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Abstract

Background: Immunological correlates of protection are biological markers such as disease-specific antibodies which
correlate with protection against disease and which are measurable with immunological assays. It is common in vaccine
research and in setting immunization policy to rely on threshold values for the correlate where the accepted threshold
differentiates between individuals who are considered to be protected against disease and those who are susceptible.
Examples where thresholds are used include development of a new generation 13-valent pneumococcal conjugate
vaccine which was required in clinical trials to meet accepted thresholds for the older 7-valent vaccine, and public health
decision making on vaccination policy based on long-term maintenance of protective thresholds for Hepatitis A, rubella,
measles, Japanese encephalitis and others. Despite widespread use of such thresholds in vaccine policy and research,
few statistical approaches have been formally developed which specifically incorporate a threshold parameter in order to
estimate the value of the protective threshold from data.

Methods: We propose a 3-parameter statistical model called the a:b model which incorporates parameters for a
threshold and constant but different infection probabilities below and above the threshold estimated using profile
likelihood or least squares methods. Evaluation of the estimated threshold can be performed by a significance test for
the existence of a threshold using a modified likelihood ratio test which follows a chi-squared distribution with
3 degrees of freedom, and confidence intervals for the threshold can be obtained by bootstrapping. The model also
permits assessment of relative risk of infection in patients achieving the threshold or not. Goodness-of-fit of the a:b
model may be assessed using the Hosmer-Lemeshow approach. The model is applied to 15 datasets from published
clinical trials on pertussis, respiratory syncytial virus and varicella.

Results: Highly significant thresholds with p-values less than 0.01 were found for 13 of the 15 datasets. Considerable
variability was seen in the widths of confidence intervals. Relative risks indicated around 70% or better protection in 11
datasets and relevance of the estimated threshold to imply strong protection. Goodness-of-fit was generally acceptable.

Conclusions: The a:b model offers a formal statistical method of estimation of thresholds differentiating susceptible
from protected individuals which has previously depended on putative statements based on visual inspection of data.
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Background
Immunological correlates of protection are measurable
and specific biological markers which correlate with pro-
tection against disease caused by an infectious pathogen.
The markers used are most often pathogen-specific neu-
tralizing antibodies whose concentration can be measured
with biological assays [1]. Researchers and agencies respon-
sible for immunization recommendations, such as the US
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Advisory Committee for Immunization Practices and the
World Health Organization, rely on established threshold
values for the immunological correlate of protection where
the accepted threshold differentiates between individuals
who are considered to be immunologically protected
against disease and those who are susceptible [2,3]. When
it is strongly correlated with protection with a recognized
threshold, it can be called an absolute correlate [4].
Uses for the established threshold for a correlate of

protection are numerous. For instance, where the corre-
late has been established for a vaccine that has already
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:kamal.desai@unitedbiosource.com
http://creativecommons.org/licenses/by/2.0


Chen et al. BMC Medical Research Methodology 2013, 13:29 Page 2 of 10
http://www.biomedcentral.com/1471-2288/13/29
demonstrated clinical efficacy against disease, the correl-
ate simplifies study of the vaccine in new populations,
age- or risk-groups by permitting clinical trials to be
conducted with immunogenicity endpoints and avoiding
large-scale efficacy trials. The US Food and Drug Ad-
ministration (FDA) offers accelerated approval when
there is a correlate (FDA prefers the term “surrogate”)
that is considered “reasonably likely” to predict clinical
benefits [5]. Other uses include the study of immuno-
genicity for co-administration with other vaccines,
comparisons of combination vaccines to individual com-
ponent vaccines and assessment of the duration of pro-
tection. The established correlate of protection also
permits comparisons of new generation vaccines to older
ones. For completely novel vaccines, the demonstration
of a candidate immunologic correlate is becoming a sec-
ondary yet fundamental objective in clinical trials and
epidemiological studies. This is encouraged by agencies
such as the US FDA Center for Biologics Evaluation and
Research and is one of the Grand Challenges in Global
Health [6]. Thus the accurate identification of protective
threshold levels clearly has important implications for
the licensure of vaccines and for immunization policy.
Research in correlates of protection is multidisciplinary.

As a consequence, terminology used has been inconsist-
ent and sometimes confusing. There have been recent
efforts to harmonize the terminology employed and to
link this to a hierarchy of statistical evidence for the
demonstration of a correlate [4,7,8]. In addition the ter-
minology has been further refined by introducing the
terms mechanistic and nonmechanistic to address
whether the correlate of protection is causal or not [9].
We will here for convenience use the term ‘correlate of
protection’ in the broadest sense, to include immuno-
logical assays that have been consistently shown to cor-
relate with risk of disease, assays that have been shown
to be causally associated with protection, or specific
threshold values of assays which have been accepted or
proposed as differentiating susceptible from protected
individuals. We also use the term ‘protective threshold’ to
refer to an assay value for the correlate that distinguishes
protected and unprotected individuals when the relation-
ship between the correlate and protection can be reliably
and usefully summarized with a single threshold value.
However, individual variability means that at any thresh-
old value some above will be susceptible and some below
protected, and ‘protective threshold’ is not intended to
imply any particular level of protection, and specifically is
not intended to imply complete protection or ‘sterile im-
munity’. ‘Assay value’ and ‘titer’ are used interchangeably,
according to context. A general opinion is emerging that
improvement in statistical methods is needed [10,11] for
identifying correlates of protection, but opinions vary on
the appropriate statistical methodology. Methods and
study designs have varied historically and across disease
areas resulting in different standards of data quality and
statistical methods to establish correlates of protection
and their threshold values.
For older vaccines, the protective immunological

thresholds have often been determined based on obser-
vational data, which was sometimes conveniently avail-
able or opportunistic. For example, Björkholm et al.
measured diphtheria antitoxin titers in 44 individuals ad-
mitted to hospital during a diphtheria epidemic among
alcoholics in Sweden and observed that 7 of 10 patients
who had diphtheria antitoxin titers < 0.01 IU/ml died or
showed neurological complications, whereas 33 out of
34 diphtheria carriers with antitoxin titers ≥ 0.16 IU/ml
remained symptom-free [12]. Further in vitro studies
suggested that titers between 0.01 and 0.09 IU/ml may
be regarded as giving basic immunity, whereas a higher
titer of 0.1 IU/ml was considered fully protective [13].
When an outbreak of measles occurred among students

in a dormitory at Boston University, Chen et al. obtained
permission to assay samples of blood donations made
shortly before the start of the outbreak and compared
their antibody concentrations with the occurrences of
measles [14]. Of 9 donors with detectable pre-exposure
plaque reduction neutralization titer less than or equal
to 120, 8 met the clinical criteria for measles compared
with none of 71 with pre-exposure titers greater than
120. Similarly, Neumann collected sera from 238 high
school students on Prince Edward Island before a mea-
sles epidemic sweeping the rest of Canada reached the
island to compare infection rates by titer [15].
An early study by Goldschneider et al. established a

protective threshold for meningococcal C disease based
on serum bactericidal assay [16]. American army
recruits provided blood samples for assaying at the
start of basic training, and disease occurred in only 1%
of individuals who had titers greater than 4 of SBA at
recruitment compared to 22% of those who had less than
4. This was further confirmed by a population study that
demonstrated an inverse relationship between disease in-
cidence and the presence of SBA titers.
These early studies and others [17] selected protective

thresholds based on inspection of disease rates observed
in discrete intervals of assay values with confidence
limits never reported. Siber provides an in-depth discus-
sion of this approach [18] and introduces the idea of
titer-specific degrees of protection.
For newer vaccines, clinical trials or observational

studies specifically incorporate immunological data col-
lection to identify potential thresholds, and statistical
approaches have accordingly been developed for this pur-
pose. For instance, in the Chang-Kohberger method data
from three double-blind controlled trials in Northern
Californian, American Indian and South African infants
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were pooled in a meta-analysis to derive a protective
threshold of 0.35 μg/ml for anticapsular antibodies for a
7-valent pneumococcal conjugate vaccine against inva-
sive pneumococcal disease [19,20]. The statistical method
equates relative risk of invasive pneumococcal disease
between vaccine and control groups to the relative
risk of having antibody concentration below the pro-
tective threshold, and the protective threshold is then
found from cumulative distribution curves of the anti-
body concentrations of the vaccinated group and the
control groups. The threshold has been endorsed by a
WHO Working Group and has subsequently been used
to develop and license a newer generation 13-valent
vaccine [21].
It was essentially this same method that was employed

by Andrews et al. to derive a threshold for a correlate of
protection following meningococcal C vaccination [22].
The two modern examples for pneumococcal and
meningococcal C vaccines that employed the Chang-
Kohberger method, however, required an estimate of
vaccine efficacy based on a clinical endpoint before the
method could be used.
Few other statistical methods exist for identifying a

threshold. The idea of estimating separate disease prob-
abilities a and b below and above a threshold has been
proposed by Siber et al. but no actual model was
developed to estimate the threshold [20].
Other statistical approaches have focused on continu-

ous models, which do not explicitly model a threshold.
Logistic regression has frequently been used [23-28];
other continuous models have included proportional
hazards [29] and Bayesian generalized linear models
[30]. Chan compared Weibull, log-normal, log-logistic
and piecewise exponential models applied to varicella
data [31]. A limitation of such models is that they can-
not separate exposure to disease from protection against
disease given exposure, the latter being the relationship
of interest. A scaled logit model which separates expos-
ure and protection where protection is a continuous
function of assay value has been proposed [32]. The
scaled logit model was illustrated with data from the
German pertussis efficacy trial data [27] and has been
used to describe the relationship between influenza assay
titers and protection against influenza [33-35]. However,
these approaches do not explicitly allow identification of
a single threshold value.
Thus despite the fundamental reliance on thresholds in

vaccine science and immunization policy, previous statis-
tical models have not specifically incorporated a thresh-
old parameter for estimation or testing. In this paper, we
propose a statistical approach based on the suggestion in
Siber et al. [20] for estimating and testing the threshold
of an immunologic correlate by incorporating a threshold
parameter, which is estimable by profile likelihood or
least squares methods and can be tested based on a
modified likelihood approach. The model does not re-
quire prior vaccination history to estimate the threshold
and is therefore applicable to observational as well as
randomized trial data. In addition to the threshold par-
ameter the model contains two parameters for constant
but different infection probabilities below and above the
threshold and can be viewed as a step-shaped function
where the step corresponds to the threshold. The model
will be referred to as the a:b model.

Methods
Model specification and fitting
For subjects i = 1,. . .,n, let ti represent the immuno-
logical assay value for subject i (typically immunological
assay values are log-transformed before making
calculations). Let Yi = 1 represent the event that subject i
subsequently develops disease, and Yi = 0 the event that
they do not and τ represent a threshold differentiating
susceptible from protected individuals. Then the model
is given by

P Yi ¼ 1ð Þ ¼ a� 1 ti < τð Þ þ b� 1 ti > τð Þ
P Yi ¼ 0ð Þ ¼ 1� a� 1 ti < τð Þ � b� 1 ti > τð Þ

where a, b represent the probability of disease below
and above the threshold respectively and 1(·) takes the
value 1 when its argument in parenthesis is true or 0
otherwise. Since the assay values ti are discrete
observations of a continuous variable, and the likelihood
and residual sum of squares are each constant at any
value of τ falling between a pair of adjacent observed
discrete assay values, a reasonable choice for the candi-
date values of τ are the geometric means of adjacent
pairs of ordered observed assay values (i.e. the arithmetic
mean of log-transformed assay values). The log of the
likelihood for the model is given by

l a; b; τð Þ ¼
Xn

i¼1

yi log α� 1 ti < τð Þ þ b� 1 t1 > τð Þ½ �

þ 1� yið Þ log 1� α� 1 ti < τð Þ � b� 1 ti > τð Þ½ �

To fit the models, closed form expressions may be
derived by maximum likelihood or least squares for
estimators of the parameters a, b but not for τ. The
estimators for a, b remain as functions of τ. Following
the profile likelihood or least squares approach, the opti-
mal value of τ may be found by proceeding through the
candidate values, estimating the other parameters and
the likelihood or sum of squared errors at each value.
The value of τ that maximizes the likelihood or
minimizes the sum of squares is the estimate for τ. The
derivation of the least squares and maximum likelihood
estimators of a, b is shown in the Additional file 1.
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A previous method which seeks to identify a cut
point is the maximal chi-square proposed by Miller
[36]. Here a continuous variable which is predictive of
a clinical outcome is dichotomized using a cut point
with cases and non-cases displayed in a 2×2 table. The
optimal cut point corresponds to the maximal chi-
square associated with the 2×2 table. It can be shown
that the estimated threshold τ selected by least squares
in the a:b model corresponds to the optimal cut point
obtained via the maximal chi-square method; a proof is
given in the Additional file 1.

Testing for the existence of a threshold
Note that in the absence of a threshold the model
reduces to a constant probability of infection independ-
ent of assay value. Thus to test for the existence of a
threshold, the likelihood of the a:b model including the
threshold τ and different infection probabilities a, b
below and above the threshold is compared to the likeli-
hood of a model without a threshold but a constant in-
fection probability a’ for all assay values. The test
statistic is the difference of minus 2 times the likelihood
of the models:

D ¼ �2l a; b; τð Þ þ 2l a0ð Þ
However, the additional requirement a > b is imposed

by requiring D = 0 when a < b so the modified test
statistic is

D0 ¼ �2l a; b; τð Þ þ 2l a0ð Þfor a > b
D0 ¼ 0 for a < b

Simulations performed under the null hypothesis of no
existence of threshold showed that under this hypothesis
the distribution of D’ may be approximated by a chi-
squared distribution with 3 degrees of freedom; thus
D’ may be compared to a chi-squared distribution with
3 degrees of freedom for testing the null hypothesis of
no threshold. The test is an unconditional significance
test of the step function represented by τ, a, b
compared to a constant probability of infection.

Confidence interval for the threshold value
Confidence intervals for the threshold value may be
calculated by non-parametric bootstrapping following
standard methods [37]. Datasets were resampled 5000
times with replacement, and the lower and upper limits
of the 95% confidence interval for the threshold were
based on the 2.5 and the 97.5 percentiles of the
estimates of τ from each resampling.

Goodness-of-fit
Residuals defined by the differences between the observed
dichotomous outcomes and the modeled probability of
disease as in the a:b model are not normally distributed
and hence goodness-of-fit methods relying on normality
are inappropriate. Although Pearson and Chi-squared de-
viance residuals may be used for dichotomous outcomes,
when the number of discrete values of the model
predictors is large, such as for a continuous predictor like
titers, their distributions are not well approximated by
chi-squared distributions since the degrees of freedom
increases with the number of discrete values. In such
circumstances Hosmer and Lemeshow propose an ap-
proach in which the observed predictors are grouped into
10 groups defined by the deciles of the ordered
predictors, and goodness-of-fit is estimated by the
squared difference between observed and predicted infec-
tion rates in each group [38].
When applied to the a:b model, the goodness-of-fit

test statistic is

C ¼
X10

g¼1

y:g �mg π̂g
� �2

mg π̂g 1� π̂g
� �

where g indexes groups 1,. . .,10, y.g is the observed
number of cases in group g, mg is the number of
subjects in group g, and π̂g is the predicted disease

probability in the group, i.e. â or b̂ (or a weighted
average if the group includes the threshold).
Simulations show C to follow a chi-squared distribu-
tion with 8 degrees of freedom when the model is
true, so the goodness-of-fit may be quantified by the
probability in the upper tail of this distribution. The
test assesses whether the step function represented by
the a:b model is an appropriate representation of in-
fection or whether another relationship such as a grad-
ual one between titer and infection might be more
likely than a stepped relationship.
Relative risk
The relative risk of disease above and below the
threshold may be a more readily interpretable measure
of the relevance of a fitted threshold. Note that relative
risk is not suitable as a criteria for selecting a value of
τ, since for different candidate values for τ the relative
risk declines from approximately 0.5 at low assay
values to near 0 at high values. However, having
selected τ, the relative risk quantifies the difference be-
tween those above the threshold and those below in
terms of the outcome of interest, namely probability of

disease. The relative risk is estimated by b̂=â . An ap-
proximate 95% confidence interval for the relative risk
(conditional on the estimated value of τ) can be
obtained by parametric bootstrapping.
SAS statistical software was used for all analysis.
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Datasets
The a:b model was applied to 15 datasets from four
studies. Briefly the datasets are:

� German pertussis datasets: eight assays for IgG or
IgA antibodies against pertussis toxin (PT), pertactin
(PRN), filamentous hemagluttinin (FHA) and
fimbriae (FIM) and occurrence of 44 cases of disease
in 1994 subjects from a sub-study of a pertussis
vaccine efficacy trial conducted in Germany between
1991 and 1994 [27]. IgG antibodies are a humoral
immune response whereas IgA antibodies are
responses at mucosal sites.

� Piedra/respiratory syncytial virus (RSV) datasets:
assays for antibody to RSV/A and RSV/B among
subjects presenting with acute respiratory symptoms
at a hospital in Texas, and subsequent disease
confirmation in 34 of 175 subjects [26].

� White/varicella dataset: varicella glycoprotein assay
for children vaccinated with varicella vaccine in
clinical trials conducted between 1987 and 1989, and
disease occurrence in 79 of 3459 subjects in
12 months of follow up [17].

� Swedish pertussis datasets: four assays (IgG antibodies
for PT, PRN, FHA, FIM) from subjects exposed to
pertussis by another household member and the
subsequent development of disease in 92 of 209
subjects, from a sub-study of a vaccine efficacy trial
conducted in Sweden between 1992 and 1995 [28].

Results
Threshold estimates, statistical significance and
confidence intervals
Figure 1 illustrates the application of the a:b model to
the 15 datasets where the model fit showing τ, a, b is
superposed on the observed data showing the infection
rates by titer value. Table 1 lists the values of each
threshold estimated by profile likelihood or least
squares, their 95% confidence intervals (CIs) obtained by
bootstrap, p-values for test for threshold and goodness-
of-fit, and relative risk with CIs.
For 12 of 15 datasets least squares and profile likeli-

hood estimates of τ were the same while in the other
3 datasets (German pertussis PRN IgG, German per-
tussis FIM IgA, White/varicella) the least squares esti-
mate was lower than the profile likelihood estimate.
Thirteen of 15 thresholds found by the model were

highly statistically significant by the modified likelihood
ratio test with p-values <0.01, while two German pertus-
sis datasets for FHA IgA and PT IgA were not signifi-
cant at the 0.05 level.
There was considerable variability in the widths of the

95% confidence intervals when considered relative to the
range of the titers (Figure 1). In one instance, the
German pertussis PT IgG data, the confidence interval
was notably narrow; in the cases of the RSV/A and
RSV/B datasets, the confidence intervals spanned a
large proportion of the range of the titers. When fitted
by profile likelihood, the point estimate of the thresh-
old for German pertussis PT IgG, PRN IgA, FIM IgA,
White/varicella and Swedish pertussis FIM datasets
was close to the upper limit of the 95% CI and close
to the lower limit for the German pertussis FIM IgG
dataset. A similar pattern was seen for some datasets
when fitted by least squares.
The upper and lower limits of the confidence intervals

found by profile likelihood were often found to be
greater than by least squares.

Goodness-of-fit
Using the ad-hoc criterion that a goodness-of-fit p-value
less than 0.20 represents a poor fit to the data, we
found that the a:b model did not fit well to three
datasets: White/varicella, German pertussis FHA IgG
and German pertussis FIM IgA. Visual inspection of
the plots in Figure 1 would suggest that protection
against varicella follows a gradually increasing protec-
tion rate by titer value rather than a stepwise relation-
ship, explaining the poor fit in this case. The German
pertussis FHA IgG and FIM IgA appear to follow a
similar gradual protection relationship. Another correlate
of protection which may not be well described by the a:b
model based on visual inspection of plots is RSV/B, but
this was associated with a goodness-of-fit p-value of
0.546. Apart from RSV/B, all other datasets which
were associated with goodness-of-fit p-values >0.20
could be visually confirmed to fit the stepwise shape
of the a:b model.

Relative risk
The relative risk estimate is dependent on the estimated
threshold, and offers an interpretation which is more fa-
miliar to the epidemiologist. The relative risk of disease
above the threshold compared to below ranged from 0
to 0.554 among the fifteen datasets. Except for 3 relative
risks with values near 0.5 and one near 0.4, all other
relative risks took values near 0.3 or less implying pro-
tection of 70% or better. Thus, in most cases, the
estimated threshold corresponds with the notion of an
absolute correlate to offer a high degree of protection.

Discussion
Despite the central importance of threshold values in
vaccines research and immunization policy, only the
Chang-Kohberger method [19,20] has been previously
proposed to estimate thresholds from assay values and
disease occurrence data, but its estimation requires
information on vaccinated and unvaccinated groups.



Figure 1 Illustration of fitted a:b model for the 15 datasets. Threshold values and 95% CIs for τ are superposed on the observed data
showing the infection rates by titer value. The numbers above each bar show the number of cases of disease and the number of subjects at
each binned assay value. Thresholds illustrated are those obtained by profile likelihood estimation. P-values refer to the modified likelihood ratio
test with small values indicating statistical significance. GoF refers to the p-value of the goodness-of-fit test with small values implying a poor fit
of the model to the data. RR is relative risk of infection above and below the threshold.
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The a:b method provides a reliable, readily applicable
method for finding a threshold for paired data of the
form {yi,ti} for which previous models and associated
statistical testing were limited. The a:b model provides
the same estimate as the maximal chi-square method
[35] when least squares estimation is used.
The statistical criteria available for the evaluation of a

threshold estimated by the a:b model are confidence
interval width and location, goodness of fit, significance
testing and relative risk. A number of factors are likely
to influence the width of confidence intervals, including
the presence of a clear, high step in the data and the
number of subjects and cases of disease in the dataset.
Further, bootstrap confidence intervals based on the
candidate values of tau are affected by the density of dis-
tinct observed assay values in the region of the thresh-
old. This is a data limitation arising from the assay
technique which generates discrete rather than continu-
ous titer values, with lower densities (fewer distinct assay
values) tending to produce wider confidence intervals
and higher densities allowing the possibility of smaller
confidence intervals. The location of threshold point
estimates and upper and lower confidence limits in some
datasets suggested that profile likelihood estimates may
be higher and therefore more conservative, requiring
higher antibody titers to be achieved to conclude protec-
tion, compared to least squares estimates.
Goodness-of-fit p-value in some instances was clearly

consistent with the bar plots of the binned data while in
other cases this was less so, possibly due to discreteness in
the data resulting from small numbers of cases of disease.
Table 1 Correlate of protection threshold values τ̂ estimated b
datasets on pertussis, RSV and varicella

Dataset (cases of disease: subjects) τ̂ by profile likelihood
(95% CI)

τ̂ by leas
(95%

German pertussis FHA IgG (44:1988) 1.995 (1.185;18.13) 1.995 (0.9

German pertussis PT IgG (44:1987) 1.385 (0.965;1.390) 1.385 (0.7

German pertussis PRN IgG (44:1992) 13.165 (1.375;29.31) 7.665 (0.8

German pertussis FIM IgG (44:1986) 0.315 (0.305;4.500) 0.315 (0.2

German pertussis FHA IgA (44:1932) 0.385 (0.305;1.960) 0.385 (0.3

German pertussis PT IgA (44:1933) 1.785 (0.475;3.179) 1.785 (0.4

German pertussis PRN IgA (44:1968) 2.505 (0.760;2.510) 2.505 (0.4

German pertussis FIM IgA (44:1994) 3.385 (1.565;3.830) 1.575 (1.0

Piedra RSV/A (34:175) 76.109 (5.657;608.9) 76.109 (4.

Piedra RSV/B (34:175) 107.635 (8.000;1722) 107.635 (5

White/Varicella (79:3459) 5.011 (2.584;5.011) 2.584 (1.3

Swedish pertussis FHA IgG (92:209) 1.414 (0.707;6.481) 1.414 (0.7

Swedish pertussis PT IgG (92:209) 5.477 (1.414;15.49) 5.477 (1.4

Swedish pertussis PRN IgG (92:209) 5.950 (2.298;15.92) 5.950 (1.4

Swedish pertussis FIM IgG (92:209) 7.650 (1.249;7.846) 4.225 (1.2
†for τ̂ found by profile likelihood.
Visual inspection of graphical representations of the data
might routinely supplement statistical assessments.
Because the estimated threshold itself does not imply

the degree of protection, relative risk aids in its interpret-
ation. If a threshold is to separate susceptible from
protected individuals, relative risk may be seen as a
measure of the degree of protection and can be employed
as one of the criteria for assessing the relevance of an
estimated threshold in addition to the p-value from the
test for significance. For example, the Swedish pertussis
FHA IgG result produced a p-value of 3.5×10−4 but a
relative risk of 0.508, implying around 50% reduction in
risk, which may question the acceptability of the thresh-
old as higher protection is generally expected in vaccine
preventable disease.
Ideally, all assessment criteria would provide consist-

ent results in support of a threshold. However, instances
were noted where other conclusions might be warranted
even though some statistical assessments were promis-
ing. For example, for the White/varicella data, there is a
small confidence interval for the threshold, the p-value
for the threshold is highly significant and the relative
risk acceptable (close to 0.1) but the goodness-of-fit is
poor (p = 0.085). It was found that that this data is better
fitted by a continuous scaled-logit model (p for
goodness-of-fit = 0.999), suggesting that a relative rather
than absolute threshold may be appropriate.
The threshold in the a:b model is the titre value that

best separates the sample of patients into two groups
with different but constant infection rates, but this does
not require the ‘protected’ group to have a specified low
y a:b model and evaluation criteria for 15 immunological

t-squares
CI)

p-value, test for
threshold†

p-value,
goodness-of-fit†

Relative risk†

(95% CI)

90;2.025) 6.0×10–11 0.114 0.093 (0.030;0.183)

55;1.390) 3.2×10–11 0.798 0.055 (0.000;0.133)

55;13.17) 4.1×10–9 0.615 0.052 (0.000;0.141)

15;0.540) 9.1×10–10 0.284 0.111 (0.040;0.216)

15;1.960) 0.344 0.742 0.501 (0.267;1.237)

15;4.064) 0.497 0.502 0.554 (0.181;1.120)

85;2.510) 1.4×10–3 0.346 0.000 ( − ; - )

30;3.825) 1.3×10–4 0.159 0.176 (0.037;0.375)

757;215.3) 2.0×10–3 0.918 0.308 (0.163;0.544)

.657;861.1) 2.7×10–3 0.546 0.305 (0.169;0.548)

11;5.011) <1.0×10–12 0.085 0.098 (0.053;0.163)

07;6.481) 3.5×10–4 0.966 0.508 (0.358;0.687)

14;10.49) 3.0×10–4 0.999 0.391 (0.199;0.614)

97;6.380) 5.1×10–10 0.921 0.130 (0.030;0.270)

49;7.846) 2.2×10–09 0.781 0.177 (0.056;0.325)
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probability of infection. It is therefore possible that the
protected group defined by the estimated threshold has
a high probability of infection, like 20% in the pertussis
PT IgG example, which could be deemed to be un-
acceptably high if one’s definition of a threshold requires
low risk of infection. Therefore, an additional criterion
that sets a maximally acceptable probability of infection
amongst the protected group could be considered in
addition to statistical tests when evaluating thresholds.
Although definitions of thresholds may differ, it is en-

couraging to note that others’ published estimates of
thresholds for these same datasets are not dissimilar to
estimates from the a:b model, suggesting consistency with
others’ notion of an acceptable threshold. For instance, a
previous analysis of the White/varicella data identified a
gp ELISA titer of 5 U/mL to indicate protection, which is
now reported to be an ‘approximate correlate of protec-
tion’ for varicella vaccines [39]. The estimate was consist-
ent with our profile likelihood estimate of the threshold of
5.011 (95% CI; 2.584; 5.011). For the Swedish pertussis
data, a putative threshold value of 5 units/mL for PRN,
FIM and PT were found to be associated with high protec-
tion [28]; subjects having all three had even higher protec-
tion. However, while the authors applied the same
putative threshold to all 3 pertussis components, we
estimated different values for each: 5.477 (95% CI;
1.414;15.49) for PT, 5.950 (95% CI; 2.298;15.92) for PRN
and 7.650 (95% CI; 1.249;7.846) for FIM. For the German
pertussis data, a regression tree approach found that a
threshold value of 7 units/mL for PRN IgG was most pre-
dictive of protection [23]. We estimated a threshold of
13.165 (95% CI; 1.375;29.31) with profile likelihood and
7.665 (95% CI; 0.855;13.17) using least squares. Amongst
the subset of subjects achieving 7 units/mL for PRN, those
who had 66 units/mL of PT IgG had even greater protec-
tion. Our estimated threshold for PT IgG using profile like-
lihood was 1.385 (95% CI; 0.965;1.390), but this figure is
not comparable to the previous figure of 66 unit/mL which
should be interpreted as a conditional threshold given that
protective PRN levels are achieved.
Because the a:b model assumes constant rates of infec-

tion on each side of the threshold, which may be a strong
assumption, we considered in supplementary analyses
more flexible models which allowed linear, quadratic or
logistic relationships on either side of the threshold.
However, these models did not produce fits
corresponding with the expectations of a correlate of
protection. For instance, a step-down of infection rate at
the threshold value and non-increasing rates of infection
on either side of the threshold were not always observed.
The a:b model was always consistent with these
expectations. In addition, visual examination of the pro-
file likelihood for these other models did not show sharp
peaks corresponding to the optimal threshold value, and
were associated with wider confidence intervals resulting
in greater uncertainty of the threshold value. In general
these more flexible models could not be relied upon to
consistently find a threshold which could be said to dif-
ferentiate protected from susceptible individuals.
The a:b model presented here does not require vaccin-

ation information to estimate a threshold. While this is
an advantage, it is also a weakness given that the a:b
model can provide only the first level of information in
the hierarchy of evidence to demonstrate a statistical
correlate of vaccine efficacy in the framework described
by Qin et al. [7]. To provide a higher level of evidence,
the a:b model could be developed to include a vaccin-
ation parameter and an associated test. Also, further de-
velopment could allow for multiple co-correlates in
which two or three threshold values are estimated simul-
taneously. This could have application to diseases like
pertussis where more than one antigen is necessary for
the fullest protection or for new vaccines that protect
against multiple serotypes of a disease, such as pneumo-
coccal infection or dengue. Further research might also
compare different statistical models for correlates of
protection – the a:b model, the method of Chang and
Kohberger [19-21], the scaled logit model [32-35], a lin-
ear trend model and logistic regression – and the
conclusions reached by each for levels of protection.
In order to investigate correlates of protection and

thresholds, there are also clinical and immunological
considerations. A correlate must include a clearly defined
clinical endpoint, whether protection is afforded against in-
fection, disease, severe disease, infectiousness, carriage or
other condition. For instance, it is thought that protection
against pneumococcal infection requires progressively
lower thresholds for protection against pneumococcal car-
riage, otitis media, pneumonia and invasive pneumococcal
infection [40]. Similarly, standardized laboratory assays and
tests for disease case confirmation are also needed but not
always feasible, which can potentially introduce bias in la-
boratory confirmed disease cases in some studies. An assay
must first be selected by immunologists and validated
according to immunological criteria – sensitivity, specifi-
city, reliability, and freedom from inter-technician variabil-
ity. It may be of interest to know whether the specific
immune response measured by the assay is responsible for
protection; statistical methods for causal inference have re-
cently been developed allowing an assay to be selected
which has been shown to be causally associated with
protection [41,42]. Other considerations include: host
factors in which the immune system changes throughout
life implying different immune response by age, temporal
immunological factors such as timing of measurement
and kinetics of the immune response, and population
factors given that observed thresholds may not be uni-
versally applicable to all settings. Thus, once a correlate of
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protection or threshold is proposed, further discussions
with stakeholders are necessary to cover these disease-
specific considerations that the statistical methods alone
cannot address.
A final practical requirement is that datasets to iden-

tify immunological correlates of protection are essential.
Vaccine efficacy trials provide a clear opportunity to col-
lect data on the relationship between assay values for
candidate correlates of protection and disease occur-
rence; however, they are often sized inadequately to yield
convincing conclusions on correlates of protection. Typ-
ically trials are designed to capture 40–100 cases of dis-
ease to convincingly demonstrate adequate vaccine
efficacy against placebo [43-45], but such trials are gen-
erally underpowered for assessing correlates of protec-
tion. Incorporation of a correlate of protection objective
in clinical trials can incur substantial expense to the trial
as it would require additional bleeds in subjects after
they receive vaccine or placebo to observe their assay
values and before any significant number of disease
cases occur. Furthermore, more refined titer measures
(i.e. less discrete data) would require more serial
dilutions and greater blood volumes.

Conclusions
The a:b model together with the evaluation criteria
proposed provide a much-needed set of methods for the
estimation and assessment of thresholds values of im-
munological correlates of protection.
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