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Abstract

Modified large sample

Background: The intraclass correlation coefficient (ICC) is widely used in biomedical research to assess the
reproducibility of measurements between raters, labs, technicians, or devices. For example, in an inter-rater reliability
study, a high ICC value means that noise variability (between-raters and within-raters) is small relative to variability
from patient to patient. A confidence interval or Bayesian credible interval for the ICC is a commonly reported
summary. Such intervals can be constructed employing either frequentist or Bayesian methodologies.

Methods: This study examines the performance of three different methods for constructing an interval in a
two-way, crossed, random effects model without interaction: the Generalized Confidence Interval method (GCl), the
Modified Large Sample method (MLS), and a Bayesian method based on a noninformative prior distribution (NIB).
Guidance is provided on interval construction method selection based on study design, sample size, and normality
of the data. We compare the coverage probabilities and widths of the different interval methods.

Results: We show that, for the two-way, crossed, random effects model without interaction, care is needed in
interval method selection because the interval estimates do not always have properties that the user expects. While
different methods generally perform well when there are a large number of levels of each factor, large differences
between the methods emerge when the number of one or more factors is limited. In addition, all methods are
shown to lack robustness to certain hard-to-detect violations of normality when the sample size is limited.

Conclusions: Decision rules and software programs for interval construction are provided for practical
implementation in the two-way, crossed, random effects model without interaction. All interval methods perform
similarly when the data are normal and there are sufficient numbers of levels of each factor. The MLS and GCl
methods outperform the NIB when one of the factors has a limited number of levels and the data are normally
distributed or nearly normally distributed. None of the methods work well if the number of levels of a factor are
limited and data are markedly non-normal. The software programs are implemented in the popular R language.
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Background

Biological and physical quantities assessed for scientific
studies must be measured with sufficient reproducibility
for the study to produce meaningful results. For example,
biological markers (“biomarkers”) are studied for many
medical applications, including disease risk prediction,
diagnosis, prognosis, monitoring, or optimal therapy selec-
tion. Variation in measurements occurs for numerous rea-
sons. The measurements might have been made on
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different devices, may have involved subjective judgment
of human raters (e.g., a pathologist assessing the number
of tumor cells in a biopsy), or might have been made in
different laboratories using different procedures. As an-
other example, psychological instruments often score pa-
tients based on multi-item questionnaires completed by
medical professionals. Variation in the resulting scores can
be attributed to both variation among the patients and
variation among the medical professionals performing the
assessments. In many settings, it is not realistic to expect
perfect concordance among replicate measurements, but
one needs to achieve a level of reliability sufficient for the
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application area, such as a clinical setting. A common
approach to quantify the reliability of a measurement
process is to calculate the intraclass correlation coefficient
(ICC) along with a confidence interval [1-4].

An interval can be constructed for the ICC using fre-
quentist or Bayesian methods. Frequentist methods as-
sure that the probability that the interval contains the
parameter if the experiment is repeated many times is
the nominal confidence level (e.g., 95%). In contrast to
Frequentist methods, Bayesian methods provide a prob-
ability distribution for the parameter itself, given the
data and the prior uncertainty. The distribution can be
summarized by a credible interval, which reflects a nom-
inal probability (e.g., 95%) region for the distribution.
When little is known about the parameter of interest a
priori, then a non-informative prior, which is often pro-
vided in the statistical software, can be used to construct
the interval. The relative advantages of noninformative
Bayesian and frequentist approaches in general are dis-
cussed in Berger [5] Chapter 4, Carlin and Louis [6]
(Section 1.4), and elsewhere. General comparisons of the
different approaches are beyond the scope of this paper.
This paper focuses on two issues of applied interest dis-
cussed in the next paragraph.

Two critical and inter-related characteristics of a confi-
dence interval method are (1) the coverage probability,
and (2) the interval width. The coverage probability of a
method should exactly match the confidence level, such as
95%. Coverage probability is a frequentist concept since
the parameter is treated as a fixed number. The interval
width is important to consider when comparing intervals
because one often wants the shortest possible interval that
maintains the nominal coverage. Coverage probability and
interval width are important and relevant from both
frequentist and objective Bayesian perspectives [7-13]. Fre-
quentist coverage probabilities are interpretable in the
Bayesian framework as well [14].

We study two applications in detail. The first applica-
tion is a study by Barzman et al. [15]. They evaluated
the Brief Rating of Aggression by Children and Adolescents
(BRACHA), a 14-item questionnaire instrument scored by
emergency room staffers. BRACHA scores can be influ-
enced by both the child being assessed and the adult per-
forming the assessment. Interest was in whether different
adult staffers scored the children in a similar way, as sum-
marized by the intraclass correlation coefficient. These data
were originally analyzed using Bayesian credible interval
methods. The second application is the National Cancer In-
stitute’s Director’s Challenge reproducibility study [16]. In
this study, tissue samples were subdivided into separate sec-
tions, sections distributed to four laboratories, and micro-
array analysis performed at each laboratory. Interest was in
whether different laboratories produced similar gene ex-
pression measurements for individual patients.
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This paper considers the setting of a two factor, crossed,
random effects model without interaction. We focus on
this setting because it arises frequently in practical applica-
tions of interest [15-17], and because this focus enables us
to examine different aspects of study design, data distribu-
tion, and Bayesian priors, without the scope of the paper
becoming unwieldy. For the purposes of this study, we as-
sume this model is appropriate for the data; the process of
selecting an appropriate statistical model and agreement
measure are outside the scope of this paper and are dis-
cussed thoroughly elsewhere [18,19]. A random effects
model is appropriate when each factor represents a ran-
dom sample from a larger population [20]; for example, a
factor may represent labs randomly drawn from all labs
that could perform the assay. If the population of labs is
small, a finite population adjustment is possible [21], but
rarely used in practice. If for some factors random sam-
pling is not an appropriate assumption, then fixed-effects
or mixed models can be used. Reproducibility methods for
fixed and mixed models are discussed elsewhere [19,22].

Confidence interval performance can be affected by
both the study design used and the distribution of the
data. If the study design has a limited number of levels
of one or both factors, then this can impact interval per-
formance. In practice, it is common that one factor will
have a very small number of levels. The distribution of
the data is assumed to be normally distributed and a vio-
lation of normality can impact coverage. Also, if one
variance component is large or small relative to the
others, resulting in different values of the ICC, then this
can impact coverage as well. Different variance parame-
ters and a range of model violations are studied using
simulation and application. These studies lead to rela-
tively simple and straightforward advice on which inter-
val procedure will produce an interval with good
performance characteristics. Also presented are caution-
ary notes about when examined methods will perform
poorly.

The history of the development of the methods com-
pared in this paper is briefly reviewed. The Modified Large
Sample procedure for the two-way layout without inter-
action was developed in [23], and is based on earlier work
of [24] using exact statistical methods. The Generalized
Confidence Interval procedure for the two-way layout with-
out interaction is presented in [25], and is based on a modi-
fication of a related method in [26], and the foundational
work in [27]. Bayesian methods based on Markov Chain
Monte Carlo are described in [28], were previously popular-
ized in [29] and [30], and grow out of earlier work such as
[31]. Bayesian intervals can be constructed with a variety of
packages in R, such as MCMCglmm, or the popular soft-
ware based on BUGS (Bayesian inference Using Gibbs
Sampling), such as OpenBUGS [32], WinBUGS [33], or
JAGS. The frequentist modified large sample (MLS) [24]
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and generalized confidence interval (GCI) [27] methods
can be implemented using SAS version 9.3 VARCOMP
procedure, or with the R programs provided with this
manuscript.

This paper is organized as follows: Section 2 presents
the model, briefly outlines the methods, and also presents
the simulation settings. Section 3 presents the results of
the Monte Carlo investigations. Section 4 presents real
data applications. Section 5 presents discussion of the re-
sults. Section 6 presents conclusions. Mathematical details
appear in the Additional file 1. Supplemental simulation
details appear in Additional file 2.

Methods
The model for the data is

Ypir = #+ By + Ly + epiy (1)

where p is the overall mean, Bj,...,B,, are the effects of
the patients (or biological samples, etc.), L1, ...,L;, are the
effects of the laboratories (or raters or instruments, etc.),
and ej11,...€p, 4, are within-laboratory (or within-rater,
etc.) experimental errors. The standard random effects
model assumptions are that B,~Normal (07 012]) , Li~Normal
(0,07) and ey, ~Normal(0,02) where all random variables
are mutually independent. The between-laboratory intra-
class correlation is ICCj, = 03/ (o‘i + 07 + 03), and the
within-laboratory intraclass correlation is ICC,, = g3/
(02 + 02). The analysis of variance for the model is pre-
sented in Table 1.

The o7 is the variance between biological samples. For
measurements to be reproducible, this variance must be
large relative to the other sources of variability present.
If 67 is close to zero, so that the population is homoge-
neous, then reproducibility will be poor. If o7 is larger,
and the other sources of variability are controlled ad-
equately, then good reproducibility is possible. Universal
heuristics for defining good reproducibility in all cases
are not available, but in some cases historical ICC values
and/or clinical relevance may help guide appropriate
ranges (e.g., [19]).

Table 1 Analysis of variance

Source DF? Sum of squares Ms® EMS®

Patient  by—1 /ofoz Vpy..) st 02+ loro0}
b

Lab/ lo—1 bofoz vy..) st 02+ boroo?

rater 7

Error robolo — bo = lo + Z VoY=V + V) 52 0

1 bl

°DF is degrees of freedom; PMS is observed mean squares; ‘EMS is expected
means squares.
Notation: y,.. is the average over | and s for fixed b.
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Comparison measures

Coverage probabilities and average interval widths over
a range of plausible true parameter values are compared.
The coverage level is set to 95%. These are frequentist
measures that answer the critical, concrete questions:

1. Will an interval constructed in this way have a 95%
coverage probability, or will the coverage be lower
or higher than 95%?

2. Will an interval constructed in this way be as
narrow as possible, reflecting the strongest possible
conclusions that can be drawn from the data?

The coverage probability of a statistical procedure for
interval construction is defined as the probability that
the constructed interval will contain the parameter. One
final note along these lines; the summary statistics pre-
sented in Tables 2 and 3 below can be viewed as compo-
nents of the Bayes risk relative to a true prior (versus
the “working prior” used for estimation), a criterion rec-
ommended by Samaniego [14] for comparison of fre-
quentist and Bayesian procedures (Additional file 1:
Section S4).

Frequentist interval methods

A generalized confidence interval (GCI) is an extension
of the traditional concept of a confidence interval. Trad-
itional confidence intervals can be constructed when
there is a pivotal quantity with a known distribution free
of nuisance parameters. There is no such pivot for ICC,.
The GCI method is based on a generalized pivotal quan-
tity G [25,27], which is a generalization of the usual
pivot [34]. Define Fg as the cumulative distribution
function for G. The formula for G is shown in Appendix
A; the distribution of G is a function of chi-squared ran-
dom variables. Monte Carlo methods can be used to es-
timate quantiles of G, say Fgl(p) for the pth quantile.
The equal-tailed (1 - @)100% GCI is then,

{F& (@/2),E¢ (1-a/2)}.

The modified large sample (MLS) method is an exten-
sion of traditional confidence interval methods, which
do not work well for the ICC,. The MLS approach is to
construct the traditional asymptotic limits for the ICC,,
and then modify these limits to improve the small-
sample performance of the intervals. In particular, the
limits are modified so that when all but one of the vari-
ance parameters is zero, the interval is exact [24]. The
specific approach for the ICC, is given in Cappelleri and
Ting [23]. The general form of the MLS interval is a
function of the observed mean squares, and can be
written:
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Table 2 Normal simulation table
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bo=48,1g=3,r,=1

bo =96,1o=6, 1y =1

ICC,, Method Coverage Average width (SEM) Coverage Average width (SEM)
0.99 GPQ 0.949 0.755 (0.0014) 0.947 0.523 (0.0009)
0.99 MLS 0.950 0.758 (0.0014) 0.948 0.525 (0.0009)
0.99 Bayes 0.858 0.825 (0.0012) 0.930 0.570 (0.0009)
0.90 GPQ 0.943 0.685 (0.0014) 0.948 0448 (0.0010)
0.90 MLS 0.946 0.690 (0.0014) 0.949 0.450 (0.0010)
0.90 Bayes 0.858 0.788 (0.0010) 0.943 0497 (0.0010)
0.80 GPQ 0.955 0.595 (0.0014) 0.943 0.331 (0.0009)
0.80 MLS 0.957 0.602 (0.0014) 0.946 0.334 (0.0009)
0.80 Bayes 0.848 0.749 (0.0008) 0.956 0.378 (0.0010)
0.71 GPQ 0.959 0.373 (0.0011) 0954 6 (0.0002)
071 MLS 0.968 0.377 (0.0012) 0.957 6 (0.0002)
071 Bayes 0933 0.678 (0.0009) 0.964 9 (0.0003)

ICCy, = 0.70 setting. Highlighted are coverages below 90%. The means of the ICC,, point estimates when by =48, |, =3 were 0.74, 0.72, 0.70 and 0.69, with
standard deviations 0.17, 0.14, 0.09 and 0.06 as the values of the ICC,, decreased from 0.99 to 0.71. When by =96, |, =6 the means of the ICC,, estimates were
0.72, 0.71, 0.70 and 0.70 with standard deviations 0.12, 0.10, 0.06, and 0.04 as the ICC,, decreased from 0.99 to 0.71.

{L(Sb’slv e) U(Si,slz,sg)}

where L and U are functions mapping 3-dimensional
space to one-dimensional space, and s7, s and s are
mean squares defined in Table 1. Unlike the GCI ap-
proach, the MLS interval is constructed from closed for-
mulae, which appear in Appendix B. The computational
cost of constructing an interval using the MLS proced-
ure is smaller than the GCI procedure in general.

Table 3 Simulation study with uniform and gamma models

Bayesian interval methods

In contrast to the frequentist methods described above,
the Bayesian methods available in MCMCglmm, Win-
BUGS, and similar software, are general and not specif-
ically developed for the ICC, application. They can be
used to construct confidence intervals for variance com-
ponents, or functions of variance components. The user
must specify a prior distribution for the variance param-
eters, denoted ﬂ(ai,(f%,ag). Then, given the data D, a

Uniform model

Gamma model

bo=48,1p=3,r,=1 bg=96,1lp=6,r,=1 Low skew High skew
ICC,, Method Cov. Wid. Cov. Wid. Cov. Wid. Cov. Wid.
0.99 GPQ 0976 0.768 0.986 0.544 0938 0.749 0918 0731
MLS 0977 0.771 0.986 0.546 0.941 0.752 0.922 0.734
Bayes 0.873 0.823 0.985 0.593 0.856 0.825 0.849 0.823
0.90 GPQ 0977 0.705 0.985 0.464 0.935 0.684 0919 0670
MLS 0.979 0.710 0.986 0467 0.937 0.689 0.926 0.675
Bayes 0.879 0.790 0.986 0.516 0.849 0.788 0.843 0.767
0.80 GPQ 0.980 0614 0.990 0344 0931 0.600 0.901 0.586
MLS 0.981 0.621 0.990 0.347 0.936 0.607 0.908 0.593
Bayes 0.883 0.753 0.992 0.394 0.932 0.752 0.805 0.745
0.71 GPQ 0.987 0379 0.994 0.156 0.903 0422 0.866 0421
MLS 0.992 0.384 0.996 0.156 0918 0429 0.884 0428
Bayes 0.958 0.686 0.996 0.169 0.859 0.699 0.832 0.695

Comparison of MLS, GPQ and Bayes method performance on uniform and gamma data. Nominal 95% confidence intervals for ICCy,. Coverages and average
widths calculated from 10,000 simulations. In each case, ICC, = 0.70. Study designs have 48 biological replicates and 3 labs for a total of 144 observations, and 96
biological replicates and 6 labs for a total of 576 observations. Means and standard deviations of the point estimates of the ICC, for each setting are presented in

a Additional file 2: Excel file.
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posterior distribution for the variance parameters is cal-
culated, namely

[ (Dloy, ot 0¢)7(0}, 07, 07)

f(az, (7,2, 02|D) = .
[ £(DId%. 020203, ot 0%) ot

e

An explicit density formula will not generally exist.
But Markov Chain Monte Carlo methods (e.g., Tierney
[30]) can be used to generate a very large sample from
this posterior distribution. Then, this sample can be used
directly to estimate the posterior distribution of pj, =
ICC,, that is, the density flp,|D). The 95% credible inter-
val will contain area 0.95 under the posterior density
curve. The highest posterior density (HPD) credible in-
tervals will be the shortest possible credible interval [5]
(p. 140).

Bayesian software have a variety of noninformative priors
from which to choose. As discussed in the Additional file 1,
we performed an extensive investigation of all the noninfor-
mative priors on variance components that were offered,
using as guidance advice in [6] and [35]. In the Results pre-
sented in the paper, only the best performing noninforma-
tive prior is shown. This turned out to be a uniform prior
on the standard deviations, that is, the improper prior:

1(0p,01,0,) = 1(0 < 0p < 00) x 1(0 < g7 < o)
X 1(0 < g, < o)

The same prior was recommended by Gelman [35]
(Section 7.1) for obtaining point estimates of individual
variance parameters in a one-way analysis of variance,
although in that context he warns that this prior can re-
sult in miscalibration if the number of groups is small.
In particular, the estimate of a variance component for a
factor with a small number of levels will tend to be high.

Software

In this paper we developed our own programs for fre-
quentist inference and these programs are available on-
line at http://dobbinuga.com. The software SAS can also
be used to construct MLS and GPQ intervals. Bayesian
programs for constructing credible sets based on HPD
regions include MCMCglmm [36] and winBUGS [33],
among others. We use the MCMCglmm package to con-
struct Bayesian HPD credible intervals. Implementation
details are provided in the text. The simulation programs
we wrote are available from the authors upon request.

Simulation settings

In order to evaluate the different intervals, we looked at
the performance metrics discussed above under the
model assumption of Equation (1), and under violations
of the model assumption. Simulations were run under
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the settings in Table 4. Parameter values used are dis-
cussed in Appendix C.

The value of ICC, was examined at 0.7 and 0.9. These
represent reproducibility levels typically encountered in
practice. When ICC,, is 0.7, then the within-laboratory
(or within-rater, etc.) ICC,, must be at least 0.70; we ex-
amined /CC,, at 0.71, 0.80, 0.90, and 0.99, representing a
wide range of possible values. When ICC, =0.9, we ex-
amined ICC,, = 0.94.

The designs we examined had by as 48 or 96, repre-
senting moderate sized studies typically feasible for set-
tings where resources are limited. The number of
laboratories (or raters, etc.) used was 3 or 6, representing
a setting where this number is restricted by logistics or
costs.

Results

Under normality

We first examine the different confidence interval methods
when the effects and errors are normally distributed, so
that the model assumptions are correct. Table 2 shows the
results when there are 48 samples and 3 laboratories. The
ICC,=0.70. Similar results were found for ICC,=0.90
(Additional file 3). The coverage probabilities should be
95%. The GPQ method coverages are all within 0.01 of this
target. All but one of the MLS coverages are within 0.01 of
the target, with one setting being slightly conservative
(coverage 0.968 when ICC,, = 0.71). The coverage probabil-
ities of the Bayes intervals are below 95% in all cases, and
below 90% in three of the four settings. The average width
of each interval type decreases as the ICC,, decreases. In
all 4 settings, the widths of the MLS and GPQ intervals are
practically identical. But in each setting the Bayes width is
wider. This is surprising since wider intervals usually
correspond to higher coverage. The excess width of the
Bayesian intervals increases as the /CC,, decreases, going
from 0.825-0.758 = 0.067 (Bayes width minus MLS width)
up to 0.678-0.377 = 0.301 as ICC,, goes from 0.99 down to
0.71.

Table 2 also shows the results when the number of la-
boratories is doubled to 6 and the number of samples in-
creases to 96. The coverage probabilities of the GPQ
and MLS methods are within 0.01 of the 95% nominal

Table 4 Simulation settings

Model name B,, distribution L, distribution e, distribution
Normal Normal Normal Normal
Uniform Uniform Uniform Uniform

Mixture normal Mixture normal ~ Mixture normal  Mixture normal

Gamma low-skew  Gamma Gamma Gamma

Gamma high-skew Gamma Gamma Gamma

For each row of the table, we examined b, € {48, 96}, I, €{3,6}, ro=1
and ICC, €{0.70, 0.90}.
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level in all cases. The Bayes methods are within 0.01 of
the target in two of the four settings; in the other two
settings, the Bayesian interval coverage is anticonserva-
tive when ICC,,=0.99, and conservative when ICC,, =
0.71 (coverages 0.930 and 0.964, respectively). The
Bayesian method performance improves with the larger
sample size and number of labs. In terms of interval
widths, the GPQ and MLS methods are again indistin-
guishable from one another. The Bayesian intervals are
wider than the frequentist intervals in all scenarios.

Under violations of normality

We consider performance under model violations, that
is, when neither the effects nor the errors are distributed
according to the assumed normal distribution.

We first consider the uniform distribution. Table 3
shows the results with 48 biological replicates and 3 la-
boratories. The GPQ and MLS methods both tend to have
higher than nominal coverage, ranging from 0.976 to
0.992. The Bayesian method coverage is below 0.90 in
three of the four settings, and is within 0.01 of the nominal
in the other setting. The Bayesian methods only show
minor improvement in coverage between the normal case
and the uniform distribution case. As for interval width,
the GPQ and MLS widths are again practically identical to
one another throughout. The Bayesian widths are consist-
ently larger. As was the case with the normal distribution
setting, the Bayesian widths tend to both be wider and
have lower coverage than the frequentist intervals.

When the number of biological replicates increases to
96 and the number of laboratories increases to 6 in the
uniform model setting, the coverage probability for all
methods increases (Table 3). In all cases, the coverage
probability exceeds the nominal 95% level. The widths of
the intervals are similar to those in Table 2 under the
corresponding normal model. The Bayesian intervals are
consistently wider than the frequentist intervals.

Table 3 also shows the results of comparison under
the gamma model. The gamma distribution is intuitively
a more serious violation of normality than the uniform
distribution. When « =3, the skewness is 1.15 (normal
=0) and the kurtosis is 5 (normal = 3). This is called the
“high skew” model in the table (rightmost two columns).
For the high skew setting, all methods have coverage
probability below 93% across all scenarios. When ICC,,
=0.71, all methods have coverage below 90%. When the
skewness and kurtosis are reduced (Table 3, “low skew”
model with o =10 corresponding to skewness is 0.63
(normal =0) the kurtosis is 3.6 (normal = 3)), the per-
formance of all methods improve. Of note, the coverage
probability of the frequentist methods are still below
92% when ICC,, = 0.71. The Bayesian method has lower
coverage than the frequentist methods except for one
case. Comparing the interval widths, the Bayesian
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methods consistently have wider intervals than the fre-
quentist methods across all of these settings. The two
frequentist methods have very similar mean widths.
Overall, while the frequentist methods appear slightly
preferable to the Bayesian methods, none is ideal in the
presence of skewed data.

Importantly, note that the departure from normality in
the high skew gamma data is hard to detect in an actual
fitted dataset. For example, we generated 10,000 datasets
from the high skew gamma model. We fit the model to
each dataset and performed the Shapiro-Wilk’s normal-
ity test for the residuals. The mean p-value was 0.19,
and the median was 0.08, and 55% of the p-values were
above 0.05. For the low skew model, we did the same
type of simulation and the mean Shapiro-Wilk’s residual
p-value was 0.30 with a median of 0.20, and 69% of the
p-values above 0.05.

A mixture normal distribution appeared similar to the
normal distribution (Additional file 3).

Real data application: Barzman et al. study

This study involved 24 children (on video) rated by 10
different emergency room staff members. First, we
followed the analysis described in Barzman et al. [15].
The analysis of variance table is shown in Table 5. If we
represent the variance between the children by o7, the
variance between the staff members rating the videos by
o7, and the error variance by o?, then the ICC,, is vi+z—§+«2
The estimated ICC,, reported in the paper is 0.9099. The
95% credible interval using noninformative priors re-
ported in the Barzman et al. [15] paper is (0.8416,
0.9526). The 95% GCI that we computed with our pro-
gram in this case is (0.8510, 0.9569). The Bayesian inter-
val is about 5% wider than the GCI in this case, which is
a trivial difference. The Bayesian interval is shifted to the
left, relative to the frequentist interval, corresponding to
lower estimates of the ICCy,. But the shift is very minor,
and 96% of the GCI interval overlaps with the Bayesian
interval, so that only 4% of the GCI interval does not
overlap with the Bayesian interval.

Since we have discovered that the ICC intervals can be
sensitive to violations of normality, we analyzed the data
to assess normality of the effects and errors. First, we ana-
lyzed transformations of the response variable using both
the method of Box and Cox [37] and the modulus method
[38]. Both methods indicated that the BRACHA scores y

Table 5 ANOVA table from the Barzman et al. [15] study

Source DF SS MSs
Raters 9 3973 4414
Children 23 2,19535 95450
Error 207 162.69 0.786
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should be transformed to approximately z = (y+ 0.5)*".

Supporting the need for transformation, a test for regres-
sion curvature had p-value 0.004, a Shapiro-Wilk test on
the residuals had p-value 0.001, and a non-constant
variance score test had p-value 0.001. On looking back
at the raw data, it was observed that one child had
one extreme outlying score. The child’s scores were
(0,0,0,0,0,0,0,0,0.5,3.5). The one 3.5 is an extreme which
had the largest Cook’s distance (0.11). Hence, a single
rater’s unusual observation may be driving the apparent
normality violation. To keep the model balanced, we
therefore deleted this child’s data (child 11), resulting in 23
children. Re-analyzing the data from scratch resulted in
the same transformation of the BRACHA scores. How-
ever, the regression test for curvature had p-value of 0.43,
the Shapiro-Wilk normality test on the residuals had p-
value 0.51, and the non-constant variance score test had
p-value 0.19. Thus, there is no longer any evidence of lack
of normality. The mean squares were 8.3721, 0.3667,
0.0671 for the reduced dataset. The resulting 95% gene-
ralized confidence interval for ICC, is (0.8423, 0.9542).
Although it did not have a large impact on the confidence
interval in this case, the process outlined here of carefully
assessing normality and revising the analysis as needed,
should be part of interval construction. The reason for the
minor impact on the interval in this case, compared to the
simulations, may be the large number of raters (10 raters).

Real data application: NCI DC reproducibility study

The National Cancer Institute’s Director’s Challenge repro-
ducibility study examined the reproducibility of 22,283 fea-
tures represented on the Affymetrix U133A Genechip
across a collection of frozen patient tissue samples. Unlike
other technologies that measure the level of a single gene
at a time, microarrays measure the levels of expressions of
thousands of human genes simultaneously. The expression
measurements are continuous, so that for each individual
gene one can assess the reproducibility of the measure-
ments for that particular gene across the different samples
by calculating the ICC,. The result is 22,283 different re-
producibility estimates, one for each feature. The NCI DC
reproducibility study was one of the largest studies of the
reproducibility of microarrays, and thus is of interest in
terms of the strength of the conclusions we can draw. To
this end, we constructed confidence intervals for all 22,283
features using both the frequentist and Bayesian ap-
proaches. For the confidence interval constructions, some
samples were omitted to force the design to balance. The
result was 4 labs and 11 samples for a total of 44 observa-
tions for each feature. Data were normalized as in Dobbin
et al. [16] except that dChip [39] was used instead of
MAS 5.0 (http://www.affymetrix.com/support/technical/
whitepapers.affx). We first applied both Bayesian and
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frequentist methods to construct confidence intervals for
each feature. Results are shown in Table 6. For features
with reasonably high reproducibility (/CC,>0.52, top 2
quartiles of features) the interval widths for the GCI's had
lower mean and median than the corresponding Bayesian
interval widths.

In order to estimate the coverage probabilities of the
DC reproducibility study intervals, we considered the 44
samples examined as a random sample from a finite popu-
lation which consisted of all 69 tumor microarrays in the
original dataset. For this “population” of 69 samples, the
true ICC, values were calculated from the unbalanced
data, using the expected mean squares presented in [16];
we can call these values pseudo-parameters, to distinguish
them from the true population parameters, which are un-
known. The proportion of times the pseudo-parameters
were contained in each interval was calculated; we term
this pseudo-coverage. Note that pseudo-coverage is equal
to the true coverage for the finite population of 69 sam-
ples. As shown in Table 6, for features with ICC;, > 0.72,
representing the quartile with the highest reproducibility
(highest pseudo-parameter values), the pseudo-coverage
of the frequentist and Bayesian methods are similar (96.5%
and 96.7%, respectively), but the GCI interval width mean
is much smaller than the NIB interval width mean (0.439
versus 0.520, or 16% narrower GCI). These width differ-
ences are similar to those observed in the simulations.
Interestingly, Table 6 also reveals that the NIB coverage
breaks down (with coverage only 85.9%) when ICC, <
0.23, while the GCI maintains high coverage (with cover-
age 99.2%) in this setting. This observation suggests that
the Bayesian methods may undercover when the point es-
timate of the ICC,, is small.

Because of the importance of normality of the data, we
re-evaluated the DC reproducibility study more closely
with this in mind. First we performed the method of
Box and Cox [37] for the linear model of Equation 1 for

Table 6 DC lung study results

ICC, Frequency Interval Mean Mean Median SD
range of features method pseudo- width width widths
coverage
0.72-1 5571 GCl 96.5% 0439 0446 0.131
NIB 96.7% 0.520 0.530 0.154
0.52- 5,571 GCl 97.2% 0.594 0.607 0.061
<072 NIB 94.8% 0.664 0.675 0.078
0.23- 5571 GCl 98.2% 0.594 0.616 0.068
<052 NIB 96.3% 0.591 0619 0.109
0-< 5571 GCl 99.2% 0405 0422 0.142
023 NIB 85.9% 0.346 0.340 0.128

Summary of 22,283 confidence intervals, one for each feature, broken down
by ICC,, quartiles. GCl is generalized confidence interval method, and NIB is

Bayesian method with noninformative prior distribution. Pseudo-coverage is
the proportion of times the full data ICC, was contained in the interval.
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each gene to assess the optimal normalizing transform-
ation. The distribution of the Box-Cox lambda values
is shown in the Additional file 1. There is some variation
in the estimated optimal lambda values. They are cen-
tered near zero. Zero corresponds to the log transform-
ation used in the previous analysis for all features.
However, since normality is so important for ICC inter-
val validity, we re-analyzed these data using the gene-
specific Box-Cox transformations. We ran the Tukey
interaction tests on all features, and all had p-values over
0.05, indicating no evidence of interaction effects. The
resulting Shapiro Wilk test p-value distribution had
mean of 0.44, and approximately 12% of features had a
p-value below 0.05. There appeared to be no patterns in
the Shapiro Wilk p-values that would be useful in identi-
fying the normally distributed genes. Our conclusion is
that the confidence intervals for most features should be
valid, but that individual feature CI's should be inter-
preted in the context of the corresponding Shapiro Wilk
test p-value.

Discussion

Two questions arise from these observations. (1) Why
are the noninformative Bayesian methods performing
poorly relative to the frequentist methods in some cases?
(2) Why are both methods not robust to skewness and
kurtosis?

For question 1, these results naturally led us to further
investigate the Bayesian credible interval methodologies.
When the Bayesian and frequentist intervals differed, the
midpoints of the Bayesian intervals tended to be further
from the true ICC,, than the midpoints of the frequentist
intervals. The result we saw was wider intervals with
poorer coverage. But why did this happen? Detailed dis-
cussion appears in the Additional file 1. In summary, we
discovered potential reasons for the poor performance
of the noninformative Bayesian priors. One issue is that
noninformative priors on variance components do not
imply noninformative distributions on the ICC. In fact,
we derive these distributions in the Additional file 1 and
show that they can be nearly point masses at 0 and 1. The
one distribution where this is not the case is the one that
works best in practice, namely, the uniform distribution
on the standard deviation. But even this prior distribution
on the ICC,, has most of its mass towards the edges of the
unit interval (Additional file 1: Figure S2). That being said,
this fact probably does not entirely explain the poor per-
formance. The second potential issue is that the Bayesian
methods are not based on an underlying exact interval
construction method, like the GCI and the MLS methods.
Put another way, the modified large sample method
uses a “modified” version of the usual large sample
method, whereas the Bayesian methods use an “un-
modified” Bayesian computation. Indeed, since the GCI
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method is closely related to the nonparametric Bayesian
method [34], it may be that nonparametric Bayesian
methods can be used to adjust the Bayesian parametric
intervals.

The lack of robustness to skewness and kurtosis may ap-
pear surprising given that analysis of variance in general is
robust to these. However, since we are constructing a con-
fidence interval for a ratio of variance components, this
means that estimation becomes more unstable. For ex-
ample, the MLS interval equation involves fourth order
moments. In general, the higher order a moment is, the
more difficult it is to estimate. The GCI method, while not
relying explicitly on fourth order moments, relies on the
assumption that the second order moments are chi-
squared in order to estimate quantiles of the generalized
pivot, which is conceptually quite similar to calculating a
fourth order moment.

Conclusions

In this paper several methods for constructing intervals
for the intraclass correlation coefficient were examined.
Coverage probabilities and confidence interval widths were
reported for the commonly encountered two-way, crossed-
effects linear model without interaction. The Modified
Large Sample (MLS), Generalized Confidence Interval
(GCI) and noninformative Bayesian interval methods were
evaluated. When model assumptions are true, we showed
that the MLS and GCI methods perform well under a wide
range of settings. Bayesian software with noninformative
priors on variance components did not perform as well in
most settings, often failing to achieve desired coverage and
at the same time, counterintuitively, also resulting in wider
average interval widths. Under model violations, it was
shown that the methods performed similarly when there
was small skewness and kurtosis. However, neither the fre-
quentist nor the Bayesian methods were robust to hard-to-
detect skewness and kurtosis when the number of levels of
one factor is small. The methods were applied to two previ-
ously published reproducibility studies and new insights
were gained. Future directions to improve the Bayesian ap-
proaches were suggested. A decision tree summarizing this
paper’s findings is presented in Figure 1.

A number of commonly used noninformative Bayesian
priors for variance components were studied. Results are
in the Additional file 1. Bayesian priors for the intraclass
correlation coefficient were derived mathematically for
the inverse gamma and uniform (on standard deviations)
priors. The commonly used inverse gamma prior on in-
dividual variance components resulted in an ICC prior
very close to the extreme prior of two point masses: one
at 0 and the other at 1. The inverse gamma (IG) prior
was also found to lack scale invariance. Specifically, sim-
ply rescaling the data can drastically change the resulting
(IG prior-based) interval for intraclass correlation
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Are the datanormally a
distributed?

be appropriate in all applications.
A\

vl GCI, MLS or NIB
Does each factor have at least
8 levels?

Are the data light-tailed and °
nearly symmetric?

DECISION TREE
Figure 1 Decision tree for confidence intervals for the ICC. *Note that 8 is an estimate based on the simulations of this paper but may not

° " GClor MLS

Neither GCI, MLS nor NIB
(unless, perhaps, many levels
of every factor)

coefficient (either ICC,, or ICC,,). Moreover, this change
is a function of the user-defined choice of non-
informative prior parameter, so that 1G(0.001,0.001) pro-
duces very different intervals than 1G(0.01,0.01); a simi-
lar result was reported by Gelman [35] in the context of
making inference about individual variance components.
The uniform prior used in this paper does not result in a
nearly degenerate prior for the ICC, is not affected by
scale changes in the data, and is not sensitive to user-
defined parameter choices (trivially, since there are
none).

A question outside the scope of this paper is whether
it is possible to develop Bayesian methods that would
have performance comparable to the frequentist methods
across all scenarios in terms of mean interval width and
coverage probability. It is possible that at some point in
the future such a method will be developed. One possibil-
ity mentioned in the discussion is adapting nonparametric
Bayesian methods for random effects models to this set-
ting (for discussion, see [40]). Another possibility, follow-
ing a suggestion in Gelman [35], is to have a relatively
minor modification of the prior and place uniform distri-
butions on individual variance components with finite
support, so that o~ Uniform(0, k) for some k> 0; a differ-
ent constant k could be used for each variance compo-
nent, and these would need to be chosen based on prior
knowledge or on the data (e.g., empirical Bayes). Indeed,
the utility of Bayesian methods in medical contexts where
prior or expert knowledge is available is widely recognized.
Further research in this direction seems needed.

In modeling laboratory reproducibility, we have assumed
that the effect of a laboratory is represented by a tendency
to score higher or lower than other laboratories across bio-
logical samples assayed. But laboratory effects may be rep-
resented in other ways. For example, it may be that some
laboratories have higher variance in their measurements,
but no systematic difference across individuals. Such a

setting could be represented by a variance components
model that allowed each lab to have its own within-
laboratory measurement error variance (that is, in Equation
(1), permit o2 to vary by laboratory). This would represent
that lab’s ability to obtain replicable measurements in re-
peated assays. The null hypothesis that all within-lab
variances are equal could be tested against the general
alternative. Alternatively, the CCC could be used [18],
as suggested by a referee. As another example, an inter-
action between labs and samples could be introduced into
Equation 1 to represent lab-to-lab variation in ability to re-
producibly measure individual samples, and indeed we
have used a Tukey test to assess such interaction in
the first application.

We used simulation to investigate whether we could de-
velop post-hoc rules which could be used to select an inter-
val construction method. Unlike Figure 1, these rules
would be based on the values of the observed mean
squares, in addition to the study design and normality as-
sumptions. We were unable to come up with helpful rules
that could be used in practice. But these results (not pre-
sented) suggested that the Bayesian methods tend to
underperform more often when the laboratory variance es-
timate is large relative to the biological variance, and that
the frequentist tend to underperform when the estimated
biological variance is very large relative to the estimated la-
boratory variance. But we discourage investigators from
using these broad observations in selecting a methodology,
and recommend instead Figure 1.

The number 8 in Figure 1 as the cutoff number for
how many levels are enough for the noninformative
Bayesian method performance to match the frequentist
is a best guess, and not a hard number based on theoret-
ical results. However, we did run extended simulations
with 4-16 laboratories, and these results are presented in
the Additional files 4 and 5. With 8 levels (labs) it seems
that one could safely conclude that the noninformative
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Bayesian, MLS and GCI would all be very similar and ad-
equate under the normal model assumptions. The Bayesian
coverages are similar to the frequentist for even 4-6 levels,
but the Bayesian interval widths are noticeably wider.

Appendix A: formula for the generalized pivotal
quantity

~ max{0,cys3/Wo-css2/ W3}

Cast /Wit cast/Wo + cas? /W

where ¢, = (bo — 1)/(loro), c3 = (boloro — bo — o + 1)/ (loro),
1= (lo - 1)/(b07'0) and Cy = Cg(bolo}"() - [90 - lo + 1)/[90 Here
WIFVX%IO*U W2~X(2b0*1) and W3~X(2boloro*b0*lo+1) are mutu-
ally independent given the observed mean squares. Gen-
erating a large number of (W3, W,, W3) triples (such as

100,000) by Monte Carlo, the generalized confidence
interval is formed from the quantile function F o

Appendix B: modified large sample formula
The formula for the interval (L,U) is

max{0,L*} max{0, U*}
=1 + max{0,L*}’ 1 + max{0,U*}
bo(1-Ga)s3—bosis? + by [F5—(1-Gy)F2]s?
lo(boro-1)sis? + lo(1-G,)s2s? /Fa
bo(1 + Ha)s2~bos2s? + by [Fe~(1 + Ha)F2]s2
- lo(boro—1)sis2 + lo(1 + Hy)s}s? /F3

L=

*

where the constants G,, Fs, Fy, H», Fg, F3 are quantiles
of F distributions as defined in the Additional file 1 and
[25].

Appendix C: simulation parameter settings
Additional file 1: Table S1 shows the complete list of
simulation settings used. Simulation results not pre-
sented in the paper appear in the Additional file 3. For
the simulations involving the normal distribution, data
were generated as given in Equation 1 above.

The robustness of intervals to violations of the nor-
mality assumption was evaluated by generating effects
and errors from uniform, mixture normal, and gamma
distributions. Parameters settings were calculated to
make the variances of the simulated biological effects,
lab effects and measurement error exactly the same as in
the normal simulations.

For a random variable X with the uniform distribution
on the interval [-A,A], the variance is Var(X)=A%/3.
This leads to the formulas

Ap =/30%, A, = /307, A, = /302

If the distribution of each effect in Equation (1) is uni-
form, instead of normal, then the marginal distribution of
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the responses, Yy, are sums of uniform random variables.
The marginal density is derived in Additional file 1: Sec-
tion S5 and plotted in the Additional file 1.

A random variable X with a normal mixture distribu-
tion with means + p and standard deviations p/3, and
weights 0.5, will be bimodal. We can write the mixture
normal as a hierarchical model with ¢ ~ Bernoulli(0.5),
and

X~ Normal(p,y?/9) :¢=0
Normal(—pu,u*/9) :c=1

Then E[X] = 0 and Var(X) = ¢**(10/9).
y = \/903/10, 4, =
\/907/10, 4, = /902/10. The marginal densities for

Yy, are also mixture normal (see Additional file 1: Section
S5), and are shown in the Additional file 1.
Define Gamma(a,p) by the density function f(x)=
1
I(a)p”
the following steps:

The resulting equations are

x%le*/B_ Effect sizes and errors are generated by

wo Gamma(a, 1)
w1 = Wo—«a

W= (o/\/a)w

Note that w can be viewed as a mean-shifted version
of wy(o/v/a), and since central moments are
translation-invariant, the central moments of w are the
same as the central moments of a Gamma(a,0/ a'’?). As
a result, E[w] =0, Var(w) = o°, skewness(w) = 2/y/a and
kurtosis(w) =3 + 6/a [41] (p. 31). We keep p =1. We let
a =1, 3, 10, 40. The marginal densities for Y}, are dis-
cussed in Additional file 1: Section S5 and shown in the
Additional file 1.

Additional files

Additional file 1: Supplement includes additional discussion,
simulations, data analysis details, figures and tables.

Additional file 2: Supplement presents the mean and standard
deviation of the point estimates of the ICCb for different models
and designs presented in the main paper.

Additional file 3: Supplement presents complete tables of the core
simulations simulations from which the tables in the paper are a
subset.

Additional file 4: Supplement is a table of results for designs with
8, 10, 12, 14 and 16 factor levels for laboratories.

Additional file 5: Supplement is a table of results for designs with
4, 5, 6 and 7 factor levels for laboratories.
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