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Abstract

Background: A prognostic model should not enter clinical practice unless it has been demonstrated that it performs
a useful role. External validation denotes evaluation of model performance in a sample independent of that used to
develop the model. Unlike for logistic regression models, external validation of Cox models is sparsely treated in the
literature. Successful validation of a model means achieving satisfactory discrimination and calibration (prediction
accuracy) in the validation sample. Validating Cox models is not straightforward because event probabilities are
estimated relative to an unspecified baseline function.

Methods: We describe statistical approaches to external validation of a published Cox model according to the level
of published information, specifically (1) the prognostic index only, (2) the prognostic index together with
Kaplan-Meier curves for risk groups, and (3) the first two plus the baseline survival curve (the estimated survival
function at the mean prognostic index across the sample). The most challenging task, requiring level 3 information, is
assessing calibration, for which we suggest a method of approximating the baseline survival function.

Results: We apply the methods to two comparable datasets in primary breast cancer, treating one as derivation and
the other as validation sample. Results are presented for discrimination and calibration. We demonstrate plots of
survival probabilities that can assist model evaluation.

Conclusions: Our validation methods are applicable to a wide range of prognostic studies and provide researchers
with a toolkit for external validation of a published Cox model.

Keywords: Time to event data, Prognostic models, Cox proportional hazards model, External validation,
Discrimination, Calibration

Background
Prognostic models, most of which are multivariable, have
several critical applications. These include, for example,
(i) informing treatment or other clinical decisions for indi-
vidual patients, (ii) informing patients and their families
about the likely course of a disease, (iii) creating clini-
cal risk groups for informing treatment or for stratifying
patients by disease severity in clinical trials, and (iv) risk
adjustment when assessing the performance of health care
systems [1]. See Moons et al [2] for a general discussion of
prognostic research. It is widely accepted nowadays that
a model should not enter clinical practice unless it has
been demonstrated that it performs a useful role [3]. In
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reality, the criterion means that at the very least, a model
should discriminate usefully between good and bad out-
comes in patients whose data were not involved in the
development of the model. In general, it is not essential
to know how well a model performed in the derivation
data, nor to match its performance in the derivation data.
Evidence of performance comes from ‘validation stud-
ies’ [1]. For logistic regression models, for instance, there
are several well-recognised approaches [4-9]. By contrast,
the methodology for validation is not particularly well
worked-out for models of time to event data. The main
reason why time to event data provide a greater chal-
lenge is the almost invariable censoring of some observa-
tion times, caused by some patients’ outcomes remaining
unascertained within the study period.
Before going further, wemust carefully clarify themean-

ing of the term ‘validation’. Unfortunately, the term is
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vague in several respects. As Feinstein [10] pointed out,
“Validation is one of those words . . . that is constantly
used and seldom defined.” First, ‘validation’ may mean
the process of evaluating the performance of a model, or
it may mean a successful outcome of the aforementioned
process [1]. Success would lead to a ‘validated’ model, i.e.
one that is somehow certified as fit for purpose. Second,
there are ‘flavours’ of validation, the primary distinction
being between internal and external validation. Internal
validation essentially means reusing parts or all of the
dataset on which a model was developed to assess the
likely overfit and correct for the resulting ‘optimism’ in
the performance of the model. External validation means
assessing the performance of a model already developed
when applied to an independent dataset. By ‘indepen-
dent’ we mean collected as part of an exercise separate
from the development of the original model, for exam-
ple by different investigators in a different geographical
location. Some authors have distinguished between lev-
els of stringency of validation, the most severe test being
evaluation in dataset(s) that differ in investigators, loca-
tion, and time period from those of the original model
[1,11]. For example, models developed in academic cen-
tres may not apply in primary care settings due to dif-
ferences in the case mix of patients; models built many
years agomay not apply today because of improvements in
treatment.
There are two fundamental aspects of evaluating and

thus validating model performance: discrimination and
calibration. Discrimination, sometimes known as ‘sep-
aration’, is the extent to which risk estimates from a
model characterise different patient prognoses. Patients
predicted to be at higher risk should exhibit higher event
rates than those deemed at lower risk. Calibration reflects
prediction accuracy. A well-calibrated risk score or pre-
diction rule assigns the correct event probability at all
levels of predicted risk. A miscalibrated rule under- or
over-predicts the event probability, sometimes globally
(‘miscalibration in the large’ [6]) and sometimes depend-
ing on the risk level or on specific covariates. Arguably,
inadequate discrimination is a more important failing
than poor calibration, since the latter can be improved
by model recalibration [3,12], whereas the former cannot
be altered. It is therefore particularly important to have
measures that reliably identify poor discrimination. In
essence, a validation study will assess the discrimination
and calibration of a model on a new dataset.
Nowadays, researchers predominantly use the Cox pro-

portional hazards model to analyse time to event data
[13,14]. We are concerned here with external validation
of a published Cox proportional hazards model developed
in a single dataset and evaluated in one or more inde-
pendent datasets. We take the perspective of a researcher
who does not have access to the original data but who has

an independent sample on which to evaluate the model’s
performance.
A Cox model estimates hazard ratios, which measure

how much a covariate affects the hazard function for the
event of interest. According to the proportional hazards
assumption, covariates act multiplicatively on a baseline
hazard function. The latter is usually defined as the hazard
function for which all covariate values are zero. Through-
out the present paper, we take it as the hazard function
at the mean value of all the covariates, or equivalently, at
the mean value of the prognostic index. Given the baseline
hazard function, the baseline survival curve and survival
curve for any given covariate pattern can be estimated.
A Cox model supports estimation of relative differences

in risk between patients with different characteristics, but
since it does not estimate the baseline hazard function
per se, it does not estimate absolute risks (event proba-
bilities) or absolute differences in prognosis. By contrast,
parametric models, although much less popular, are fully
specified and therefore can estimate absolute risks and
survival probabilities [12,15]. Published results from Cox
models are usually restricted to the regression coefficients
(log hazard ratios) and their standard errors or confi-
dence intervals. Nevertheless, there is still much that can
be done in validating Cox models. The issue of external
validation, which seems to have been largely neglected
in the literature, forms the main focus of the present
paper.
The structure of the paper is as follows. First we describe

two breast cancer datasets used to exemplify a multivari-
able prognostic model developed on one clinical dataset
and evaluated on another. This section also gives details
of the candidate prognostic variables and the resulting
model. In the section ‘Products of a Cox model’, we
describe key quantities relating to validation that may
be derived by fitting a Cox model. We next identify
three increasingly detailed levels of information from the
derivation dataset that support different aspects of vali-
dation. In the section ‘Validation’ we discuss techniques
of validation, and we then apply the techniques to the
breast cancer datasets. The Discussion section includes
comments on the interpretation of validation findings.

Methods
Breast cancer datasets andmodel
Derivation and validation data
The original dataset comprised 2982 primary breast can-
cer patients whose records were included in the Rot-
terdam tumour bank, of whom 1546 had node-positive
disease. For details, see Reference [16]. Follow-up time
ranged from 1 to 231 months (median 107 months). The
outcome, recurrence-free survival time (RFS), was defined
as the time from primary surgery to the earlier of dis-
ease recurrence or death from any cause. To reduce the
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possible influence of long-term survivors on parameter
estimates in a Cox model [17], we censored events occur-
ring after 84 months, the maximum follow-up time in
the validation dataset. In a real study this would pre-
sumably not be done, but it has little influence on the
results. Since the validation dataset comprised only node-
positive patients and nodal status is an important prog-
nostic factor, we omitted the node-negative patients to
create the derivation dataset. With the RFS outcome, 965
(i.e. nearly 90 percent) of events were observed in the
period from 0 to 84months out of a possible 1080 available
with the full follow-up time of 231 months. The Rotter-
dam data (with RFS truncated to 120 months) can be
downloaded from the following URL: http://www.stata-
press.com/data/fpsaus.html. The Stata data file is called
rott2.dta.
The validation data were taken from a trial in primary

breast cancer. From July 1984 to December 1989, the Ger-
man Breast Cancer Study Group (GBSG) recruited 720
patients with primary node positive breast cancer into a
factorial 2 × 2 design to investigate the effectiveness of
three versus six cycles of chemotherapy and of additional
hormonal treatment with tamoxifen [18]. The dataset we
use comprises the recurrence-free survival (RFS) time of
the 686 patients (with 299 events) who had complete
data on several standard prognostic variables. The defi-
nition of RFS was the same as for the derivation dataset.
The maximum follow-up time available was 7 years. The
dataset can be loaded into Stata via the commandwebuse
brcancer. Note that an internet connection is needed
for this to work.

Prognostic factors
Candidate prognostic variables in the breast cancer
datasets were age at primary surgery (age, years),
menopausal status (meno, 0 = premenopausal, 1 =
postmenopausal), tumour size (size), tumour grade
(grade), number of positive lymph nodes (nodes), pro-
gesterone receptors (pgr, fmol/l), oestrogen receptors
(er, fmol/l), hormonal treatment (hormon, 0 = no, 1 =
yes), and chemotherapy (chemo). Tumour size (mm) was
not available as a continuous variable in the Rotterdam
dataset, therefore a standard coding was used; the base
category was ≤ 20 mm and two dummy variables were
used, namely 20 to 50 mm (sized1) and > 50 mm
(sized2). We excluded grade, since it was measured
according to a different protocol in the two datasets, and
chemo, since all patients in the validation dataset received
chemotherapy.
The distribution of the remaining candidate predic-

tors is shown in Table 1. The distributions happen to be
broadly similar between the derivation and validation
datasets, although this is not a requirement for suc-
cessful validation. Differences in the receptor variables,

pgr and er, may be due to variation in the methods of
measurement.

Model
We developed a multivariable Cox model for the Rotter-
dam (derivation) data by applying the multivariable frac-
tional polynomial (MFP) model-building procedure [19]
to the candidate variables (see Table 1). We selected vari-
ables by backward elimination and fractional polynomial
(FP) functions using a 5% significance level. The result-
ing model comprised age (FP2 function, powers 3, 3),
meno, sized1, sized2, nodes−0.5, er (linear func-
tion) and hormon. See Table 2 for details. The covariate
pgrwas not significant at the 5% level and was eliminated.
The FP2(3, 3) transformation of age yields the covariates
age3 and age3 × ln(age).

Products of a Cox model
The baseline hazard function is a vital component of the
Cox model. However, with the partial likelihood method,
it is not estimated. For practical purposes, it is reasonable
to consider the Cox model as consisting of its regression
coefficients and their covariance matrix. Often, the β̂ val-
ues and their standard errors are regarded as the Cox
model. Application of the model requires ancillary quan-
tities, in particular, the prognostic index and the baseline
survival function. We address these aspects in turn.

Prognostic index
For practical application, the main product of a Cox
model is a prognostic index (PI). The variables which
comprise the PI may have been selected by a multivari-
able modelling technique that automatically takes into
account correlations among variables, such as stepwise
selection from a list of candidate variables. This approach
often removes apparently redundant predictors. Some of
the variables included in a PI may be continuous, and
some may be transformed (as with the MFP method, or
when using regression splines [20]). There is no necessity
to dichotomise continuous variables—indeed, it wastes
information [21].
The obvious way to construct a PI is to take the lin-

ear predictor from a Cox model. The linear predictor is
a weighted sum of the variables in the model, where the
weights are the regression coefficients. In the usual situa-
tion in which the event of interest is an adverse outcome,
high values indicate a worse prognosis. The PI for an indi-
vidual is then the log relative hazard compared with a
hypothetical individual whose PI is zero.
Approaches other than simply using the linear pre-

dictor from a Cox model are surprisingly common. In
a recent survey, Mallett et al [22] reviewed a sam-
ple of 43 studies which used regression methods. Most
researchers (38/43) developed a multivariable prognostic

http://www.stata-press.com/data/fpsaus.html
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Table 1 Candidate prognostic factors in the derivation and validation datasets

Variable name Variable (Definition/units) n (%) or mean (SD)

Derivation Validation

Tumour size sized0 (≤ 20 mm) 501 (32%) 180 (26%)

sized1 (20 to 50 mm) 783 (51%) 453 (66%)

sized2 (> 50 mm) 262 (17%) 53 (8%)

Menopausal status meno (premenopausal) 628 (41%) 290 (42%)

(postmenopausal) 918 (59%) 396 (58%)

Hormone treatment hormon (no) 1207 (78%) 440 (64%)

(yes) 339 (22%) 246 (36%)

Age age (years) 56.0 (13.0) 53.1 (10.1)

Positive lymph nodes nodes (number) 5.2 (4.9) 5.0 (5.5)

Progesterone recep. pgr (fmol/l) 156 (299) 110 (202)

Oestrogen recep. er (fmol/l) 165 (267) 96 (153)

Values in parentheses are category percentages for categorical variables, and SD for continuous variables. Recep. = receptors.

model (almost always a Cox model), but 9/38 did not
report the coefficients to enable a PI to be calculated. In 11
studies, however, after obtaining their model the authors
modified either the choice of variables or their weighting.
In particular, in four studies the authors simply counted
the number of risk factors present out of those determined
as important in the model, i.e. all variables were taken to
be equally important. Indeed, sometimes such scores are
derived without fitting a model at all [23,24].
Regardless of the justification for any post hocmanipula-

tion, the approach to validation of a model is the same, no
matter how a PI was obtained. It is, however, worth men-
tioning some factors that increase the likelihood of poor
performance in a validation study: stepwise selection of
variables from a large number of candidate variables with
a small number of events, data-dependent cutpoint selec-
tion for continuous predictors, extensive missing data,
a differently defined endpoint. In cancer, for example,
the endpoint could be overall survival in the derivation

Table 2 Multivariable prognostic model for the derivation
dataset

Variable ̂β SE

age3 1.07 0.40

age3 × ln (age) 9.13 2.64

meno 0.46 0.12

sized1 0.23 0.08

sized2 0.31 0.08

nodes−0.5 −1.74 0.14

er −0.34 0.13

hormon −0.35 0.08

Note that for legibility of the regression coefficients, agewas divided by 100
and er by 1000 before analysis.

dataset and progression-free survival in the validation
dataset.

Example
Figure 1 shows the distribution of the PI in the two
datasets. We recommend producing such a plot for
the validation dataset (acknowledging, of course, that in
our paradigm the derivation data are supposed to be
unavailable). The histogram shows the general level of
the log relative hazard and indicates the spread. The
spread (standard deviation), s say, is functionally related
to the explained variation statistic R2

PM [25] via R2
PM =

s2/
(
σ 2 + s2

)
, where σ 2 plays the role of the residual

variance in linear regression. For proportional hazards
models, σ 2 = π2/6 � 1.645. A related measure is R2

D
[26], based on D, a measure of the ability of a model to
discriminate between good and poor patient outcomes
(see section ‘Measures of discrimination’). The plot may
also exhibit outliers, which can be caused by inappropri-
ate extrapolation of the relative hazard, for example when
predicting with a function of continuous covariates such
as an FP or spline. In the present example there are no
obvious outliers or other irregularities.

Survival probabilities
As already stated, a Cox model comprises an unestimated
baseline hazard function, h0 (t) say, and a linear predic-
tor or PI whose regression coefficients are estimated from
the data. The hazard function is modelled as h(t) =
h0(t) exp(PI). The Cox model is sometimes called ‘semi-
parametric’ because the linear predictor is fully paramet-
ric, whereas the baseline hazard function is quite general
(‘non-parametric’): it can be any positive-valued function
of time. If we knew the baseline hazard function, we could
integrate it over time to compute the cumulative hazard
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Figure 1 Histogram of the PI in the derivation and validation datasets. The PI was centered on the mean in the derivation dataset. The vertical
lines show the 16th, 50th and 84th centiles of the PI in each dataset.

function, H0(t) = ∫ t
0 h0(u)du, and hence the baseline

survival function, S0(t) = exp [−H0(t)]. A well-known
non-parametric estimate of the baseline survival function
is available [27], but it is impracticable to report the result
concisely. Consequently, as lamented by van Houwelingen
[12], the baseline survival function is almost never given
by authors of published medical articles that report a Cox
model.

Risk groups
Mainly for clinical and statistical reasons, a PI is often
used to create risk groups. The statistical reason is that
it facilitates the comparison of actual survival proba-
bilites with model-based estimates. Kaplan-Meier curves
for each risk group offer an intuitive depiction of variation
in prognosis. The disadvantage of grouping is that asso-
ciated with any categorisation of a continuous variable
[21]: information is lost, particularly at extreme risks. An
alternative approach is to derive survival curves directly
from the Cox model; a comparison with the Kaplan-
Meier curves gives one possible assessment of the model
calibration.

Example
We took the PI for the derivation data as the linear
predictor from the multivariable Cox model reported in
Table 2.We centered the PI on ‘average risk’ by subtracting
the mean of −1.32 [28]. The same value was subtracted
from the PI evaluated for all individuals in the validation

dataset. To create prognostic groups, we categorised the
PI into 4 groups at the 16th, 50th and 84th centiles in the
Rotterdam data (see the section ‘L2: PI and Kaplan-Meier
curves for risk groups’ for the rationale for this choice of
cut-points), giving 2 smaller groups at relatively low and
high risk of recurrence or death, respectively, and two
larger, central groups at lower or higher intermediate risk.
We call these groups the Good, Fairly good, Fairly poor
and Poor risk groups. The percentages of patients in these
four groups in the validation dataset are 18.1%, 40.4%,
32.8% and 8.8%, respectively, showing overall a slightly
better prognosis than in the derivation dataset. The mean
(SD) of the PI is 0.00(0.60) in the derivation dataset
and −0.11(0.57) in the validation dataset.

Levels of information from the derivation dataset
We assume that a model has been developed on a deriva-
tion dataset and published in the medical literature. We
have to hand a potential validation dataset in which we
wish to evaluate the performance of the published model.
We do not assume access to the individual patient data
from the derivation study. We cannot therefore re-fit or
adjust the original model in any detailed way. A key ele-
ment in the ensuing discussion is the prognostic index
(PI), the weighted combination of risk factors comprising
the model. Given the PI, the weights of the individual pre-
dictors are unimportant. Options for validation depend
on the information available in the publication describing
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the multivariable model for the derivation dataset. We
consider the following 3 levels of information:

L1: Cox model yielding PI, i.e. a set of regression
coefficients

L2: L1 plus risk groups plus Kaplan-Meier curves
L3: L2 plus baseline survival curve

We consider in a structured way which aspects of
the model can be validated for each level of informa-
tion available for the derivation dataset. We illustrate the
approaches in the breast cancer datasets.

L1: Prognostic index only
The minimum information needed to apply a model and
for its validation is reported coefficients (i.e. weights) for
each variable included in the model. The precise coding
of each covariate is required. A table of hazard ratios is
acceptable, since the required weights can be derived by
taking logarithms. Authors may have expressed the com-
bination of variables as an equation (PI), but this is not
essential.

L2: PI and Kaplan-Meier curves for risk groups
When a PI has been developed, a common practice is to
form risk groups by categorising the PI, and then to super-
impose Kaplan-Meier survival curves for the groups in a
single graph. Mallett et al [22] (Table 2) found three or
four groups to be the most common. However, there is no
consensus in the literature on (a) how many risk groups
should be created, and (b) where (and why) to position the
cutpoints [29]. Developing sensible guidance for choosing
risk groups remains a topic for further research.
Nevertheless, statistical common sense dictates that a

modest number of risk groups (say, 5 or fewer) is prefer-
able to a large number. Two groups is likely to be too
few to satisfy the needs of clinical practice and research
applications.With a large number, the survival curves may
be unstable and the discrimination between neighbour-
ing groups is likely to be poor. Unequal group sizes seem
preferable to equal groups, since they enable identifica-
tion of patients with more extreme prognoses and group
together patients with largely similar prognoses.
For present purposes, to give a reasonable spread of

risk we chose to work with four prognostic groups, using
cut-points on the PI determined by Cox’s method [30].
For a given number of groups, the method is designed to
minimise the loss of information that occurs with group-
ing. The required cut-points are the 16th, 50th and 84th
centiles of the continuous variable, here the PI in the
derivation dataset. On a standard Normal scale, these cor-
respond to 0 and approximately ±1, i.e. mean ± 1SD. See
further discussion of the grouping issue in the section
‘Grouped versus individual prognostication’.

L3: L2 information and baseline survival function
The baseline survival function is crucial, since it encap-
sulates the information needed to assess calibration of
survival probabilities in the derivation dataset, and more
importantly, calibration in validation datasets. Later, we
describe a simple method of determining a smooth, para-
metric baseline survival function in the derivation dataset
which can be reported in publications and transported to
other datasets. When an estimate of the baseline survival
function has been obtained, calibration can be assessed.
Without the baseline survival function, it is not possi-
ble to judge how good the calibration in an independent
sample is.

Validation
Data: Basics and reporting requirements
We assume that the derivation and validation datasets
are basically compatible. This requires some preliminary
evaluation of the available variables. A further important
issue to consider when conducting a validation study is
the comparability of the patients and settings with those
included in the derivation study. We do not address the
issue in this paper. There is also a need for an ade-
quate description of the sample, e.g. dates of collection
of information, inclusion or exclusion criteria, treatment
information, location, investigators, and so on. Another
consideration is the length of follow-up in the validation
sample relative to the derivation sample.
In all cases, the guiding principle is to apply the model

in exactly the same way in the validation data as in the
derivation data, or at least to be aware of any differences.
In practice, we require reporting of the definition of each
covariate (including its units) and the outcome variable
in the derivation dataset, and precisely how the variables
were treated in the development and final expression of
the model. Categorical variables may be coded in dif-
ferent ways. For example, sparsely populated categories
may be combined, and ordinal variables may be coded
so as to respect the ordering (see Reference [19], 55–56).
Continuous variables may be categorised or transformed,
as with methods based on FP functions or regression
splines.

Validation options
Table 3 lays out seven suggestions for external validation
of models for time to event data. These are discussed
individually below. The column headed ‘Aspect’ indicates
whether a given method addresses the discrimination (D),
calibration (C) or more general fit (F) of a model.
As can be seen from Table 3, most of the methods

address discrimination. Calibration is harder to assess and
requires a higher level of information about the derivation
study.
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Table 3 Somemethods for external validation and the
level of information about the derivation study they
require

Method Aspect Information

L1 L2 L3

1 Regression on PI in validation data D, F � � �
2 Check model misspecification/fit F � � �
3 Measures of discrimination D � � �
4 Kaplan-Meier curves for risk groups D, C × � �
5 Logrank/Cox tests between risk

groups
D × � �

6 Hazard ratios across risk groups D × � �
7 Calibration C × × �
L1, L2 and L3 denote increasing amounts of information (see text).
Key to Aspect: D, discrimination; C, calibration; F, model fit.

Regression on the PI
A recognised approach to validation is to estimate the
regression coefficient on the PI or risk score in the vali-
dation dataset [4,12], sometimes known as the ‘calibration
slope’. The PI or risk score must be computed in the
validation dataset exactly as reported for the derivation
dataset. There must be no refitting of regression coeffi-
cients, for example. When the PI is the linear predictor
from a model (the usual situation), the calibration slope is
by construction exactly 1 in the derivation dataset. Sub-
ject to one caveat (see below), the discrimination in the
validation dataset is about the same when the slope on
the PI is approximately 1. If the slope in the validation
dataset is < 1, discrimination is poorer, and conversely if
it is > 1, discrimination is better. A likelihood-ratio test
that the slope is 1 is straightforward to perform. Note that
the resulting P-value may be anti-conservative, since it
does not allow for uncertainty in the estimated regression
coefficients that constitute the PI.
The caveat concerns case mix. If the prognosis of the

patients in the validation sample is less heterogeneous
than in the derivation sample, the spread (SD) of the PI
will be less. This will be reflected in smaller explained
variation and other discrimination measures [31].

Checkmodel misspecification/fit
One reason why the slope on the PI may differ from
1 in the validation dataset is that the regression coef-
ficients for one or more covariates may differ between
the datasets. This can be tested formally (ignoring uncer-
tainty of estimates in the derivation dataset) by running
a Cox regression on the covariates x in the validation
dataset, ‘offsetting’ the original PI evaluated in the valida-
tion dataset. The corresponding model is

ln h (t) = ln h0 (t) + x′β∗ + PI

The coefficient of PI is constrained to equal 1. By con-
struction, the β∗ values are differences between the βs
estimated in the model fitted to the derivation dataset
(treated as fixed numbers) and those estimated in the
model fitted to the validation dataset (treated as ran-
dom quantities). It may in principle be possible to allow
for uncertainty in the estimate of β in the derivation
dataset when testing β∗. However, this would require the
variance-covariate matrix of β̂ , something which is rarely
if ever reported and something which would extend the
level of information needed about the derivation model.
From the point of view of successful validation, the ‘best’

result is that all the coefficients β∗ are 0. A joint test of
β∗ = 0 may be applied. A separate test could be applied
to each coefficient; however, the joint test provides some
protection against inflation of the type 1 error.
While such an approach can be informative, it immedi-

ately raises the question of what to do if lack of fit is found
for one or more variables (i.e. if β̂∗ is incompatible with 0).
If individual patient data are available for the derivation
dataset (not considered here), it may be possible to go
back and improve the original model, but that is not the
aim of a validation exercise. Sometimes, lack of fit may be
caused by differences in the definition, measurement or
even units of variables between the two datasets.
Similarly, one can investigate other aspects of fit of the

PI in the validation sample, for example, the validity of
the proportional hazards assumption. However, the same
caveat applies. Even if the proportional hazards assump-
tion is untenable, a model may still provide good dis-
crimination (see section ‘Measures of discrimination’), but
the calibration would need to be scrutinised. Such a ‘par-
tially validated’ model may perform well enough to retain
clinical utility.
See the section ‘Method 2: Check model misspecifica-

tion/fit’ for an example.

Measures of discrimination
In simple terms, discrimination for time to event models
reflects separation between survival curves for individu-
als or groups. Maintaining discrimination in independent
data is a key principle of model validation. Discrimination
can be assessed in different ways. Over the last 20 years,
several measures have been proposed. While a compre-
hensive review of methods is beyond the present scope,
some recent descriptions and comparisons of measures
may be found in [32,33].
The main requirement for a measure of discrimination

to be useful in external validation is that it be evaluable in
the validation dataset. A measure whose definition does
not directly involve the response variable (outcome) is
not eligible. An example of this is the explained-variation
statistic R2

PM [25], which is a monotone transformation of
the variance of the PI across patients, as mentioned above.
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The outcome is needed in the calculation of the PI and
hence R2

PM in the derivation dataset, but the PI and R2
PM

can be calculated independently of the outcome in the
validation dataset.
Here, for the purpose of illustration we focus on three

measures: Harrell’s c-index of concordance [34], Gönen
andHeller’s unbiased concordance statisticK [35], and the
Royston-Sauerbrei D statistic [26]. We emphasised that
many other measures are available, including for example
the Brier score [36], and more recently, Zheng et al [37]’s
positive predictive value approach, but they do not change
the general principles.
Harrell’s c-index is defined as the proportion of all

patient pairs in which the predictions and outcomes are
concordant. (Because of censoring, not all pairs are evalu-
able [34].) Gönen and Heller’s K statistic is an extension
to time-to-event data of the well-known area under the
ROC curve which is used to assess the discrimination of
logistic regression models. It involves only the regression
parameters and the covariate distribution and is therefore
asymptotically unbiased.
Royston and Sauerbrei [26] proposed R2

D as a measure
of explained variation on the log relative hazard scale
based on the authors’ D statistic. D measures prognos-
tic separation of survival curves, and is closely related to
the standard deviation of the prognostic index. It is com-
puted by ordering the PI across patients, calculating the
rankits (expected standard normal order statistics) corre-
sponding to these values, dividing the latter by a factor
κ = √

8/π � 1.596 and performing Cox regression on
the scaled rankits. The resulting regression coefficient is
D. The conversion to R2

D is given by

R2
D = D2/κ2

σ 2 + D2/κ2

where (as in the section ‘Prognostic index’) σ 2 = π2/6 �
1.645.
Since the c,D and R2

D measures depend only on the rank
of the estimated relative hazard, all are easily determined
from the PI evaluated in the validation dataset. No new
model needs to be fitted in the validation dataset, either to
the PI or to the original variables. Of course, a comparison
with the derivation dataset can only be made if the same
measures were reported for that dataset. They cannot be
obtained retrospectively unless individual patient data are
available for the derivation dataset. Even if they were not
originally reported, however, there is value in reporting
them as part of the validation exercise. They require only
L1 information.

Kaplan-Meier curves for risk groups
As discussed in the section ‘Risk groups’, having devel-
oped a prognostic model, many authors present survival
curves for risk groups derived after categorising the PI.

Here we discuss the use of such survival curves in assess-
ing model discrimination and calibration. L2 information
is required.

Discrimination Kaplan-Meier survival curves for risk
groups provide informal evidence of discrimination. The
more widely separated are the curves, the better is the
discrimination. A Kaplan-Meier graph for both datasets
allows a visual comparison of discrimination between
datasets. We strongly recommend producing such plots.
As already noted, an issue is that the case mixes of the

derivation and validation datasets may differ markedly.
The term case mix refers to the type or mix of patients
treated by a hospital or unit. Even if the model is ‘cor-
rect’, the Kaplan-Meier curves for a given risk group may
suffer from a type of residual confounding and may also
differ across datasets. Residual confounding (a term from
epidemiology) occurs when the relationship between the
outcome and the PI is not fully accounted for by categori-
sation of the data into prognostic groups; some inhomo-
geneity of prognosis remains within groups. Therefore, a
naı̈ve comparison between Kaplan-Meier curves for the
two datasets could be misleading. Residual confounding is
reduced if a larger number of risk groups is created, but
having too many groups brings its own dangers.

Calibration Calibration describes how accurately the
estimates or predictions of survival from a model reflect
the survival in the observed data [3,9]. Miscalibration is
a type of bias. For a given PI value, a comprehensive and
accurate PI should yield a similar level of risk over time
and thus similar survival curves in the derivation and
validation datasets—that is, it should be well calibrated.
A comparison of Kaplan-Meier plots supports a rough
assessment of model calibration. Good calibration may be
inferred if the survival curves for a given risk group agree
well between the derivation and validation datasets.
The calibration assessment provided by comparing

Kaplan-Meier curves between datasets is not a strict com-
parison between observed and predicted values, however,
since the Cox model is not being used directly to predict
survival probabilities. Instead, the PI from the Cox model
provides only a rank ordering of risk, from which risk
groups are created and corresponding survival probabili-
ties are estimated by the Kaplan-Meier method. A direct
type of calibration assessment requires L3 information
and is discussed in the section ‘Calibration’.

Logrank or Cox tests between risk groups
As just noted, larger separation between survival curves
represents better discrimination. Some analysts perform
logrank or Cox tests between risk groups, inferring suc-
cessful validation if statistical significance is ‘achieved’
in the validation dataset. We do not recommend this
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approach, and we mention it only because it is some-
times done. Such P-values do not quantify discrimi-
nation; they quantify the evidence against a silly null
hypothesis, namely that survival of the risk groups coin-
cides. It is analogous to assessing the significance of
the correlation between methods of measurement in a
method-comparison study [38], where the inappropriate
null hypothesis is of no association between two methods
that are supposed to measure the same thing.

Hazard ratios across risk groups
In contrast to P-values for comparing risk groups, evalu-
ating hazard ratios is a sensible check of discrimination. If
two survival curves are more widely separated, the hazard
ratio tends to be larger. A table of (log) hazard ratios and
their SEs or CIs may be a useful accompaniment to the
Kaplan-Meier curves discussed above. Such a table may
be obtained after fitting a Cox model with a dummy vari-
able representing each risk group (except for a reference
group). See Table 4 for an example. In reality, such hazard
ratios are not often reported.

Calibration
Earlier, we discussed an assessment of calibration through
risk groups (requiring L2 information). Here, we propose
a stricter form of calibration requiring data from individ-
uals (L3 information). To our knowledge, L3 information
is never published, so this stricter type of calibration
assessment is never done.
When an estimate of the baseline survival function in

the derivation dataset is available, it is possible to check
the strict calibration of a Cox model [12]. (Even values at
a limited number of time-points may be utilised.) Given
an estimate of the baseline survival function, S0(t), we
combine S0(t) with the PI to predict survival probabili-
ties. To avoid the need for extrapolation of the baseline
survival curve beyond the observed range of t, we should
ensure that the follow-up period in the validation dataset

Table 4 Discriminationmeasures and hazard ratios
evaluated in the derivation and validation datasets

Measure Derivation data Validation data

Estimate SE Estimate SE

Harrell c-index 0.673 0.009 0.658 0.016

Gönen & Heller K 0.655 0.008 0.645 0.015

Explained variation (R2D) 0.166 0.017 0.145 0.033

HR: group 2 versus 1 1.58 0.19 1.63 0.35

HR: group 3 versus 1 3.33 0.39 3.34 0.70

HR: group 4 versus 1 4.75 0.60 6.33 1.54

All values are based on the PI of the prognostic model. Risk groups were defined
as described in the text. Standard errors (SE) for the c-index and for R2D were
estimated from 200 bootstrap samples. HR = hazard ratio.

is no longer than that in the derivation dataset. If neces-
sary, the follow-up time in the validation dataset should
be truncated at or before the maximum in the derivation
dataset.
Since we are assuming L3 information, we take it that

S0(t) has been estimated in the derivation dataset and is
explicitly available, e.g. as an approximating mathematical
function or a look-up table (even for a few time points).
See the section ‘Method 7: Calibration and the baseline
hazard function’ for a suggestion to use fractional poly-
nomials to approximate S0(t). A procedure for checking
calibration graphically is as follows:

1. If the model is ‘correct’, the baseline survival function
(i.e. covariate-adjusted survival) should be similar
across datasets. We calculate S0(t) in the validation
dataset, either directly from our mathematical
approximation or for example, by linear interpolation
of S0(t) at the observed times in the validation
dataset.

2. For a given value PIi, we compute the predicted
survival function in the validation dataset as
Sval (t; PIi) = S0 (t)exp(PIi).

3. We average the curves Sval (t; PIi) over all members
of each risk group at the observed times in the
validation dataset to obtain the expected survival
curve in each group.

4. In a graph, we superimpose the expected and
observed (Kaplan-Meier) survival curves for each risk
group. (We can, of course, also present the expected
and observed survival probabilities in tabular form at
specific time-points).

Note that although steps 1 and 2 are performed at the
individual level, steps 3 and 4 require risk groups. Assess-
ing calibration of survival probabilities at the individual
level appears impracticable.
Miscalibrationmay appear in different guises in the plot.

For example, miscalibration in the large would present as
a general under- or over-estimation of survival probabil-
ities. Alternatively, we may see inaccurate predictions at
particular times or in particular risk groups.
Finally, it may be helpful to investigate the accuracy of

the baseline survival function itself. We assume that a
simple mathematical approximation to the baseline sur-
vival function in the derivation dataset is available. This
curve should apply to the validation dataset too. How well
it fits can be evaluated by comparing it with a Kaplan-
Meier-like estimate of the baseline survival function in
the validation data. The latter may be obtained by stan-
dard methods after fitting a Cox model to the validation
data with no covariates other than the PI with regres-
sion coefficient constrained to 1 (i.e. the model ln h (t) =
ln h0 (t) + PI). This approach preserves the PI from the
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derivation dataset without re-estimating any regression
coefficients. A large difference between the two estimates
of the baseline survival function suggests some fundamen-
tal miscalibration of the model and therefore a failure of
validation.

Results
Illustrative example
We present an example of the seven options identified for
validation (Table 3) by re-analysis of the Rotterdam and
GBSG datasets.

Method 1: Regression on PI in validation data
The slope in a Cox model on the PI in the validation
dataset is 0.97 (SE 0.11). The slope is close to 1 and
is not significantly different from 1 (P = 0.8), so the
discrimination seems to be preserved.

Method 2: Checkmodel misspecification/fit
There is no overall evidence of lack of fit of the PI in
the validation dataset, as a joint test of all the predictors
is non-significant (χ2

8 = 6.08, P = 0.6) in the model
with the PI offset (see the section ‘Check model mis-
specification/fit’ for details). A standard test of the PH
assumption for the model in the validation dataset with a
single predictor (the PI) using scaled Schoenfeld residuals
suggests some breach of the PH assumption (P = 0.03).
The interpretation is that the regression coefficient for the
PI changes somewhat over time in the validation dataset.
This is not a major concern, however, since the overall cal-
ibration slope is near 1 (see above) and the discrimination
of the model is largely preserved (see below).

Method 3: Measures of discrimination
Harrell’s c-index, Gönen and Heller’s K statistic and Roys-
ton & Sauerbrei’s R2

D are given for both datasets in the
first three rows of Table 4. The discrimination is modest,
but not unusually so for this particular setting. The val-
ues of c, K and of R2

D are similar in size in each dataset
(but exhibiting a slight reduction in the validation sam-
ple), showing good validation (performance) of the model.
Note that K is somewhat smaller than c in each case, to be
expected since c is known to be be biased away from the
null due to right-censoring of times to event.

Method 4: Kaplan-Meier curves for risk groups
Figure 2 shows Kaplan-Meier curves for recurrence-free
survival in the two datasets according to risk group. We
have shown both sets of curves on the same plot, but in
practice, visual comparison of the validation results with
the original publication may be needed. Inspection of the
plot yields the following information:

1. Both sets of four curves are quite well separated,
confirming our earlier conclusion that the model has
some discrimination in both datasets.
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Figure 2 Kaplan-Meier curves for recurrence-free survival in 4
risk groups in the derivation and validation datasets, based on
anMFPmodel.

2. The discrimination in the derivation and validation
datasets is broadly similar, but the model seems less
able to distinguish between the two intermediate risk
groups in the validation dataset.

3. The survival curves in the validation dataset do not
agree perfectly with those in the derivation dataset in
the early follow-up phase, up to about 2 years.
Subjectively, therefore, there appears to be a degree
of miscalibration.

Method 5: Logrank or Cox P-values
As already discussed, we deprecate this method and there-
fore do not present detailed results for it. In any case, it
is clear from Table 4 that the log hazard ratios compar-
ing risk groups are significantly different from zero in the
validation dataset.

Method 6: Hazard ratios between risk groups
Hazard ratios between risk groups are presented in
Table 4. The hazard ratios seen in the derivation dataset
are well-maintained in the validation dataset, confirming
the impression in Figure 2.

Method 7: Calibration and the baseline hazard function
We applied the graphical and analytic methods described
in the section ‘Calibration’ to the PI. To illustrate one pos-
sible approach, we used fractional polynomial regression
to approximate the log baseline cumulative hazard func-
tion, lnH0 (t), as a smooth function of time in the deriva-
tion dataset. With ordinary least squares estimation, we
obtained the following approximations:

lnH0 (t) = 1.727 − 3.759t−0.5 − 0.356t−0.5 ln t
S0 (t) = exp [− exp (lnH0 (t))]
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i.e., an FP2 function with powers (−0.5,−0.5). The curve
is an excellent fit to lnH0 (t) in the derivation dataset,
explaining 99.9% of the variation (see Figure 3). The point-
wise 95% confidence interval was obtained by taking 100
bootstrap samples of the derivation data, fitting a Cox
model to the PI in each sample, predicting the log cumu-
lative hazard function, finding the best-fitting FP2 func-
tion by regression on time, and computing the pointwise
standard deviation across the bootstrap samples. The CI
was calculated on the log scale and back-transformed to
the cumulative hazard scale to give the results shown in
Figure 3.
We applied the averaging method to obtain predicted

mean survival curves in the validation dataset. The pre-
dicted mean survival curves are compared with the
Kaplan-Meier survival curves in the three risk groups in
Figure 4. We see that the calibration is reasonable for all
except the Fairly good risk group, where the model consis-
tently underpredicts. The predicted survival curves in the
two datasets (smooth lines) are almost identical, reflect-
ing the similarity in the distributions of the PI in each
risk group across the datasets. Figure 5 shows the cumu-
lative distribution function (c.d.f.) of the PI by dataset
and risk group; the c.d.f.’s within risk groups are nearly
superimposable.
Two- and five-year recurrence-free survival probabili-

ties according to risk group in the validation dataset are
shown in Table 5. The tabulated values are a subset of
those presented graphically in Figures 2 and 4. Differences
between observed (̂S (t)) and predicted (S (t)) survival
probabilities are apparent, but are not substantial.
Finally, Figure 6 compares two different estimates of the

baseline survival function in the validation dataset. The
empirical estimate is accompanied by a pointwise 95%
confidence interval based on bootstrap resampling of the
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Figure 3 Baseline cumulative hazard function in the derivation
dataset. Jagged curve, empirical (Kaplan-Meier-like) estimate;
smooth line and grey band, FP2 fit with pointwise 95% confidence
interval determined by bootstrap resampling.
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Figure 4 Calibration of survival probabilities in the validation
dataset. Smooth lines: recurrence-free survival as predicted in the
derivation and validation datasets from the PI and the smoothed
baseline survival function from the derivation dataset. Jagged lines:
Kaplan-Meier estimates in the three risk groups in the validation
dataset. Note that the pairs of smooth curves for the two highest risk
groups happen nearly to coincide and are visually indistinguishable.

FP2 fit. The smooth, solid line is the FP2 approximation to
S0 (t) obtained from the derivation dataset, as described
above. The irregular line is the Kaplan-Meier-like estimate
of the baseline survival function estimated after fitting the
model h (t; PI) = h0 (t) exp (PI) to the validation data. The
two estimates are similar, but not identical. Particularly in
the early follow-up phase, prognosis seems to be slightly
better in the validation dataset, after adjusting for the PI.

Discussion
Why is validation important?
A prognostic model that appears to predict outcome well
on a derivation dataset but which predicts weakly or not
at all on a plausibly related independent dataset is clearly
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Table 5 Calibration by risk group

Risk group t Kaplan-Meier Predicted

(yr) Derivation Validation Validation

N Ev. ̂S(t) SE N Ev. ̂S(t) SE S(t)

1. Good 2 247 90 0.90 0.02 124 28 0.88 0.03 0.88

5 0.71 0.03 0.68 0.05 0.73

2. Fairly good 2 526 270 0.82 0.02 277 103 0.85 0.02 0.78

5 0.56 0.02 0.59 0.03 0.54

3. Fairly poor 2 526 401 0.60 0.02 225 123 0.61 0.03 0.63

5 0.31 0.02 0.37 0.04 0.32

4. Poor 2 247 204 0.44 0.03 60 45 0.53 0.07 0.47

5 0.20 0.03 0.11 0.05 0.16

Values shown are Kaplan-Meier estimates and standard errors of recurrence-free survival probabilties in the three groups at two times. Values labelled Predicted were
predicted from the derivation dataset by applying the PI to the smooth baseline survival estimate at the individual level in the validation dataset, and averaging across
each risk group. N and Ev. denote the number of patients and events in each group.

not ‘fit for purpose’, whatever purpose may be envisaged.
External validation is an essential first step towards accep-
tance of a model into clinical practice. Taking a wider
view, model validation is a type of replication of a research
result. The need for replication of an important finding is a
cornerstone of the scientific method and is accepted prac-
tice in all areas of science, including clinical trials. Some-
times multiple replications may be demanded, which in
our context means more than one attempt at model vali-
dation. Certain well-used prognostic models, for example
in breast cancer and in heart disease, have indeed been
validated several times in different populations.

Grouped versus individual prognostication
Our method 4 and the requirement for L2 information
involves defining prognostic groups, typically (though not
necessarily) by polytomising the prognostic index. How-
ever, the application of a continuous score to estimate the
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Figure 6 Estimates of the baseline survival function in the
validation dataset. The grey region is a pointwise 95% confidence
interval based on bootstrap resampling. Set text for details.

prognostic index and hence the outlook of a given patient
does not require grouping and may be preferred by some
as the primary way to apply the model. We are not argu-
ing for grouping as advantageous in the interpretation or
application of the model, nor of course in the reporting of
the model where we point to the need for presenting both
the prognostic index and the baseline survival function.
We more use grouping as a technical device to indicate
how well the model fits and predicts in a validation sam-
ple, for example by graphing or tabulating performance.
Also, there is a distinction perhaps between the individual
perspective (clinical application) and the broader popu-
lation perspective (assessment of outcomes in population
groups), a contrast that arises in many areas.
Technically, it may be preferable to estimate calibra-

tion curves for survival probabilities without the use of
risk groups. An approach in this direction is provided by
the routines calibrate and val.surv in the R pack-
age rms [39]. The rms package implements many of the
procedures described in Harrell’s book [6].

Interpreting results of the validation exercise
To discuss findings, and therefore to evaluate how suc-
cessfully a model has been ‘validated’, we need a context
in which the prognostic model is to be applied. In other
words, we need to know the purpose(s) for which the
model was developed. As examples, we consider two gen-
eral scenarios: risk stratification, e.g. as a criterion for
determining entry to clinical trials, or in adjusting out-
comes for disease severity when evaluating performance
of health care institutions; and individual risk prediction,
for physicians to advise patients and possibly to determine
treatment options, or for direct use by patients for their
own information.
For risk stratification purposes, discrimination is clearly

the key indicator of model success or failure, although
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calibration still plays a role. In the breast cancer exam-
ple, Table 4 and Figure 2 show that the model performs
about as well in the validation dataset as in the derivation
dataset, and has acceptable calibration (since adequate
risk stratification is more important than absolute predic-
tion accuracy). One cannot really ask for more. Never-
theless, in absolute terms, the discrimination is modest; a
c-index of < 0.7 and an explained variation of under 20%
are not large. This is not an issue specific to the valida-
tion process, but is a consideration for deciding whether a
(validated) model is useful or not. However, even a model
that stratifies risk relatively weakly may be better than no
model.
As Henderson & Keiding [40] point out, prognostic

models are not good at individual predictions of outcome.
Nevertheless, we can interpret graphs like Figures 2 and
4 in the following manner. Prognosis is clearly worst in
the Poor group and best in the Good group, and this is
confirmed in the validation dataset. Event times for indi-
viduals vary greatly, even for a given PI value. One can
state, however, that there is about a 50:50 chance of an
event within the first 2 years for a patient in the Poor
group and 5 years in the Fairly good group (median time
to event). We cannot estimate the median time to event
in the Good group because the follow-up period is too
short. A minor failing of the model in the validation sam-
ple is in predicting short term outcomes (1-2 years). The
model tends to underestimate the time to event, that
is actual prognosis is better than the model suggests.
Further investigation beyond the scope of the paper sug-
gests that failure of the proportional hazards assumption
might be one reason why the short-term predictions are
rather ‘off’.
Our proposed assessments show that the discrimina-

tion of the Rotterdam model is similar across the two
datasets, and that the calibration is reasonably good. This
implies that the evaluation of the model comes out rea-
sonably satisfactorily. Crudely speaking, “the Rotterdam
model validates quite well”.

What is not validation?
In our view, the following practices that we have seen in
the literature do not constitute validation of a model:

• Repeating the whole modelling process on new data.
This could involve comparing variables selected in
the model, comparing regression coefficients and
assessing goodness of fit. The result would be a new
model, not validation of an existing one.

• Refitting to the validation data the variables in the
final model from the derivation data. Again, this
could involve comparing regression coefficients and
gauging goodness of fit, and again the result would be
a new model, albeit with the same predictors.

• Calculating the PI from the original model and fitting
this single predictor to the validation data. This is one
of the options in Table 3 but does not in itself
constitute validation. If the calibration slope was
much different from 1, there might be a case for
proposing the recalibrated PI as an updated or
revised model.

To repeat, to us the process of validation means assess-
ing the performance of a predefined model in new data.
It does not mean tinkering with the original model, which
comes under the heading of ‘updating’ or ‘revising’ a
model. All three approaches lead to a new model rather
than a validation of the existing model, and as such, would
themselves need external validation.

What can be done if validation fails?
If a model ‘fails to validate’, for example it has adequate
discrimination but poor calibration, we may wish to refine
it. What can be done? Whereas methodology exists and
has been applied to logistic regression models [41,42], the
methods do not transfer to Cox models. An approach to
recalibration and minimal updating of a model based on
the Weibull distribution is described by van Houwelin-
gen [12] (details not given). Of course, an updated model
needs to be validated.

Validating risk groups
We have so far considered the external validation of a
Cox model that yields a continuous PI. However, key parts
of our assessments have relied on the availability of risk
groups. An extension of our approach could be to regard
the risk groups themselves as of primary interest, rather
than as an adjustable by-product of a PI. Risk groups can
be derived, as we have done, from a continuous PI, or
by another method. Possibilities include neural nets, vari-
ous classification methods (e.g. support vector machines),
CART, counting risk factors, or indeed any method that
can define mutually exclusive groups.
Having defined risk groups, a Cox model can be esti-

mated based on a dummy variable for each group, as in the
section ‘Hazard ratios across risk groups’. The methods we
describe in Table 3 can be applied to validate this simpli-
fied model. This implies that unambiguous rules exist for
defining the risk groups in an independent sample.
The main advantage of this approach is applicability to

a wide variety of risk ‘engines’. When a continuous PI is
available (but is ‘discarded’ in favour of groups), however,
disadvantages are loss of information and loss of flexibility
in applications. A given prognostic classification scheme
may be too crude for some types of application. For exam-
ple, it may be important to identify patients with a very
good or very poor prognosis, but working only with a
specific scheme may preclude it.
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Sample size considerations
As can be seen in Table 4, a discrimination measure
such as R2

D may have fairly large uncertainty, even with
a moderate number of patients and events (686 and 299,
respectively, in the validation dataset). It is clear, there-
fore, that a substantial validation sample is required to
provide a reasonably precise estimate of such a measure.
Validating a model on a few tens of patients can never
suffice. Work is ongoing to develop reliable methods for
calculating the necessary sample size for validation stud-
ies in terms of the magnitude of the D or R2

D measure and
its desired precision [43]. Dunkler et al [44] used boot-
strap resampling to investigate the impact of increasing
the sample size on the precision of a measure of explained
variation.

Implications for reporting
We hope that we have made a convincing case for report-
ing at least up to L3 information for the derivation dataset
and its Cox model. L1 and L2 information are quite often
reported, but L3 is extremely rare. Nevertheless, without
L3 information we can’t properly assess the calibration
of a model. One option might be to contact the origi-
nal investigators and request a suitable estimate of the
baseline survival function. As we have shown, obtaining
a simple but adequate approximation to the baseline sur-
vival function is not difficult, and indeed can be tackled
in other ways if desired (e.g. spline functions [45]). Ideally,
the entire derivation dataset (i.e. ‘L4’ information) and all
its details would be made publicly available to facilitate
validation of a proposed model. Such a paradigm does not
seem to be likely to become common, except possibly in
genomic studies where original study data are quite often
placed in a data repository.

Applicability to extended Coxmodels
Our sequence of validation steps requires a prognostic
index that can be used to assign a relative hazard to
every patient that does not change over time. In essence,
this is the proportional hazards assumption. Extended
Cox models, for example with time-dependent effects in
which some of the regression coefficients change over
time, do not satisfy the PH assumption and cannot be
validated according to our scheme. Stratified Cox models
also present a challenge to strict assessment of calibra-
tion in a validation dataset, since there is no longer a
unique baseline survival function. However, assessing the
discrimination of a stratified model is straightforward.

Conclusions
In contrast to the logistic regression case, little atten-
tion has been accorded in the literature to validation of
Cox models, despite their ubiquity. We believe that more
attention should be given to validation of Cox models,

especially in the common case where only L2 information
about the derivation data has been published. The most
fruitful approach relies on the comparison of Kaplan-
Meier curves.
We intend to write a report for the Stata Journal describ-

ing the calculations needed to implement our approach to
external validation.
In summary, we have discussed the importance of vali-

dation and have provided guidance for those who wish to
evaluate the performance of a Coxmodel in a new dataset.
However, judging adequacy of model performance in new
data remains challenging.
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