS of pathway-stacking  methodsa

solnp(Lasso) 0.140(0.008) 0.193(0.008) 0.215(0.007) 0.146(0.010) 0.191(0.008) 0.215(0.007)

nLasso(Lasso) 0.132(0.010) 0.189(0.011) 0.215(0.009) 0.133(0.012) 0.185(0.011) 0.216(0.009)

nsslasso(Lasso) 0.132(0.010) 0.189(0.011) 0.215(0.009) 0.133(0.012) 0.185(0.011) 0.216(0.009)

ANN(Lasso) 0.141(0.010) 0.201(0.008) 0.226(0.001) 0.146(0.011) 0.200(0.010) 0.225(0.007)
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Fig. 2 The distribution of weights estimated by stacking methods in different scenarios. (A) Scenario 3 with scale from 0 to 1; (B) Scenario 6 
with scale from 0 to 1; (C) Scenario 3 with scale from 0 to 1; (D) Scenario 4 with scale from 0 to 1. The estimated weights are normalized. The black 
dot represents the median and the line represents the 5–95 quantile intervals
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response, we performed a log-rank test on the survival 
curves between training and test data and considered 
those with Plog − rank > 0.5 being balanced splits that would 
be retained for further analysis. Genes were mapped to 
pathways using genome annotation tools. More precisely, 
we first mapped gene symbols to Entrez Ids using anno‑
tateI package and then mapped genes to KEGG pathways 
(default parameter) using clusterProfiler package [31].

TCGA breast cancer dataset
We obtained the transcriptome profiles (in TPM for-
mat) and the corresponding latest survival informa-
tion for TCGA Breast Cancer (BRCA) from “GDC Data 
Portal” (https:// portal. gdc. cancer. gov/). We selected the 
female samples that had both survival outcomes and gene 
expression profiles. Genes with > 50% of zero expression 
were filtered out and those with > 20% quantile variance 
were retained. Eventually, we ended up with a dataset 
consisting of 1060 samples and 13,745 genes. These genes 
were mapped to 140 pathways involving 3855 genes (see 
Supplementary Table 3).

Prior to the stacking process, we performed an ini-
tial pathways screening to identify those with potential 
predictive value. We fitted a Lasso Cox for all 140 path-
ways in the original data separately and obtained the 
C-index for each pathway. A total of 116 pathways had a 
C-index > 0.5. However, many of them were not predic-
tive but introduced variance, which was detrimental to 
the ensembled prediction. We further constrained the 
enrolled candidate pathways to these with C-index > 0.55, 
resulting in 48 pathways for the subsequent analysis.

Table  3 summarizes the average time-AUC and time-
BS at the three time points of various methods applied 

to BRCA dataset. In general, gsslasso and grlasso showed 
superior predictive performance over other single-model 
methods. Pathway-stacking methods outperformed sin-
gle-model methods in terms of discrimination. The stack-
ing methods also demonstrated a high calibration in the 
early and middle survival time. Among the survival stack-
ing methods, solnp(Lasso) exhibited a preferable calibra-
tion consistently across time but inferior discrimination. 
Nsslasso(Lasso) had a favorable performance in the early 
and middle periods while ANN(Lasso) performed better 
discrimination at middle-late survival time.

An advantage of nLasso and nsslasso is that they can 
identify important pathways owing to their sparsity nature. 
When applied to the whole dataset of TCGA BRCA, 
nsslasso(Lasso) and nLasso(Lasso) could select similar 
pathways. Nsslasso(Lasso) found three pathways including 
Huntington’s disease (w = 0.962), HIF-1 signaling pathway 
(relative weight, w = 0.076), and Leishmaniasis (w = 0.062) 
(see Supplementary Table  4). nLasso(Lasso) found four 
pathways including Huntington’s disease (w = 0.749), 
HIF-1 signaling pathway (w = 0.114), Leishmaniasis 
(w = 0.086), and Oxidative phosphorylation (w = 0.051), 
with the former three being selected by both methods.

Metabric dataset
The Molecular Taxonomy of Breast Cancer Interna-
tional Consortium (METABRIC) data consists of com-
prehensive information on more than 2000 breast cancer 
patients, including clinical data, gene expression data, 
and mutation data. We obtained gene expression data 
and survival data from cBipPortal (https:// www. cbiop 
ortal. org/). After data preprocessing (as described in 
4.1), we obtained a dataset with 1420 samples and 19,494 

Table 3 The measurements (mean(SD)) of penalty and group penalty methods and pathway-stacking methods for TCGA breast 
cancer dataset (N = 1060) by 100 times random spilt to training set (N = 530) and test set (N = 530)a

a We performed log-rank test of survival curves between training set and test set, and kept spilt sets by p > 0.5
b In parentheses is the basic learner algorithm and out parentheses is the meta learner algorithm

Time at 25% quantiles of the 
observed event distribution

Time at 50% quantiles of the 
observed event distribution

Time at 75% quantiles of the 
observed event distribution

Single-model methods AUC BS AUC BS AUC BS

Lasso 0.509(0.086) 0.064(0.088) 0.549(0.060) 0.093(0.074) 0.555(0.064) 0.151(0.048)

gsslasso 0.560(0.096) 0.030(0.039) 0.574(0.066) 0.064(0.034) 0.599(0.062) 0.133(0.023)

grlasso 0.569(0.082) 0.060(0.083) 0.582(0.064) 0.089(0.071) 0.595(0.063) 0.150(0.045)

grSCAD 0.543(0.068) 0.101(0.108) 0.544(0.058) 0.124(0.091) 0.561(0.060) 0.170(0.058)

cMCP 0.558(0.095) 0.123(0.113) 0.548(0.069) 0.143(0.095) 0.559(0.080) 0.183(0.060)

Pathway-stacking  methodsb

solnp(Lasso) 0.600(0.069) 0.028(0.005) 0.605(0.060) 0.077(0.009) 0.608(0.050) 0.191(0.011)

nLasso(Lasso) 0.598(0.074) 0.028(0.005) 0.609(0.056) 0.078(0.009) 0.613(0.043) 0.190(0.013)

nsslasso(Lasso) 0.605(0.071) 0.028(0.005) 0.611(0.056) 0.078(0.009) 0.615(0.044) 0.190(0.013)

ANN(Lasso) 0.593(0.067) 0.028(0.005) 0.619(0.059) 0.077(0.009) 0.622(0.046) 0.204(0.011)

https://portal.gdc.cancer.gov/)
https://www.cbioportal.org/
https://www.cbioportal.org/
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genes. These genes were mapped to 146 pathways involv-
ing 3709 genes (see Supplementary Table 5).

After the pathways pre-screening, we included 138 
of 146 pathways with a C-index > 0.60 for the following 
analysis. Among the single-model methods, grlasso still 
had the most superior predictive performance. Path-
way-stacking methods showed favorable discrimina-
tion compared to grlasso (Table  4). nLasso(Lasso) and 
nsslasso(Lasso) performed well both in discrimination 
and calibration.

The survival stacking model (nsslasso(Lasso)) fitted 
using the METABRIC dataset identified seven path-
ways (Supplementary Table  6). nLasso(Lasso) also 

found the same seven pathways: MAPK signaling path-
way (W = 0.018), Focal adhesion (W = 0.041), Cellular 
senescence (W = 0.170), Choline metabolism in cancer 
(W = 0.125), Endocytosis (W = 0.014), Carbon metabo-
lism (W = 0.311), Apoptosis (W = 0.215); and another 
two pathways: PPAR signaling pathway (W = 0.099) and 
p53 signaling pathway (W = 0.007).

TCGA ovarian cancer dataset
Alike BRCA data, we acquired TCGA ovarian cancer 
(OV) dataset from the “GDC Data Portal”. After data pre-
processing, we obtained a dataset with 415 samples and 

Table 4 The measurements (mean(SD)) of penalty and group penalty methods and pathway-stacking methods for METABRIC dataset 
(N = 1420) by 100 times random spilt to training set (N = 710) and test set (N = 710)a

a We performed log-rank test of survival curves between training set and test set, and kept spilt sets by p > 0.5
b In parentheses is the basic learner algorithm and out parentheses is the meta learner algorithm

Time at 25% quantiles of the 
observed event distribution

Time at 50% quantiles of the 
observed event distribution

Time at 75% quantiles of the 
observed event distribution

Single-model methods AUC BS AUC BS AUC BS

Lasso 0.705(0.022) 0.160(0.003) 0.679(0.018) 0.213(0.004) 0.651(0.020) 0.235(0.005)

gsslasso 0.701(0.022) 0.159(0.004) 0.675(0.017) 0.215(0.006) 0.653(0.019) 0.239(0.008)

grlasso 0.699(0.020) 0.160(0.003) 0.681(0.017) 0.213(0.004) 0.660(0.018) 0.235(0.005)

grSCAD 0.695(0.022) 0.162(0.004) 0.677(0.021) 0.215(0.005) 0.655(0.022) 0.235(0.006)

cMCP 0.697(0.024) 0.161(0.004) 0.671(0.020) 0.215(0.004) 0.644(0.021) 0.237(0.005)

Pathway-stacking  methodsb

solnp(Lasso) 0.706(0.021) 0.162(0.003) 0.682(0.016) 0.222(0.003) 0.663(0.019) 0.235(0.005)

nLasso(Lasso) 0.712(0.020) 0.163(0.005) 0.688(0.016) 0.221(0.006) 0.668(0.019) 0.218(0.006)

nsslasso(Lasso) 0.712(0.020) 0.163(0.005) 0.688(0.016) 0.221(0.006) 0.669(0.019) 0.218(0.007)

ANN(Lasso) 0.718(0.020) 0.177(0.007) 0.692(0.016) 0.228(0.009) 0.671(0.019) 0.227(0.013)

Table 5 The measurements (mean(SD)) of penalty and group penalty methods and pathway-stacking methods for TCGA OV dataset 
(N = 415) by 100 times random spilt to training set (N = 207) and test set (N = 208)a

a We performed log-rank test of survival curves between training set and test set, and kept spilt sets by p > 0.5
b In parentheses is the basic learner algorithm and out parentheses is the meta learner algorithm

Time at 25% quantiles of the 
observed event distribution

Time at 50% quantiles of the 
observed event distribution

Time at 75% quantiles of the 
observed event distribution

Single-model methods AUC BS AUC BS AUC BS

Lasso 0.525(0.063) 0.154(0.041) 0.518(0.052) 0.230(0.040) 0.512(0.047) 0.241(0.137)

gsslasso 0.558(0.057) 0.112(0.012) 0.548(0.039) 0.223(0.014) 0.535(0.047) 0.241(0.030)

grlasso 0.547(0.054) 0.149(0.063) 0.551(0.050) 0.228(0.016) 0.548(0.052) 0.240(0.009)

grSCAD 0.549(0.057) 0.152(0.063) 0.556(0.049) 0.228(0.016) 0.548(0.048) 0.241(0.009)

cMCP 0.523(0.048) 0.171(0.068) 0.518(0.035) 0.235(0.015) 0.514(0.045) 0.244(0.010)

Pathway-stacking  methodsb

solnp(Lasso) 0.562(0.058) 0.117(0.011) 0.559(0.042) 0.231(0.007) 0.547(0.041) 0.227(0.007)

nLasso(Lasso) 0.558(0.061) 0.117(0.011) 0.559(0.039) 0.236(0.010) 0.549(0.038) 0.232(0.008)

nsslasso(Lasso) 0.562(0.059) 0.117(0.011) 0.560(0.038) 0.236(0.010) 0.551(0.037) 0.232(0.009)

ANN(Lasso) 0.564(0.054) 0.117(0.011) 0.570(0.039) 0.239(0.005) 0.551(0.036) 0.227(0.006)
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13,764 genes. These genes were mapped to 124 pathways 
involving 3596 genes (see Supplementary Table 7).

After pre-screening, a total of 90 pathways had a 
C-index > 0.5 and the highest C-index was 0.58. We 
selected all 90 pathways for the following analysis. 
Table 5 showed that the pathway-stacking methods out-
performed the single-model methods in prediction accu-
racy and variance (lower standard deviation especially 
for BS). The four stacking methods had similar and stable 
prediction performance.

In application, nsslasso(Lasso) identified four pathways 
(Supplementary Table  8). nLasso(Lasso) found another 
two pathways, namely, Cell cycle (w = 0.038) and Pro-
teasome (w = 0.079), in addition to the four pathways 
that were selected by nsslasso(Lasso) but with different 
weights: Influenza A (w = 0.360), Peroxisome (w = 0.268), 
B cell receptor signaling pathway (w = 0.128), and T cell 
receptor signaling pathway (w = 0.129).

Discussion
The present study proposed a novel survival stack-
ing strategy that can incorporate genome pathway 
information into the development of cancer progno-
sis models. This strategy demonstrated an advantage 
over existing methods that rely on a single group model 
(such as grlasso, grSCAD, gsslasso) by using a stacking 
method to improve prediction robustness. Additionally, 
we extended the super learner to hierarchical GLM and 
ANN, thereby enriching the combination of sub-models. 
Generally, solnp uses IBS as an optimization function to 
obtain a lower time-BS. Hierarchical Lasso and sslasso 
inherit the sparse property that makes them effective at 
handling multiple sub-models. The sslasso super learner 
could outperform Lasso in certain cases, while in others, 
the two methods performed similarly. The ANN method 
can capture more nonlinear relationships, leading to bet-
ter prediction performance. However, it may also capture 
more noise information and overfit the data.

In the simulation study, stacking methods consistently 
exhibited superior performance in terms of discrimina-
tion over the methods using a single model, except for 
Scenarios 1 and 4. Scenarios 1 and 4 represented the 
situation of a higher theoretical generalized  R2 or a small 
residual variance, in which the predictive information 
was easy to capture. The advantage of the stacking meth-
ods was not evident since these methods based on a sin-
gle model had achieved a fairly well prediction. However, 
stacking methods demonstrated superior discrimination 
performance than any single model in the situation with 
more noise because they could borrow advantages from 
various models. Real-world data is typically character-
ized by a higher level of noise, which may account for 
the favorable performance of the proposed methods in 

the real-world data applications [32]. However, this may 
come at the expense of some calibration accuracy.

A noted point of the stacking using nsslasso is the 
interpretability of the resulting models. Firstly, the pro-
posed stacking method demonstrates increased sensitiv-
ity in identifying disease-related pathways, which may 
be too subtle for gene-level models to detect [33]. Sec-
ond, we implemented the methods considering group 
structure (e.g, gsslasso) to the real-world data (see Sup-
plementary Table  9). The results indicated that while 
gsslasso exhibited good predictive performance, it did 
not effectively indicate pathway importance. Third, 
unlike Lasso which imposes an equal penalty on all coef-
ficients, sslasso adaptively employed weak compression 
to strong effects and strong compression to weak effects 
[33]. We observed that sslasso tended to retain fewer 
pathways, while Lasso prefers to include more pathways 
with small effects. For instance, nsslasso(Lasso) identi-
fied several important pathways in METABRIC dataset, 
such as cellular senescence, choline metabolism in can-
cer, carbon metabolism, apoptosis, and PPAR signaling 
pathway. These pathways are deeply involved in the cell 
cycle and carcinogenesis process [34, 35]. nLasso(Lasso) 
could find two additional weak signal pathways, namely 
MAPK and p53 signaling pathways. These two popular 
pathways are associated with the prognosis of breast 
cancer [36, 37]. However, many MAPK family genes and 
TP53 are also contained in the other four pathways, indi-
cating limited information that the two pathways can 
provide (Supplementary Table 6). Similarly, Huntington’s 
disease pathway identified in TCGA BRCA contains 
TP53. Huntington’s disease seems to be unrelated to the 
prognosis of breast cancer. However, several epidemi-
ology studies have shown a lower risk of cancer among 
patients with Huntington’s [38–40]. Additional research 
has delved into their relationship at the molecular level, 
including the impact of Huntington and ErbB2/HER2 
signaling on the development and metastasis of breast 
cancer [41, 42].

In total, the proposed methods possess advantageous 
features in identifying pathways that offer prognostic 
information. Also, the weights assigned to these sub-
models (based on pathways) signify their predictive sig-
nificance. We anticipate that focused research on these 
prioritized pathways will aid in discovering cancer tar-
gets. Another obvious property of the pathway-based 
stacking strategy is that sub-models are constructed inde-
pendently, circumventing the gene-overlapping issue. In 
addition, one commonality of the stacking methods is 
having an improved discrimination than the single-based 
models, which may help identify high-risk patients. A 
limitation of our approach is that it takes more time due 
to the CV procedure in the sub-model construction. But 
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the cost pays off in the more robust and accurate predic-
tion. Last but not least, although the proposed survival 
stacking strategy is based on a two-level process of gene-
pathway structure, our ideas can be naturally generalized 
to other biological processes with similarly hierarchical 
levels.
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