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Abstract

Background: The area under the receiver operating characteristic (ROC) curve, referred to as the AUC, is an
appropriate measure for describing the overall accuracy of a diagnostic test or a biomarker in early phase trials
without having to choose a threshold. There are many approaches for estimating the confidence interval for the AUC.
However, all are relatively complicated to implement. Furthermore, many approaches perform poorly for large AUC
values or small sample sizes.

Methods: The AUC is actually a probability. So we propose a modified Wald interval for a single proportion, which
can be calculated on a pocket calculator. We performed a simulation study to compare this modified Wald interval
(without and with continuity correction) with other intervals regarding coverage probability and statistical power.

Results: The main result is that the proposed modified Wald intervals maintain and exploit the type I error much
better than the intervals of Agresti-Coull, Wilson, and Clopper-Pearson. The interval suggested by Bamber, the Mann-
Whitney interval without transformation and also the interval of the binormal AUC are very liberal. For small sample
sizes the Wald interval with continuity has a comparable coverage probability as the LT interval and higher power. For
large sample sizes the results of the LT interval and of the Wald interval without continuity correction are comparable.

Conclusions: If individual patient data is not available, but only the estimated AUC and the total sample size, the
modified Wald intervals can be recommended as confidence intervals for the AUC. For small sample sizes the
continuity correction should be used.

Keywords: AUC, Diagnostic study, Biomarker study, Wald interval

Background
The result of a diagnostic test is in general not binary
(positive/negative) but a quantitative parameter (such as
a biomarker). If an appropriate threshold for the quan-
titative parameter has not yet been defined, the receiver
operating characteristic (ROC) curve and in particular the
area under this curve, are appropriate for evaluating the
overall accuracy of the diagnostic test [1]. The ROC curve
is a plot of sensitivity (true positive rate) and one minus
specificity (true negative rate) for each possible threshold
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value of the biomarker of interest. In the case of complete
separation of cases and controls, the area under the ROC
curve (AUC) is equal to one. For a diagnostic test, which is
no better than chance, the AUC is 0.5. In early phase diag-
nostic studies, amongst others, the aim is in general to get
a first impression of the overall diagnostic accuracy.
Early phase diagnostic studies often exhibit three

characteristics:

1. The sample sizes are small. For example, in the
systematic review by Cochrane and Ebmeier of
diffusion tensor imaging (DTI) as a candidate
biomarker for the diagnosis of Parkinson disease,
the median total sample size of the 21 selected
studies was 32 (mean=39) [2]. The largest study in
the systematic review by Wang et al. of cardiac
testing for coronary artery disease in potential
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kidney transplant recipients included 219 patients
[3].

2. A case-control study design with comparable sizes
in the two groups is chosen [1,4] (i.e. case-control
ratio ≈ 1 : 1). Controls are generally healthy
volunteers, patients with benign disease, or patients
with a disease within the scope of the differential
diagnosis (see for example [5-7]).

3. Diagnostic tests or biomarkers yield large values for
the AUC. For example in the systematic review by
Wang et al. the AUC’s of the different diagnostic
tests were between 0.78 and 0.91 [3].

Many different confidence intervals have been pro-
posed for the AUC. Bamber suggested in 1975 a variance
estimator and corresponding confidence interval for the
AUC, which was the starting point for many authors [8].
Qin and Hotilovac compared in 2008 nine nonparamet-
ric intervals [9]. Their conclusion was that the empirical
likelihood-based interval and the Mann-Whitney interval
with Logit transformation lead to good coverage accuracy.
The Mann-Whitney interval without transformation was
not recommended by the authors, however, it is used in
the ROC statement of PROC LOGISTIC in SAS. A para-
metric approach is the AUC under the binormal ROC
curve (see for example the book of Pepe [10]).
But because all confidence intervals for the AUC are

relatively complicated to implement, and some of them
either do not maintain or do not exploit the type I error
probability α for small sample sizes or large values for
the AUC, we investigated alternatives. Our basic approach
was to use simple two-sided confidence intervals for a sin-
gle proportion, because the AUC can be interpreted as a
probability (that a randomly chosen diseased individual
has a larger value for the biomarker than a randomly cho-
sen non-diseased individual, see for example [11], formula
(1.3)). The simplest confidence interval is the Wald inter-
val, which tends to yield anti-conservative results [12]. As
an alternative we propose a conservative version with a
modified variance estimator, based on Bamber [8]. New-
combe compared seven confidence intervals for a single
proportion and recommended the Wilson interval (“Of
the methods that perform well, only the score method is
calculator friendly.”) [13]. Wilson’s score interval is still
suggested, particularly for proportions close to 0 or 1
(see for example the article of He et al. [14]). Agresti
and Coull recommended a modified Wald interval, which
has similar behaviour to the Wilson interval for a two-
sided type I error of 5%, but a simpler formula [15]. The
Clopper-Pearson interval is another alternative. It is an
exact interval but tends to yield conservative results.
In this article we compare the modified, conservative

Wald confidence interval (with and without continuity
correction) with the Mann-Whitney interval with Logit

transformation interval as main reference. Furthermore
Bamber’s interval, the Mann-Whitney interval without
transformation, and the binormal AUC are included. For
the family of intervals for a single proportion Wilson’s
score interval (with and without continuity correction),
the Agresti-Coull interval, and the Clopper-Pearson inter-
val are added. In line with the recommendations of Burton
et al. [16] we compare the intervals in terms of coverage
probability, interval length, and statistical power. The aim
of this article is to determine if one of the intervals is an
appropriate alternative to the Mann-Whitny interval with
Logit transformation; and if so, in which situations it per-
forms well. In the next section we describe the statistical
model and the different confidence intervals. Then the
results of the simulation study and of an example are pre-
sented. Finally, the results are summarised and discussed,
and recommendations are given.

Methods
Given the case-control design, suppose there are n1 cases
and n0 controls. This gives a total sample size of n = n1+n0.
Each individual observation Xis(s = 1, . . . , ni) in group
i = 0, 1 follows the normalized version of the marginal
distribution function Fi(x) = P(Xis < x)+ 0.5 ·P(Xis = x)
(for details refer to [11,17]). As an unbiased point estima-
tor for the AUC (which is inserted in all intervals but in the
binormal interval) the numerator of the Mann-Whitney
test statistic was used (for details and proof see Brunner et al.
[18], (3.2) and Bamber [8]). To achieve this, all n observa-
tions are ranked, and for each status group i = 0, 1 the
average rank Ri. is calculated. Then the estimated AUC is

̂AUC = 1
n

(
R1. − R0.

) + 0.5 . (1)

Confidence intervals for the AUC
In the following the confidence intervals for the AUC,
which are used for comparison in the simulation study,
are shortly described. The notation needed for the formu-
las is given in Table 1, and the formulas themselves are
given in Table 2. Qin and Hotilovac determined that the
Mann-Whitney interval with Logit transformation (in the
following abbreviated as LT) has good coverage probabil-
ity [9], therefore the LT interval serves as main reference
here. The advantage of the LT interval is that it is always
range-preserving (that is, both confidence limits lie within
the interval [0,1]), but the disadvantage is that it cannot
be calculated if the estimated AUC is equal to one. We
also included the Mann-Whitney interval without trans-
formation (M-W), which was also investigated by Qin and
Hotilovac. They stated that the M-W interval “... suffers
from low coverage accuracy for high values of AUC ...”, but
it is often used in statistical programs (for example in the
ROC statement of PROC LOGISTIC in SAS, where it is
referred to as a Wald interval [19]). The M-W interval can
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Table 1 Needed notation for the formulas of the different
confidence intervals in Table 2

Notation Explanation

logit(AUC) = log
(

AUC
1−AUC

)
Logit transformation of the AUC

expit(·) = exp(·)
exp(·)+1 Back transformation of the Logit

transformation

z = z1−α/2 1−α/2 quantile of the normal distribution

s Empirical standard deviation of AUC

se Standard error of AUC by Bamber [8]

AUC∗ = �

(
(X1−X0)/s1√
1+(s0/s1)2

)
AUC for the binormal ROC curve (si , i = 0, 1,
as empirical estimator of σi)

s∗ Empirical standard deviation of AUC∗

t = z21−α/2
n Factor for the Wilson interval

ÃUC = ÂUC·n+2
n+4 Modified AUC (for the A-C interval)

k = round(ÂUC · n) Estimated number of successes (for the C-P
interval)

f (1 − α/2, df1, df2) 1 − α/2 quantile of the F distribution with
df1 and df2 degrees of freedom

also not be calculated for an AUC equal to 1, and is not
range preserving (in SAS the upper limit of the interval is
set to 1 if it is greater than 1). Many approaches are based
on the confidence interval suggested by Bamber [8], and
it is also the starting point for our modifiedWald interval.
Therefore we implemented Bamber’s interval (denoted
Bamber) as another reference method. Bamber’s interval
is also not range-preserving.

A parametric approach is the binormal ROC curve
(denoted Binormal), assuming normal distributions for
the test results of the cases and of the controls
(X1 ∼ N(μ1, σ 2

1 ),X0 ∼ N(μ0, σ 2
0 )). The corresponding

area under the resulting curve is called binormal AUC.
The binormal AUC is estimated using the empirical esti-
mators of the distribution functions (for formula see
Table 2, for details see for example the book of Pepe [10]).

Confidence intervals for a single proportion
The Wilson score interval [20] and the Wilson interval
with continuity correction (denoted Wilson and Wilson-
cc) are known for their good properties in the case of
proportions near to 0 or 1 [14]. The formulas are more
complicated than the Wald interval, but only the quan-
tile, the total sample size n, the point estimator ̂AUC
and constants are needed (see Table 2). The intervals can
also be calculated in the case of AUC equal to 1, and
the limits are always range-preserving. The 95% inter-
val of Agresti and Coull [15] (denoted A-C) as a Wald
interval adding two “successes” and two “failures” has a
similar behaviour as the Wilson interval, but a simpler
formula (see Table 2). In the usual setting in which it
is applied, the exact confidence interval of Clopper and
Pearson [21] (denoted C-P) maintains type I error by def-
inition. However, this property is not valid here because
the AUC is a probability relating two independent groups
rather than to a group and a subgroup. The interval
can be calculated with a finite formula (see for example

Table 2 Formulas for the different confidence intervals from sectionMethods

Confidence interval (denotation) Range- Result for Limits
preserving AUC = 1

Logit-transformation-based (LT) Yes No expit
(
logit(ÂUC) ± z · s/ (

ÂUC(1 − ÂUC)
√
n
))

Mann-Whitney (MW) No No ÂUC ± z · s/√n

Bamber (Bamber) No Yes ÂUC ± z · se
Binormal (Binormal) No No AUC∗ ± z · s∗/√n

Wilson (Wilson) Yes Yes
(
ÂUC + 0.5t

)
/ (1 + t) ±

√
ÂUC(1 − ÂUC)t + 0.25t2/ (1 + t)

... with continuity correction (Wilson-cc) Yes Yes lower:

(
2nÂUC + z2 − 1 − z

√
z2 − 2 − 1/n + 4ÂUC(n(1 − ÂUC) + 1)

)
/(

2(n + z2)
)

upper:

(
2nÂUC + z2 + 1 + z

√
z2 + 2 − 1/n + 4ÂUC(n(1 − ÂUC)+1)

)
/(

2(n + z2)
)

Agresti-Coull (A-C) No No ÃUC ± z
√

ÃUC(1−ÃUC)
n+4

Clopper-Pearson (C-P) Yes No lower:
(
k · f (α/2, 2k, 2(n − k + 1))

)
/(

n − k + 1 + k · f (α/2, 2k, 2(n − k + 1))
)

upper:
(
(k + 1)f (1 − α/2, 2(k + 1), 2(n − k))

)
/(

n − k + (k + 1)f (1 − α/2, 2(k + 1), 2(n − k))
)

Modified Wald (Wald) No No ÂUC ± z
√

ÂUC(1−ÂUC)
0.75n−1

... with continuity correction (Wald-cc) No Yes ÂUC ± z
√

ÂUC(1−ÂUC)
0.75n−1 + 1/(2n)
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the article of Agresti and Coull [15]). In the case of
k = round(̂AUC ·n) = n the interval cannot be calculated.
The corresponding formulas for all intervals are given in
Table 2.

Modified Wald intervals
The Wald confidence interval is very easy to calculate
and in general has good properties. But it is known that
for small sample sizes it becomes anti-conservative [12].
Therefore we propose a Wald interval with a modified
variance estimator. In his article Bamber gave beside the
estimator for the variance (denoted Bamber interval, see
above) also the maximum variance for the case of contin-
uous X0 and X1 with monotonic posterior (= the larger
the measured value, the larger the probability for the pres-
ence of the disease). According to Bamber the estimated
asymptotic maximum variance is σ̂ 2

max = ̂AUC·(1−̂AUC)
0.75·n−1

(for balanced sample sizes, derived from [8,22]).
The formulas for the correspondingWald intervals with

and without continuity correction (denoted Wald and
Wald-cc) are given in Table 2. One advantage of the Wald
interval with continuity correction is that it can also be
calculated for an estimated AUC equal to 1. The upper
and the lower limit of the Wald interval without continu-
ity correction would be equal to 1 for AUC = 1. TheWald
intervals are not range preserving.

Simulation methods
The simulation program was implemented in SAS/IML
and 10 000 simulation runs were used. The binormal inter-
vals were calculated only for the first 1 000 simulation
runs, because of it’s high computation time. First we gen-
erated normally distributed data, independently for the
two groups, with μ = 0 and σ 2

0 = σ 2
1 = 1 as the variances

of the controls and the cases, respectively. Then the val-
ues for the cases were shifted by �−1(AUC0) ·

√
σ 2
0 + σ 2

1
to obtain the true AUC (AUC0).

In the simulation study we varied the true AUC, the
sample size, the case-control ratio, the measurement scale
and the variance of the cases (for details see Table 3). The
true AUC ranged from 0.7 to 0.9 (upper limit correspond-
ing to the systematic review of Wang et al. [3]). Because
of the spike shape of the type I error for increasing AUC0
(see for example Agresti and Coull [15]), we simulated for
each AUC0 also AUC0 ± 0.01 and calculated the mean
coverage probability and interval length of the three sce-
narios. The total sample size n ranged from 40 to 200
(corresponding to the systematic reviews of Cochrane and
Ebmeier [2] and of Wang et al. [3]). For the main analy-
sis identical sample sizes were used for the two groups,
n1 = n0 = n/2 (i.e. the case-control ratio is 1:1). Fol-
lowing the recommendations of Burton et al. [16] we
investigated the two-sided coverage probability (theoret-
ical α set to 5% two-sided), the interval length, and the
statistical power. Regarding the interval length we set for
the confidence intervals, which are not range-preserving,
the upper limit to 1 if it was greater than 1. Furthermore,
we investigated the robustness with respect to unbal-
anced sample sizes (changing case-control ratio), skewed
distributions, variance heterogeneity and categorical
outcomes.
The SAS simulation program and all results as tables are

given in the Additional files 1 and 2.

Results and discussion
We first simulated data for the nine combinations ofAUC0
and total sample size n (with 1:1 case-control ratio). Under
specific conditions the LT and M-W intervals (̂AUC = 1)
and the C-P interval (k = round(̂AUC · n) = n) cannot
be computed (see Methods). The LT interval could not be
computed only for the combination of small sample size
and high AUC (n = 40, AUC0 = 0.9) and only for 14
of the 10 000 simulation runs. For the same scenario the
C-P could not be computed for 125 simulation runs. The

Table 3 Varied factors in the simulation study

Factor Variation Results in paragraph

True AUC (AUC0) 0.7, 0.8, 0.9 (each ±0.01)

Sample size (n) 40, 100, 200

Case-control ratio 1:1 Interval length, coverage probability

Measurement scale Continuous

Variance of the cases (σ1), σ0 = 1 1

Case-control ratio 1:2, 1:9

Measurement scale Ordinal with five categories Robustness evaluation

Variance of the cases (σ1), σ0 = 1 0.5, 2, 3

AUC under the alternative hypothesis (AUC1) 0.700, 0.701, . . . , 0.85; Statistical power

0.800, 0.801, . . . , 0.99
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C-P interval could also not be computed for n = 40 and
AUC0 = 0.8 for two simulation runs.

Interval length
For interval length, across the nine scenarios the Wald
intervals tend to be the widest, while the A-C and theWil-
son interval tend to be the narrowest. A box plot of the
length of the different intervals is given in the Additional
file 3: Figure S1. The simulation runs which did not yield
intervals (141 runs overall, see above) were ignored.

Coverage probability
The coverage probability for the nine scenarios is shown
as dot plot dependent onAUC0 and n in Figure 1. The cov-
erage probability of the LT interval is slightly conservative
for small sample sizes (coverage probability up to 96%),
but for a sample size of 100 or 200 the coverage is inde-
pendent of the true AUC0 and equals roughly 95%. The
M-W, the Binormal, and Bamber’s interval have a cover-
age probability of about 95% only for a sample size of 200
and a true AUC of 0.7. In all other cases the intervals are
quite liberal, getting worse with increasingAUC0 and with
decreasing sample size. For n = 40 and AUC0 = 0.9 the
coverage probabilities are only 88% for Bamber, 89% for
M-W, and 90% for Binormal.
The Wilson interval without continuity correction has

a coverage probability of nearly 95% for an AUC0 of 0.9,
independent of the sample size. But for lower AUC0‘s
the coverage of the Wilson interval drops to 92%. The

Agresti-Coull interval, the Wilson interval with continu-
ity correction, and the Clopper-Pearson interval tend to
be liberal for an AUC0 of 0.7 (coverage between 92% and
94%), and become quite conservative for higher AUC’s
(coverage up to 98%).
The modified Wald interval without continuity correc-

tion is liberal for small sample sizes (93%−94% coverage),
for larger sample sizes the coverage is comparable to the
LT interval. However, for a large sample size of n = 200
and a highAUC0 of 0.9 theWald interval becomes conser-
vative (coverage of 97%). The coverage probability of the
continuity correctedWald interval is very similar to the LT
interval, but for larger sample sizes the Wald-cc interval
becomes conservative (coverage up to 98%).
Because overall the LT and the Wald intervals main-

tained the type I error best, we restricted subsequent
investigations to these three intervals.

Statistical power
We compared the power of the LT and the Wald intervals
for two scenarios, where the intervals yielded compara-
ble coverage probabilities. This means that the LT and
the Wald interval were compared for n = 200 and
AUC0 = 0.7, and the LT and the Wald-cc interval for
n = 40 and AUC0 = 0.8. The corresponding power
curves are presented in Figure 2. While the Wald inter-
val has only marginal higher power than the LT inter-
val (right side of Figure 2, maximum difference of 4%),
the Wald-cc interval has much more power than the

Figure 1 Effect of varying AUC and sample size. Dot plot for the coverage probability of the different intervals for varying AUC and sample size.
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Figure 2 Power curves for two scenarios. Power curves for the LT and the Wald-cc interval for a 1:1 case-control ratio, n = 40, and AUC0 = 0.8
(left side), and for the LT and the Wald interval for a 1:1 case-control ratio, n = 200, and AUC0 = 0.7 (right side). Delta is the difference between AUC0
(0.8 respectively 0.7) and AUC1 (from AUC0 to 0.99 respectively 0.85).

LT interval (left side of Figure 2, maximum difference
of 17%).

Robustness evaluation
We first investigated the robustness to unbalanced sam-
ple sizes. The case-control ratio ranges from 1:1 to 1:9
(in the article of Cochrane and Ebmeier [2] the maximum
ratio was 1:2). The results are presented in Figure 3. With
increasing imbalance, the coverage probability becomes
lower for the Wald intervals as well as for the LT interval.
However, the LT has still a median coverage probability of
95% for a case-control ratio of 1:2, and becomes slightly
liberal for a case-control ratio of 1:9. In contrast the Wald
intervals are slightly liberal even for a case-control ratio
of 1:2 (median coverage probability of 93% for the Wald
and 94% for the Wald-cc interval), and become very lib-
eral for a case-control ratio of 1:9 (median coverage 76%
respectively 78%).
The LT and the Wald intervals are robust with respect

to non-normal distributions, which is important because
biomarker follow often a skewed distribution. This is not
surprising, because the numerator of the Mann-Whitney
test statistic as point estimator is based on the ranks of
the measurements. Therefore the estimators and accord-
ingly the LT interval are invariant under any monotone
transformation. The Wald-interval is based only on the
point estimator and the sample size. Thus the LT and

the Wald intervals are robust with respect to non-normal
distributions.
Because test results can also be ordinal (especially in

studies involving imaging techniques), we investigated the
coverage probability after categorizing the normally dis-
tributed data into five categories (using the percentiles 20,
40, 60, and 80). For continuous data, the median coverage
probability of the LT and of theWald interval is about 95%,
while the median coverage of the Wald-cc interval is 96%,
and the range of the LT interval is smaller than the range of
the Wald intervals. For ordinal data the median coverage
probability of the LT interval increases only from 95.3% to
95.4%, but the range becomes as large as the range of the
Wald intervals. Themedian coverage of theWald intervals
increases from 95.3% to 95.6% forWald, and from 96.1% to
96.6% forWald-cc, while the range does not change much.
The corresponding figure is given in the Additional file 4:
Figure S2.
To investigate the robustness regarding variance hetero-

geneity we generated data for n = (40, 100, 200) with a 1:1
case-control ratio and AUC0 = (0.7, 0.8, 0.9) (same nine
scenarios as above). The variance of the control group (σ0)
was set to 1, while the variance of the cases (σ1) was set to
0.5, 1 (homogeneity), 2, or 3. The median coverage prob-
ability of the Wald intervals does not change much for
σ1 = 0.5, while the median coverage of the LT interval
decreases to 89%. For variance heterogeneity in the other
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Figure 3 Effect of varying case-control ratio. Box plot of the coverage probability for varying case-control ratios (n = (40, 100, 200) and
AUC0 = (0.7, 0.8, 0.9), cross = median, box = 25% − 75% quantile, whiskers = min - max).

direction all three intervals (LT, Wald, Wald-cc) become
very liberal with increasing σ1, which can be seen in
Figure 4. Regarding the interval length, all three intervals
become broader for σ1 = 0.5, and narrower for increasing
σ1. However, the differences are rather small, and for all
intervals comparable (see Additional file 5: Figure S3).

Example
For illustration we use the example of diagnostic accu-
racy of CA-19-9 for the diagnosis of pancreatic cancer that

was used in the methodical literature before [9,10,23]. The
sample sizes in this study were n0 = 51 and n1 = 90 (i.e.
the case-control ratio was 1:0.6) and the estimated AUC
was ̂AUC = 0.86. Using just this information, all intervals
except the LT, the M-W and the binormal interval can be
calculated. Using the individual data the LT and the M-W
interval can be calculated (dataset taken from http://labs.
fhcrc.org/pepe/dabs/datasets.html). The binormal inter-
val cannot be calculated with SAS 9.3 because the approx-
imation leads to negative eigenvalues. The data and the

Figure 4 Effect of variance heterogeneity. Box plot of the coverage probability for increasing variance of the cases σ1 (variance of the controls
σ0 = 1, n = (40, 100, 200) and AUC0 = (0.7, 0.8, 0.9), cross = median, box = 25% − 75% quantile, whiskers = min - max).

http://labs.fhcrc.org/pepe/dabs/datasets.html
http://labs.fhcrc.org/pepe/dabs/datasets.html
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Table 4 Results of the example from section Example

Interval Lower limit Upper limit Interval length

LT 0.790 0.911 0.121

M-W 0.802 0.921 0.120

Bamber 0.787 0.936 0.149

Wilson 0.795 0.909 0.114

Wilson-cc 0.791 0.912 0.121

A-C 0.794 0.910 0.116

C-P 0.790 0.911 0.122

Wald 0.795 0.928 0.132

Wald-cc 0.792 0.931 0.139

The Binormal interval cannot be calculated because of violated conditions
(see Section Example).

SAS-program for the analysis are given in the Additional
files 6 and 7. The results for all methods are very similar
(see Table 4). The maximum deviation from the LT inter-
val for the lower limit is 0.012 (for the M-W interval). The
Bamber interval is the widest, while the Wilson interval is
the narrowest. However, the difference between these two
interval lengths is only 0.035.

Conclusion
The aim of this article was to investigate whether a modi-
fiedWald interval (with or without continuity correction),
which is quite easy to implement, is an alternative for the
Mann-Whitney interval with logit transformation (LT) for
use as a confidence interval for the AUC in diagnostic
studies. The simulation study shows that for small sam-
ple sizes (here n = 40) the Wald interval with continuity
correction is as good as the LT interval regarding the cov-
erage probability, and has much more power than the LT
interval. For large sample sizes (here n = 100, 200) the
Wald interval without continuity correction is comparable
to the LT interval regarding the coverage probability for an
AUC0 up to 0.8, and has slightly more power. For anAUC0
of 0.9 the Wald interval becomes slightly conservative.
The LT interval as well as the Wald intervals are robust to
unimodal departures from normality. However, while the
LT-interval is quite robust to unbalanced smple sizes and
also applicable for ordinal data, the Wald intervals can-
not be recommended for very unbalanced or ordinal data.
Neither the Wald intervals nor the LT interval are robust
to variance heterogeneity.
The other intervals investigated (Mann-Whitney, Bamber,

Binormal, Wilson, Wilson with continuity correction,
Agresti-Coull, and Clopper-Pearson) cannot be recom-
mended. In particular, the Mann-Whitney interval, which
is used in the ROC statement of the PROC LOGISTIC
in SAS (referred to there as a Wald interval), Bamber’s
interval and the interval for the binormal AUC are much

too liberal. This is especially disappointing with respect
to the binormal AUC interval, because this one was the
only parametric interval under study and had the advan-
tage that the simulation data were generated under its true
underlying normal model.
For rather balanced (ratio 1:1 to 1:2) diagnostic case-

control studies (which are suitable for proof-of-concept
and phase II studies according to the European guideline
[1]) the modified Wald intervals are a reasonable alterna-
tive to the LT interval. For studies with small sample sizes
(about 50 overall) we would recommend to use the Wald
interval with continuity correction, for studies with large
sample sizes (n ≥ 100) we would recommend the Wald
interval without continuity correction.
Moreover it is an advantage of the Wald intervals that,

in general, they can be computed from published data
(only point estimator and total sample size is needed)
while the LT interval needs individual patient data for the
computation.
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