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Abstract

Background: There are various methodological approaches to identifying clinically important subgroups and one
method is to identify clusters of characteristics that differentiate people in cross-sectional and/or longitudinal data
using Cluster Analysis (CA) or Latent Class Analysis (LCA). There is a scarcity of head-to-head comparisons that can
inform the choice of which clustering method might be suitable for particular clinical datasets and research questions.
Therefore, the aim of this study was to perform a head-to-head comparison of three commonly available methods
(SPSS TwoStep CA, Latent Gold LCA and SNOB LCA).

Methods: The performance of these three methods was compared: (i) quantitatively using the number of subgroups
detected, the classification probability of individuals into subgroups, the reproducibility of results, and (i) qualitatively
using subjective judgments about each program’s ease of use and interpretability of the presentation of results.

We analysed five real datasets of varying complexity in a secondary analysis of data from other research projects.
Three datasets contained only MRI findings (n = 2,060 to 20,810 vertebral disc levels), one dataset contained only pain
intensity data collected for 52 weeks by text (SMS) messaging (n= 1,121 people), and the last dataset contained a
range of clinical variables measured in low back pain patients (n = 543 people). Four artificial datasets (n = 1,000 each)
containing subgroups of varying complexity were also analysed testing the ability of these clustering methods to
detect subgroups and correctly classify individuals when subgroup membership was known.

Results: The results from the real clinical datasets indicated that the number of subgroups detected varied, the
certainty of classifying individuals into those subgroups varied, the findings had perfect reproducibility, some programs
were easier to use and the interpretability of the presentation of their findings also varied. The results from the artificial
datasets indicated that all three clustering methods showed a near-perfect ability to detect known subgroups and
correctly classify individuals into those subgroups.

Conclusions: Our subjective judgement was that Latent Gold offered the best balance of sensitivity to subgroups, ease
of use and presentation of results with these datasets but we recognise that different clustering methods may suit
other types of data and clinical research questions.
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Background

There is increasing interest in the identification of clinically
important patient subgroups in order to better target treat-
ment, make more accurate estimates of prognosis, and
improve health system efficiency by providing the right
treatment to the right patient at the right time [1,2]. This is
especially so in non-specific health conditions that are
highly prevalent, costly and have a high burden of disease.
For example, most back pain is non-specific and yet it is
the leading cause of disability globally [3]. Identifying
subgroups of findings can also be useful in imaging data,
such as Magnetic Resonance Imaging (MRI) findings [4,5]
and longitudinal data describing clinical or life course
trajectories [6]. Longitudinal data may be collected using
many methods but an increasingly used method is via Short
Message Service (SMS) text messaging [7].

There are various methodological approaches to iden-
tifying subgroups, although the same validation stages
are required before clinical importance can be estab-
lished [8,9]. Some statistical approaches to subgrouping
work backwards from an outcome, such as using good
response to a treatment, as a way to identify the clinical
characteristics of people most likely to respond to that
therapy [10]. Other statistical methods seek to identify
clusters of symptoms and signs that differentiate people,
in cross-sectional and/or longitudinal data. This ap-
proach was taken by Beneciuk et al. [11], who used
cluster analysis of baseline fear avoidance data from
patients in a clinical trial and found three distinct
subgroups (low risk, high specific fear, and high fear
and catastrophising) that were associated with differ-
ent clinical trajectories.

Historically, cluster analysis methods (hierarchical or
k-means clustering) have been used but more recently
these have been complemented by probabilistic (Bayesian)
methods, such as Latent Class Analysis (LCA). Traditional
cluster analysis methods initially create a distance measure
of dissimilarity between individuals (such as a Euclidean
distance), and then seek to determine the underlying
subgroup structure by optimising the within-subgroup
variability of individuals” distance measures and maximis-
ing their between group variability. In contrast, LCA
methods initially use a probabilistic modeling ap-
proach (such as finite mixture modeling) to identify
the likely distributions with the data and the likely
placement of individuals within those distributions.
They then seek to determine the optimal subgroup
structure that explains the most variance while requir-
ing the simplest specification of the model (the optimal
balance between the most explanatory models and
parsimonious models). In this study we use the term
‘clustering methods’ as an umbrella term to cover both
‘distance-based cluster analysis’ approaches and ‘prob-
ability-based LCA’ approaches.
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LCA has a number of advantages, including being able:
to better manage variables of mixed measurement types
(dichotomous, ordinal, interval scales and scales of varying
width), to better handle missing data, to provide classifica-
tion probabilities for individual classification, to provide
model-based parameters that can be used to classify new
individuals not in the derivation sample, and to have
greater classification accuracy [12-14]. LCA methods are
now easily accessible to clinical researchers and the use of
these computationally-intense software programs has
been facilitated by the speed of contemporary computers.

There are many computer programs available for LCA
but there is a scarcity of head-to-head comparisons
published that can inform the choice of which LCA might
be suitable for particular clinical datasets and research
questions. There are only two such studies that we are
aware of. Haughton et al. [15] compared three LCA
programs (Latent Gold, poLCA and MCLUST) using a sin-
gle dataset. All three programs identified the same number
of subgroups, though there was some variation in the
individuals allocated to those subgroups. Those authors in-
dicated that their results may not hold for other datasets
and that the use of poLCA and MCLUST require profi-
ciency in the R programming environment and language.
Bacher et al. [12] compared a distance-based cluster
method (SPSS TwoStep), and two LCA methods (Latent
Gold and ALMO) using five artificial datasets with known
subgroups. TwoStep is a hybrid approach that uses a dis-
tance measure to separate individuals but uses a similar
method to LCA to choose the optimal subgroup model,
and it has been shown to perform consistently better than
traditional hierarchical cluster techniques [13]. Bacher et al.
found that TwoStep was least able and Latent Gold most
able to detect the correct number of subgroups. In particu-
lar, TwoStep had difficulties when the dataset contained a
mix of nominal and interval data.

However, there are other LCA methods readily available,
other measures of technical performance and other more
user-focused aspects for comparison. Furthermore, the
performance of clustering methods can vary depending on
the type of data being analysed [13] and most previous
comparison studies have been written for a statistical
audience rather than for clinical researchers.

Therefore the aim of this study was to perform, using a
variety of types of clinical and artificial datasets, a head-
to-head comparison of three commonly available cluster-
ing methods (TwoStep, Latent Gold and SNOB), based on
the evaluation criteria of: the number of subgroups de-
tected, the classification probability of individuals to those
subgroups, the reproducibility of the findings, and each
computer program’s ease of use and interpretability of the
presentation of results. These evaluation criteria were
orientated towards informing the decisions of clinical
researchers, rather than statisticians, and therefore clinical
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rather than mathematical language is used and clinical
considerations are emphasised.

Method

Clustering software

This study investigated the use of three clustering methods,
each implemented within a separate software program: (i)
TwoStep Cluster Analysis in IBM SPSS (version 19, SPSS
Statistics/IBM Corp, Chicago IL, USA), which is available in
the base package of this program (TwoStep) [16], (ii) Latent
Class Modeling in Latent Gold (version 4.5, Statistical
Innovations, Belmont MA, USA), which is the simplest of
three LCA approaches available in this program (Latent
Gold) [17], and (iii) ‘vanilld’ SNOB (version 1.15,
Monash University, Melbourne, Australia), which is
the most straightforward form of this program (SNOB)
[18-20]. SNOB is playfully named for its ability to
detect classes (subgroups) and uses the Minimum
Message Length principle and finite mixture modeling
to probabilistically identify latent classes.

These three clustering methods were tested using their
software default settings. In the case of TwoStep, this was
a log-likelihood distance measure. Clustering methods,
when in exploratory mode, require some form of ‘stopping
rule’ to allow determination of the optimal number of
subgroups. LCA methods typically include rules designed
to find the subgroup solution that explains the most
variance while requiring the simplest specification of the
model. Examples of such rules are the Schwarz’s
Bayesian Information Criterion (BIC), Akaike’s Infor-
mation Criterion, and Minimum Message Length
principle. In the case of TwoStep, there is a choice of
BIC or Akaike’s Information Criterion, with a default
setting of BIC, and the program automatically deter-
mines the optimal solution based on the chosen criter-
ion. Latent Gold requires the analyst to choose the
optimal model and provides a number of criteria that
can be used to inform that choice, the most commonly
used single criterion being BIC. When using Latent
Gold, we increased the number of investigated clusters
until BIC did not decrease any further and chose the
subgroup model with the lowest BIC and fewest sub-
groups. SNOB uses only Minimum Message Length
and fully automates the choice of model.

Real data sets

We analysed five datasets of varying size, type and
complexity. All were a secondary analysis of real data
collected for other research projects. Three datasets
(MRI', MRI?>, MRI®’) contained only MRI findings
(dichotomous scales), one dataset (SMS) contained only
pain intensity data (0 to 10 interval scale) collected
every week over a one-year period by SMS messaging,
and the last dataset (clinical) contained a range of
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clinical variables (dichotomous, ordinal and continuous
scales) measured in low back pain (LBP) patients. These
datasets were purposefully chosen from those available in
our research group to investigate whether the perform-
ance of these clustering programs was consistent across
data size, type and complexity, as these characteristics can
affect cluster models [12]. Permission was obtained from
the custodians of each of these datasets for secondary use
of the data within this project (Per Kjeer, Rikke Kruger
Jensen, Hanne Albert/Peter Kent, Alice Kongsted, Alice
Kongsted, respectively).

Both Latent Gold and SNOB are able to model data in
dichotomous, ordinal and continuous scales, whereas
TwoStep can only model dichotomous and interval data
[12]. Therefore, to be able to model data across all three
clustering methods, variables in the MRI datasets that
were originally coded in ordinal scales were recoded into
dichotomous scales using arbitrary but clinically intuitive
cut-points. The mixed data types in the clinical dataset
were retained in their original formats to preserve the
complexity of these data but this restricted our compari-
son of these data to results from Latent Gold and SNOB.
An overview of the characteristics of the five data sets is
presented in Table 1.

All three MRI datasets were analysed at an individual
vertebral disc level, where each person in the study
contributed five lumbar vertebral disc levels. The MRI*
dataset was collected as part of the Danish ‘Backs on
Funen’ longitudinal cohort study, and was taken from the
baseline cohort measurement that included a lumbar MRI
(n=412 people, 2,060 disc levels). Full details of the data
collection and coding have been previously reported [21].
Briefly, this cohort of people was a representative sample
of the Danish general population and, who as part of the
data collected in the study, had MRIs. The MRI images
were quantitatively coded by an experienced musculo-
skeletal research radiologist using a detailed and stan-
dardised research MRI evaluation protocol that has
demonstrated high reproducibility [22].

The MRI” dataset is from a cohort of patients (n =631
patients, 3,155 disc levels) who were potential participants
in a randomised controlled trial [23]. The details of the
data collection and coding have also been previously
reported [4]. In summary, all participants were patients
who had attended a Danish outpatient hospital depart-
ment (the Spine Centre of Southern Denmark) from June
2006 to June 2008, where they had been referred from the
primary care sector for a multidisciplinary evaluation.
Potential participants were people who had LBP or leg
pain of at least 3 on an 11-point Numerical Rating
Scale, a duration of current symptoms from 2 to
12 months, were above 18 years of age, and who had
received a lumbar MRI. The MRI images were quanti-
tatively coded by the same research radiologist using



Kent et al. BMC Medical Research Methodology 2014, 14:113
http://www.biomedcentral.com/1471-2288/14/113

Table 1 Characteristics of real datasets
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Dataset Data type n Variables

MR’ Dichotomous, cross-sectional data 2,060 Disc signal intensity, loss of disc height, disc high intensity zone, location of high

dataset disc levels intensity zone, type of disc herniation, location of disc herniation, nucleus pulposus
shape, annular tear anterior, annular tear posterior, annular tear right, annular tear left,
location of nerve root compression, nerve root compression, anterolisthesis, retrolisthesis,
top endplate defect, bottom endplate defect, Modic changes top endplate, Modic
changes bottom endplate, facet joint degeneration, facet joint asymmetry, central
stenosis, foraminal stenosis.

MRI? Dichotomous, cross- sectional data 3,155 Disc signal intensity, disc height, disc high intensity zone, disc contour, type of disc

dataset disc levels herniation, disc herniation signal intensity, anterolisthesis, retrolisthesis, type of endplate
changes top, type of endplate changes bottom, size of endplate changes top, size of
endplate changes bottom, osteophytes top, osteophytes bottom, endplate defect top,
endplate defect bottom, endplate irregularity top, endplate irregularity bottom.

MRP® Dichotomous, cross-sectional data 20,810 Disc bulge, disc degeneration, disc herniation, disc high intensity zone, Modic changes

dataset disc levels  Type 1, Modic changes Type 2, nerve root compression, Scheuermann's disease,
spondylolisthesis, facet joint degeneration, osteoarthritis, central spinal stenosis, scoliosis,
red flag condition (cancer, fracture, infection).

SMS Interval, longitudinal repeated 1,121 Pain intensity (0 to 10) measured once a week for 52 weeks.

dataset  measures data people

Clinical Mixed (dichotomous, ordinal, 543 Dichotomous: gender, living alone, previous episode.

dataset  interval), cross-sectional data people

Ordinal: episode duration (3 categories), STarT Back Tool subgroup (3 categories).

Interval: age (years), days of pain in last 2 weeks (0 to 14), Major Depression Inventory
sum score (0 to 42), Fear Avoidance Beliefs Questionnaire subscale scores (physical
activity 0 to 24, work 0 to 42), Coping Strategies Questionnaire subscale scores (divert
attention 0 to 100, ignoring 0 to 100, praying or hoping 0 to 100, catastrophisation 0 to
100, reinterpreting 0 to 100).

the same MRI evaluation protocol as in the MRI'
dataset.

The MRI® dataset was collected for a study on the
prevalence of MRI-defined spinal pathologies [24] and a
study of the reproducibility of coding MRI findings [25].
Full details of the data collection and coding have been
reported in those studies but briefly, these data were
extracted by three trained coders from the MRI reports
of all people who had attended the outpatient medical
department of the Spine Centre of Southern Denmark
over an eight-year period (2000 to 2008) and received a
lumbar spine MRI for which a narrative report could be
retrieved from their electronic patient record (n=4,162
people, 20,810 disc levels). Once trained, the inter-rater
reproducibility across the 14 pathoanatomic categories
for a sample of these data (n=1,700 ratings) ranged
from substantial to perfect [25]. The original MRI
reports had been narrated by either of two experienced
musculoskeletal radiologists.

The SMS dataset contained data on LBP intensity
self-reported every week for one year by 1,121 primary
care chiropractic or GP patients in Denmark. These
data were collected as part of a currently unpublished
cohort study designed to identify course patterns, sub-
groups and prognostic factors in LBP patients seeking
care from general practitioners (GPs) and chiropractors.
All GPs in the administrative region of Southern
Denmark were invited to participate in a quality assur-
ance program focusing on patients with LBP and the

patient self-reported data used in the current study were
recorded at or after the first consultation. The chiroprac-
tors were participants in a research collaboration with a
clinical practice research unit that has previously been de-
scribed [26]. Patient inclusion criteria were being aged
18-65 years, attending the GP or chiropractor for the first
time due to the current episode of LBP, and having
adequate Danish language competency. Exclusion criteria
were a suspicion of inflammatory or pathological pain,
and nerve root involvement requiring acute referral to
surgery. The 52 weeks of pain intensity scores had a mean
within-subject correlation (collinearity) over time of 0.59
(SD 0.11, full range 0.22 to 0.81). The SMS data were
entered into the clustering models without reference to
their time sequence, a method previously described [27].

The clinical dataset consisted of responses on an array
of questionnaires from 543 people who were potential
participants in a cross-sectional study of the STarT Back
Screening Tool [28]. Full details of this data collection and
coding have also been reported. Participants were primary
care patients in 19 chiropractic clinics who were members
of the same clinical practice research unit involved in the
SMS dataset. Inclusion criteria were consenting people
seeking care for LBP with adequate Danish literacy to
understand and self-complete the questionnaire pack.

In all three clustering programs, all the variables from
each dataset were simultaneously entered into the model
as indicators, with no dependent, covariate or predictor
variables specified. The data collection and analysis of
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each of the five datasets was performed with the approval
of the scientific ethics committee appropriate for each
study. Under Danish law, the secondary analysis of such
de-identified data does not require separate ethics
approval (The Act on Processing of Personal Data,
December 2012, Section 5.2; Act on Research Ethics
Review of Health Research Projects, October 2013,
Section 14.2).

Artificial data sets

Four artificial datasets (n = 1,000 each) containing subgroups
of varying complexity were created to test the ability of
the clustering methods to detect subgroups and cor-
rectly classify individuals when subgroup membership
was known to the researchers but withheld from the mod-
eling process. The subgroup characteristics are described
in Table 2 and illustrated in Figures 1, 2, 3 and 4. The vari-
ables were arbitrarily given clinical labels to aid compre-
hension but these labels were entirely fictitious.

To allow comparison across all three clustering
methods, including TwoStep, these artificial datasets
contained only interval +/- dichotomous data. Each
dataset contained nine variables that differentiated
three to six subgroups based on their scoring pattern.
The complexity of the range of scores that differen-
tiated the subgroups varied from easy (discrete and
mutually exclusive scoring bands) to more difficult
(overlapping scoring bands plus the presence of 10
‘pure noise’ variables). Within each scoring band, the
scores on each variable were calculated using random
number generation (Excel for Mac 2008, Microsoft
Corporation, Redmond, WA, USA). The sequence of
individuals in the artificial datasets was randomised
prior to analysis.

Comparison criteria

The performance of the three clustering methods was
compared: (i) quantitatively using the number of sub-
groups detected, the classification probability of individ-
uals into subgroups and the reproducibility of results, and
(ii) qualitatively using subjective judgements about each
computer program’s ease of use and the ease of inter-
pretation of the presentation of results.

Table 2 Characteristics of artificial datasets
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The number of subgroups detected by each method
was reported, along with a summary of the classifica-
tion probability of each individual disc level or patient.
The classification probability is an index of the
certainty with which each individual was allocated into
a subgroup based on their scoring pattern. For example,
individuals with a scoring pattern that is stereotypical
of a subgroup will be allocated with more certainty
than individuals whose scoring pattern is on the bound-
ary between two subgroups. Classification probability of
individuals was not available in the TwoStep procedure.

Furthermore, the reproducibility of each method’s
findings was measured by performing 10 repetitions of
the clustering for each dataset. Reproducibility was
reported using the number of subgroups detected,
classification stability (agreement on which subgroup
each individual disc-level or patient was allocated to),
and classification probability (certainty of the subgroup
allocation of each individual). Descriptive statistics
(proportions, means, standard deviations (SD) or 95%
confidence intervals (95%CI)) and trends in the number
of subgroups detected were reported. Differences
between classification confidence were tested using the
STATA prtesti command for a one-sample test of
proportions (Stata Corp, College Station, Texus, USA).

Pair-wise classification disagreement between cluster-
ing methods on the allocation of individuals into
subgroups was also calculated. Subgroup membership
of all individuals was cross-tabulated between the final
subgroup models from each clustering method, allocat-
ing each individual to the cluster in which they had the
highest posterior probability. The subgroups with the
highest number of individuals in these cross-tabulations
were deemed to be the same subgroup and individuals
classified by one method but not the other as being in that
subgroup were deemed to be disagreements. The total
number of pair-wise disagreements at an individual level
was expressed as a proportion of the total sample size. In
the case of SNOB, this process was facilitated by a tree
diagram showing the derivation of the subgroups in the
final model. The tree is based on a type of Bhattacharyya
Coefficient that measures the similarity among subgroup
probability distributions. A visual example of how this
cross-tabulation was performed is shown in Figure 5.

Dataset No of subgroups Data type Subgroup scoring Subgroup n
Al 3 Interval and dichotomous Discrete scoring bands 333,333,334
A2 3 Interval Overlapping scoring bands 333,333,334
A3 6 Interval and dichotomous Overlapping scoring bands with two 166, 166, 166, 164, 168, 170
distinct subgroups on each variable
A4 3 Interval Overlapping scoring bands plus 10 ‘noise’ 333,333,334

variables that do not discriminate subgroups
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Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7 Variable 8 Variable 9
‘Flexion ‘Pain ‘Centralisation’ ‘Extension ‘Posterior ‘Point ‘Feels ‘Eccentric ‘Poor motor
reduced’ sitting’ reduced’ quadrant’ tenderness’ unstable’ catch’ control’
Yes 100 100 Yes 100 Yes 100 100
70
50
No 0 0 No 0 No 0 0
I subgroup 1 The heights of the coloured bars indicate the range in which
[ Subgroup 2 people within that subgroup could score.
[ Subgroup 3
Figure 1 Dataset A1 (n=1000) - containing 3 subgroups, whose distinguishing features do not overlap, with characteristics scored on
a mixture of continuous and dichotomous variables.

Results

Real datasets

As shown in Table 3, the number of subgroups detected
by each of the clustering methods varied. In every dataset,
TwoStep detected the least number of subgroups, Latent
Gold detected more subgroups and SNOB detected the
most. This indicates that the clustering methods varied in
their sensitivity to scoring patterns within the same data-
set. The differences in the number of subgroups detected
were typically smaller between Latent Gold and SNOB
than between either of these and TwoStep, although the
SMS dataset was an exception to this observation. This
may have been due to a differential effect resulting from
the amount of collinearity in these data, as independence
of the included variables is a common assumption in
clustering methods.

Classification certainty (probability) was not available
for TwoStep but is displayed at a group-average level in
Table 3 for Latent Gold and SNOB. The standard
deviation (SD) is also displayed and gives an index of the
classification uncertainty that those clustering methods
had in allocating individuals to subgroups. The classifi-
cation certainty did not differ between Latent Gold and
SNOB in the MRI' dataset (p=0.625) or the clinical
dataset (p =0.246), but it did differ in the MRI* and

MRI® datasets and the SMS dataset (all p<0.001).
However, despite an expectation that the clustering
method that was most sensitive to subgroup differences
(SNOB) would also be the most certain, this was not
consistently observed, as the average classification
certainty was not always higher for SNOB and the
differences between the methods were typically small.

The between-clustering method classification disagree-
ment of individuals (disc levels or patients) is shown in
Figure 6. The pairwise classification disagreement varied
between comparisons of clustering methods, as seen by
the non-overlapping confidence intervals, but there was
no consistent trend that would have indicated that
across datasets, some of the clustering methods more
often agreed with each other.

The results for reproducibility (number of subgroups,
allocation to subgroups, classification probability) are
also shown in Table 3. These tests of the consistency of
findings within each clustering program during 10
replications of the analysis of each dataset showed
100% agreement in all datasets and on all types of test
(number of subgroups, allocation to subgroups, classifi-
cation probability). In the case of Latent Gold, the de-
fault setting is to commence each analysis with a
random seed point, which predictably results in some
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Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7 Variable 8 Variable 9
‘Flexion ‘Pain ‘Centralisation’ ‘Extension ‘Posterior ‘Point ‘Feels ‘Eccentric ‘Poor motor
reduced’ sitting’ reduced’ quadrant’ tenderness’ unstable’ catch’ control’
100 100 100 100 100 100 100 100 100
15
0 0 0 0 0 0 0 S0 0
Subgroup 1
groue The heights of the coloured bars indicate the range in which
[ Subgroup 2 people within that subgroup could score.
] Subgroup 3
Figure 2 Dataset A2 (n=1000) - containing 3 subgroups, whose distinguishing features do overlap, with all characteristics scored on
continuous variables.

\

variability of the findings. As the other two clustering Artificial datasets

programs commence with a fixed but arbitrary seed As shown in Table 4, these three clustering methods
point, to standardise these comparisons of reproducibil-  displayed a near-perfect ability to detect known sub-
ity, we used a fixed but arbitrary seed point in Latent groups. The only exception was that Latent Gold split

Gold in this part of the analysis. one subgroup into two in artificial dataset 3 that was
Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7 Variable 8 Variable 9
‘Flexion ‘Pain ‘Centralisation’ ‘Extension ‘Posterior “Point ‘Feels ‘Eccentric “Poor motor
reduced” sitting” reduced” quadrant’ tenderness’ unstable’ catch’ control’
Yes 100 100 _ Yes 100 100 Yes 100 100

il il il Iifl 001 i | !

No 0 0 No 0 0 No 0 0
I Subgroup 1

[ Subgroup 2
The heights of the coloured bars indicate the range in which
[ Subgroup 3 people within that subgroup could score.

[ Subgroup 4

[ Subgroup 5

[]Subgroup 6
Figure 3 Dataset A3 (n=1000)- containing 6 subgroups, whose distinguishing features do overlap, with characteristics scored on a
mixture of continuous and dichotomous variables.
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Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7 Variable 8 Variable 9 Variables 10 to 19
‘Flexion ‘Pain ‘Centralisation’ ‘Extension ‘Posterior ‘Point ‘Feels ‘Eccentric ‘Poor motor ‘Pure noise’
reduced’ sitting’ reduced’ quadrant’ tenderness’ unstable’ catch’ control’

100 100 100 100 100 100 100 100 100 100

15

0o 0o o o o o o0 0 0 0

] Subgroup 1

The heights of the coloured bars indicate the range in which
[ Subgroup 2 people within that subgroup could score.
[—_1Subgroup 3
Figure 4 Dataset A4 (n=1000) - containing 3 subgroups, whose distinguishing features do overlap, with all characteristics scored on
continuous variables. Contains 10 ‘pure noise’ non-discriminatory variables.

designed to contain 6 subgroups. We cannot rule out
that our method of using random number generation
to produce individual scores had produced a scoring
characteristic that Latent Gold detected and used as
the basis for splitting a ‘mother subgroup’ into two
‘daughter subgroups’. The classification accuracy was
also very high, ranging from 98.4% to 100%.

Ease of use, interpretability, cost

Our subjective judgement is that these three clustering
programs also varied in their ease of use and the interpret-
ability of their presentation of results. TwoStep has the
easiest learning curve, with software commands that can
be all menu-driven, there is plain-language explanatory
material available via the internet, the optimal subgroup
solution is automatically determined, and the results are
presented numerically and graphically (charts of certainty
of the subgroup structure, bar and pie charts of cluster
frequencies, and charts displaying the importance of
specific variables to subgroups). A limitation is that Two
Step is not designed to analyse ordinal data and while it is
technically possible to handle such data via the use of
dummy variables, this disproportionally loads the distance
measure on that variable with unpredictable results on the
subgroup model. As TwoStep is a component of the base
module of IBM SPSS, it is available in formats that run on
the IBM PC, Apple Mac and Linux platforms. Ongoing
fee-based support is also available. However, the TwoStep
clustering analysis component is not separately available

and this software is the most expensive of these three
clustering programs, usually involving annual license fees.

In our view, Latent Gold has a steeper learning curve
than TwoStep, though the software commands can be
menu-driven, there is abundant explanatory material and
on-line training courses available, and the results are
numerically and graphically presented (including a tri-plot
displaying the relationships between subgroups). Latent
Gold requires the analyst to determine the optimal
subgroup solution but does provide a number of diag-
nostic measures to inform that decision and clear ex-
planations of the relative merits of those measures. The
base version of Latent Gold also allows more complex
applications of LCA, such as Latent Class regression
modeling and Latent Class multilevel modeling, and
can also directly provide model parameters that can be
used to classify new individuals who were not in the
model building exercise. There is free online support
for registered users and the single license fee allows
perpetual use of the purchased version. A limitation is
that Latent Gold is only available for the IBM PC
platform.

SNOB has the steepest learning curve and is completely
command line-driven in a Linux shell environment. It is
the least user-friendly, requiring input data to be separated
into two Linux text files, one containing the data and the
other describing the variables, each with a unique syntax.
The output needs to be consolidated by extracting infor-
mation from the Linux shell plus information from a
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Latent Gold subgroup 1 I e I.
Latent Gold subgroup 2 2 :
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| | | SNOB
Latent Gold subgroup 7 - | i | ~ su bgroups
I
Latent Gold subgroup 6 4 ¢ . |
V. |
b o ] P —— : \ I _________ I
Latent Gold subgroup 5 I
5 e I
Latent Gold subgroups
1 2 3 4 5 6 7
1 1,121 19 43 7 2 1 2 1,195
2 15 234 55 13 1 1 1 320
3 1 3 2 79 3 1 2 91
SNOB 4 1 0 1 0 0 53 0 55
subgroups 5 0 0 2 0 15 1 0 18
6 1 0 0 0 0 0 32 33
7 2 0 6 0 0 0 8 16
8 0 0 0 0 87 30 0 117
9 1 0 44 6 0 0 0 51
10 3 0 26 43 1 0 1 74
1,145 256 179 148 109 87 46 1,970

Misclassification = 254/1970 = 12.9%

Figure 5 lllustration of classification overlap of subgroups.
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Table 3 Classification performance with real datasets

TwoStep Latent Gold SNOB
Number of subgroups detected
MRI" dataset 2 7 10
MRI? dataset 3 11 15
MRP? dataset 2 6 7
SMS dataset 2 10 37
Clinical dataset Not available 8 9
Certainty (mean classification probability of disc levels or patients)
MRI" dataset Not available 91.2% (SD11.9%) 91.5% (11.6%)
MRI? dataset Not available 98.9% (SD3.9%) 97.1% (SD6.6%)
MRI? dataset Not available 85.7% (SD19.5%) 91.0% (SD12.7%)
SMS dataset Not available 96.5% (SD8.8%) 98.2% (SD4.7%)
Clinical dataset Not available 91.4% (SD12.9%) 89.9% (SD13.5%)
Reproducibility (10 iterations of each dataset, with identical results
across all datasets)
Number of subgroups 100% agreement  With fixed seed point=100% agreement 100% agreement
Classification stability (reproducibility of individual disc-levels or 100% agreement  With fixed seed point=100% agreement 100% agreement

people being classified into each subgroup)

Classification certainty (reproducibility of the classification probability ~ Not available  With fixed seed point = 100% agreement 100% agreement
of disc levels or patients)

report file. The output is mostly numeric, although a tree  Discussion

diagram is produced showing the relationship between  The aim of this study was to perform, using a variety of
‘mother’ and ‘daughter’ subgroups. Some explanatory types of clinical and artificial datasets, a head-to-head
material is available. This LCA program is free for not-for-  comparison of three commonly available clustering
profit, academic research but with minimal user support. =~ methods (TwoStep, Latent Gold and SNOB). Using real

A factor analytic version of SNOB is also available. clinical datasets, we found that the number of subgroups
N
TwoStep Latent Gold SNOB

MRI* | 2.9% [ | 12.9% [

| 5.4% |

MRI? | 7.8% | | 2.2% |

| 8.4% |

MRI3 | 10.5% [ | 7.9% [

| 12.3% |

Clinical L X% | | X% |

I X% |

Figure 6 Classification disagreement of individuals (disc levels or patients).
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Table 4 Classification performance with artificial datasets
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Number of subgroups detected

Accuracy of classifying 1000 individuals into subgroups

Dataset TwoStep Latent Gold SNOB TwoStep Latent Gold SNOB
A1 (3 subgroups) 3 3 3 100% 100% 100%
A2 (3 subgroups) 3 3 3 99.9% 99.8% 99.9%
A3 (6 subgroups) 6 7 6 98.7% 100% 98.4%
A4 (3 subgroups) 3 3 3 99.4% 99.2% 99.4%

detected varied, the certainty of classifying individuals
into those subgroups varied to some extent, that the
findings had perfect reproducibility, that some computer
programs were easier to use and that the interpretability
of the presentation of findings also varied across pro-
grams. With the artificial datasets, all three clustering
methods showed a near-perfect ability to detect known
subgroups and correctly classify individuals into those
subgroups. We believe this information will be useful to
clinical researchers.

The number of subgroups detected in all the real data-
sets varied in a consistent pattern, with TwoStep detecting
the least number of subgroups, Latent Gold detecting
more subgroups and SNOB detecting the most. This vari-
ability in their sensitivity to scoring patterns within the
same dataset is problematic, and in the absence of an
external reference standard, it is not possible to determine
what degree of sensitivity is optimal. To some extent, each
clustering method may simply be reflecting the same
underlying scoring structure of the data but at different
levels of detail. This view appears to be supported by the
results from the artificial datasets, which showed near-
perfect identification of known subgroups but one in-
stance of a subgroup being split into ‘daughter’ subgroups.
Therefore, the analyst may need to choose a clustering
method whose sensitivity level is appropriate for their data
and the number of subgroups that are manageable and
clinically meaningful. On the other hand, with all sub-
group structures, it is possible to collapse subgroups
together where, from a clinical perspective, there is good
reason to consider them as one, or if the prevalence of a
subgroup is so low as to deem it better merged with an-
other. Therefore, an ‘overly-sensitive’ subgroup structure
can be reduced by collapsing ‘daughter’ subgroups.

Eshghi et al. [29] and Gelbard et al. [13] also showed
a lack of consistency across clustering techniques in
the number of subgroups detected in real datasets in a
comparison of diverse clustering techniques. Eshghi
et al. attempted to address this lack of consistency by
comparing the subgroup solutions of different cluster-
ing programs using measures of within-subgroup
homogeneity and between-subgroup heterogeneity to indi-
cate which solutions had better discrimination between
subgroups. For example, to determine the within-subgroup
homogeneity, they used the sum of squared deviations from

the mean to compute the variation when averaged by the
number of variables. Although the notion of such an
external measure of discrimination is appealing, it may
not be helpful in the current context. That is because
clinical data is often not normally distributed, especially
data collected on something other than an interval scale,
and a strength of LCA techniques is their ability to model
other types of data and model the probability distributions
inherent in each dataset. Therefore, there is no readily
apparent external reference standard by which to deter-
mine which LCA program results in the optimal subgroup
solution in data when subgroup membership is unknown
a priori, which is usually the case in clinical research.

Of the datasets that we analysed, only the SMS data were
longitudinal. These methods of analysis did not include
reference to the longitudinal time sequence inherent in
these data. There are more sophisticated modeling methods
available for clinical or life course trajectories that do
include reference to the longitudinal nature of the
data, such as latent class growth analysis and latent
class growth mixture modeling [30] but comparison
with these techniques was beyond the scope of our
study.

Similarly, while the classification certainty (probability)
varied between Latent Gold and SNOB in some datasets,
this result should be interpreted with some caution and as
a general guide only. That is because it was not possible to
determine how comparable the measures of classification
probability were between LCA programs. LCA methods
may calculate classification probability using different
approaches.

That there was perfect reproducibility of results (number
of clusters, allocation of individuals to clusters, classification
probability) is reassuring. However, analysts need to remain
mindful that this perfect reproducibility is a result of the
programs (except for Latent Gold) choosing an arbitrary
but fixed seed point to start their analyses, and that random
seed points would in some instances result in different
solutions when re-running a model.

In summary, our subjective judgement is that Latent
Gold offered the best balance of sensitivity to subgroups,
ease of use and interpretability (Table 5). This judgement
was based on its ability to manage mixed types of data, the
interpretability of its findings and performance measures of
subgroups, its ability to perform more complex forms of



Table 5 Overall summary of three clustering techniques

TwoStep

Latent Gold

SNOB

Method

Stopping rule to identify number of
subgroups

Suitable data types

Report classification probability of
individuals

Sensitivity to subgroups
Reproducibility
Accuracy

Cost

Support

Interpretability of presentation of
results

Learning curve (subjective judgement)

Distance-based, agglomerative
hierarchical cluster analysis

Automated using either ‘Bayesian information criterion’ or ‘Akaike’s

information criterion’

Ordinal data require recoding
as dichotomous or handled as
if interval data

No

Least
Very high
Very high

Most expensive

Extensive documentation, fee-based
support available

Results are presented numerically
and graphically (charts of certainty
of the subgroup structure, bar and pie
charts of cluster frequencies, and
charts displaying the importance of
specific variables to subgroups)

Easy

Finite mixture modeling
to probabilistically identify
latent classes

Analyst choice using various criteria,
including ‘Bayesian information
criterion’, unexplained variance,

Chi-square p-value

All types

Yes

Middle
Very high
Very high

Less expensive

Extensive documentation and some
free support available

Results are presented numerically
and graphically (including a tri-plot

displaying the relationships between subgroups)

Middle

Finite mixture modeling to
probabilistically identify latent classes

Automated using ‘Minimum
message length’ principle

All types

Yes

Most
Very high
Very high

Free

Some documentation but minimal
support available

Results are mostly numeric (although
a tree diagram is produced showing
the relationship between ‘mother’
and ‘daughter’ subgroups)

Hard

€11/t 1/88TT-L L1 /WOD'[RIIUSIPIWIOIG MMM//:d1Yy

€L1:L ‘10T ABOjOpOYIaYy Y2IDIsaY [DIIP3Y DING D 13 U

¥1 Jo | abed



Kent et al. BMC Medical Research Methodology 2014, 14:113
http://www.biomedcentral.com/1471-2288/14/113

LCA, its capacity to generate model parameters that can be
used to classify new individuals, and the accessibility of
support. A further consideration was that while allowing
analyst discretion in choosing the optimal subgroup
solution might potentially introduce the capacity for bias,
this process also makes explicit the criteria that were used
in that choice, which may need to differ depending on the
characteristics of the data and the clinical question.
Compared to TwoStep, we valued the higher sensitivity,
much better handling of ordinal and mixed types of data,
and the more detailed output of Latent Gold. Whereas the
main reason that we preferred Latent Gold over SNOB was
its user-friendliness. We recognise that this judgement of
the best clustering to use might vary depending on the
analyst's own expertise and support, the types of data
involved, and the clinical questions to be answered.

A strength of this study is that it was performed
using a variety of real and artificial datasets and use of
a range of performance criteria. A limitation was that
other LCA methods are available that we did not test,
as a comprehensive comparison of all available LCA
methods was beyond the scope of the study.

Conclusions

This study compared three clustering methods (SPSS
TwoStep, Latent Gold and SNOB) using a variety of
datasets and performance criteria. The results from the
real datasets indicated that the number of subgroups
detected varied, the certainty of classifying individuals into
those subgroups varied to some extent, the findings had
perfect reproducibility, some programs were easier to use
and the interpretability of their presentation of findings
also varied across programs. The results from the artificial
datasets indicated that all three clustering techniques
showed a near-perfect ability to detect known subgroups
and correctly classify individuals into those subgroups.
Our judgement was that Latent Gold offered the best
balance of sensitivity to subgroups, ease of use and
interpretability but we recognise that other analysts may
reach different conclusions depending on their available
level of statistical support, the types of data they work with
and the clinical questions they address. We believe this
information will be useful to clinical researchers making
decisions about which clustering methods might be
appropriate to their circumstances.

Abbreviations

BIC: Bayesian Information Criterion; GP: General medical Practitioners;
LBP: Low Back Pain; LCA: Latent Class Analysis; MRI: Magnetic Resonance
Imaging; SMS: Short Message Service (text messaging); TwoStep: TwoStep
Cluster Analysis in IBM SPSS.

Competing interests

No author has any competing interests. The manuscript submitted does not
contain information about medical devices or drugs. No benefits in any form
have been, or will be, received from a commercial party related directly or
indirectly to the subject of this manuscript. None of the authors have any

Page 13 of 14

relationship with the suppliers of the tested software other than as a
customer.

Authors’ contributions

PK, RKJ and AK were involved in the design of the study, data analysis,
interpretation of data, revision of the manuscript. PK wrote the initial draft of
the manuscript. All authors read and approved the final manuscript.

Acknowledgements

PK and RKJ were partially supported, and AK was fully supported, by grants
from the Danish Foundation for the promotion of Chiropractic research and
post-graduate education. Thanks to Hanne Albert, Per Kjaer and the ‘Backs
on Funen’ Steering Committee for data access.

Author details

'School of Sports Science and Clinical Biomechanics, University of Southern
Denmark, Campusvej 55, Odense M 5230, Denmark. Research Department,
Spine Centre of Southern Denmark, Hospital Lillebaelt, Institute of Regional
Health Services Research, University of Southern Denmark, Middelfart,
Denmark. *Nordic Institute of Chiropractic and Clinical Biomechanics,
University of Southern Denmark, Odense, Denmark.

Received: 6 September 2013 Accepted: 24 September 2014
Published: 2 October 2014

References

1. Hill JC, Whitehurst DG, Lewis M, Bryan S, Dunn K, Foster NE, Konstantinou K,
Main CJ, Mason E, Somerville S, Sowden G, Vohora K, Hay EM: Comparison
of stratified primary care management for low back pain with current
best practice (STarT Back): a randomised controlled trial. Lancet 2011,
378(9802):1560-1571.

2. Hingorani AD, Windt DA, Riley RD, Abrams K, Moons KG, Steyerberg EW,
Schroter S, Sauerbrei W, Altman DG, Hemingway H: Prognosis research
strategy (PROGRESS) 4: Stratified medicine research. BMJ 2013, 346:e5793.

3. LimSS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M,
Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN,
Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F,
Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG,
Brunekreef B, Bryan-Hancock C, Bucello C, et a- A comparative risk assessment
of burden of disease and injury attributable to 67 risk factors and risk factor
clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden
of Disease Study 2010. Lancet 2012, 380(9859):2224-2260.

4. Jensen RK, Jensen TS, Kjaer P, Kent P: Can pathoanatomical pathways of
degeneration in lumbar motion segments be identified by clustering
MRI findings. BMC Musculoskelet Disord 2013, 14(1):198.

5. Takatalo J, Karppinen J, Niinimaki J, Taimela S, Mutanen P, Sequeiros RB,
Nayha S, Jarvelin MR, Kyllonen E, Tervonen O: Association of modic
changes, Schmorl's nodes, spondylolytic defects, high-intensity zone
lesions, disc herniations, and radial tears with low back symptom
severity among young Finnish adults. Spine 2012, 37(14):1231-1239.

6. Barban N, Billari FC: Classifying life course trajectories: a comparison of
latent class and sequence analysis. J R Stat Soc 2012, 61(5):765-784.

7. Axen |, Bodin L, Bergstrom G, Halasz L, Lange F, Lovgren PW, Rosenbaum A,
Leboeuf-Yde C, Jensen I: Clustering patients on the basis of their
individual course of low back pain over a six month period. BMC
Musculoskelet Disord 2011, 12:99.

8. Kent P, Keating JL, Leboeuf-Yde C: Research methods for subgrouping low
back pain. BMC Med Res Methodol 2010, 10:62. doi:10.1186/1471-2288-10-62.

9. Klebanoff MA: Subgroup analysis in obstetrics clinical trials. Am J Obstet
Gynecol 2007, 197:119-122.

10.  Flynn T, Fritz JW, Whitman M, Wainner RS, Magel J, Rendeiro D, Butler B,
Garber M, Allison S: A clinical prediction rule for classifying patients with
low back pain who demonstrate short-term improvement with spinal
manipulation. Spine 2002, 27(24):2835-2843.

11. Beneciuk JM, Robinson ME, George SZ: Low back pain subgroups using
fear-avoidance model measures: results of a cluster analysis. Clin J Pain
2012, 28(8):658-666.

12. Bacher J, Wenzig K, Vogler M: SPSS TwoStep Cluster - a first evaluation. In
Work and discussion paper. Erlangen-Nuremberg, Germany: Department of
Sociology, Social Science Institute, Friedrich-Alexander-University; 2004:1-30.



Kent et al. BMC Medical Research Methodology 2014, 14:113 Page 14 of 14
http://www.biomedcentral.com/1471-2288/14/113

13. Gelbard R, Goldman O, Spiegler I: Investigating diversity of clustering
methods: An empirical comparison. Data Knowl Eng 2007, 63:155-166.

14. Magidson J, Vermunt JK: Latent class models for clustering: A comparison
with k-means. Can J Market Res 2002, 20:1-9.

15. Haughton D, Legrand P, Woolford S: Review of three Latent Class Cluster
Analysis packages: Latent GOLD, poLCA, and MCLUST. Am Stat 2009,
63(1):81-91.

16.  SPSS: SPSS Base 17.0 Users guide. Chicago, IL, USA: SPSS Inc; 2009.

17. Vermunt JK, Magidson J: Latent Gold 4.0 users's guide. Belmont,
Massachusetts, USA: Statistical Innovations Inc; 2005.

18. Wallace CS: Statistical and inductive inference by minimum message length.
New York, USA: Springer; 2005.

19. Wallace CS, Boulton DM: An information measure for classification.
Comput J 1968, 11(2):185-194.

20.  Wallace CS, Dowe DL: MML clustering of multi-state, Poisson, von Mises
circular and Gaussian distributions. Stat Comput 2000, 10(1):73-83.

21. Kjaer P, Korsholm L, Bendix T, Sorensen JS, Leboeuf-Yde C: Modic changes
and their associations with clinical findings. Eur Spine J 2006,
15:1312-1319.

22. Jensen TS, Sorensen JS, Kjaer P: Intra- and interobserver reproducibility of
vertebral endplate signal (modic) changes in the lumbar spine: The
Nordic modic consensus group classification. Acta Radiol 2007,
48:748-754.

23. Jensen RK, Leboeuf-Yde C, Wedderkopp N, Sorensen JS, Manniche C: Rest
versus exercise as treatment for patients with low back pain and Modic
changes. A randomized controlled clinical trial. BMC Med 2012, 10:22.

24.  Albert HB, Briggs AM, Kent P, Byrhagen A, Hansen C, Kjaergaard K: The
prevalence of MRI-defined spinal pathoanatomies and their association
with modic changes in individuals seeking care for low back pain.

Eur Spine J 2011, 20(8):1355-1362.

25. Kent P, Briggs AM, Albert HB, Byrhagen A, Hansen C, Kjaergaard K, Jensen
TS: Inexperienced clinicians can extract pathoanatomic information from
MRI narrative reports with high reproducibility for use in research/
quality assurance. Chiropr Man Therap 2011, 19(1):16.

26. Eirikstoft H, Kongsted A: Patient characteristics in low back pain
subgroups based on an existing classification system. A descriptive
cohort study in chiropractic practice. Man Ther 2014, 19(1):65-71.

27. Kent P, Kongsted A: Identifying clinical course patterns in SMS data using
cluster analysis. Chiropr Man Therap 2012, 20(1):20.

28. Kongsted A, Johannesen E, Leboeuf-Yde C: Feasibility of the STarT back
screening tool in chiropractic clinics: a cross-sectional study of patients
with low back pain. Chiropr Man Therap 2011, 19:10.

29. Eshghi A, Haughton D, Legrand P, Skaletsky M, Woolford S: Identifying
groups: A comparison of methodologies. J Data Sci 2011, 9:271-291.

30.  Twisk J, Hoekstra T: Classifying developmental trajectories over time
should be done with great caution: a comparison between methods.

J Clin Epidemiol 2012, 65(10):1078-1087.

doi:10.1186/1471-2288-14-113

Cite this article as: Kent et al: A comparison of three clustering
methods for finding subgroups in MRI, SMS or clinical data: SPSS
TwoStep Cluster analysis, Latent Gold and SNOB. BMC Medical Research
Methodology 2014 14:113.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Method
	Clustering software
	Real data sets
	Artificial data sets
	Comparison criteria

	Results
	Real datasets
	Artificial datasets
	Ease of use, interpretability, cost

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

