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Abstract

Background: Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond

differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified
the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power,
in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias,

achieved in respect of a biased treatment effect.

in terms of bias, precision and statistical power.

precision and statistical power of these three analyses using simulated trial data.

Methods: 126 hypothetical trial scenarios were evaluated (126 000 datasets), each with continuous data simulated by
using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline
imbalance. The bias, precision and power of each method of analysis were calculated for each scenario.

Results: Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in
relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less
precise than ANCOVA, especially when pretest-posttest correlation = 0.3. When groups are balanced at baseline, ANCOVA
is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is

Conclusions: Across a range of correlations between pre- and post-treatment scores and at varying levels and direction
of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs,
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Background

Many randomized controlled trials (RCTs) involve a sin-
gle post-treatment measurement of a continuous out-
come variable previously measured at baseline. Although
randomization creates asymptotic balance in important
prognostic factors, including baseline values of the out-
come variable [1], in finite samples an imbalance in such
factors may occur notwithstanding randomization [2-6];
this represents the difference between the expectation of
a random process and its realization [6]. Depending cru-
cially on the correlation between the baseline covariate
and the outcome variable, this chance imbalance may
not only create a potential bias in crude estimates of
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treatment effect in the outcome variable, but may also
affect the precision with which such an effect is mea-
sured and the statistical power of the analysis. Attempts
are made to address this problem either at the level of
design (e.g. stratification and minimization) or at the
level of analysis, or indeed both. Although opinions are
still divided on the first-line strategy to deal with
baseline imbalance in RCTs [7-11], the general consen-
sus seems to be that, whichever method is employed at
the design stage to achieve balance in covariate distribu-
tion, an adjusted statistical analysis that accounts for im-
portant covariates should take precedence over an
unadjusted analysis [3,8,9,12-16]. Nonetheless, there
appears to be varied practice in this area and further
consideration of the relative merits of adjusted and un-
adjusted analyses has been called for [17].
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For a single post-treatment assessment of a continuous
outcome variable, three statistical methods have com-
monly been used: crude comparison of treatment effect
by ¢ test or, equivalently, analysis of variance (ANOVA);
change-score analysis (CSA); and analysis of covariance
(ANCOVA). On occasions, CSA is performed using per-
centage change, but this has been shown to be an ineffi-
cient approach [18]. Whereas CSA compares changes
between pre- and post-treatment scores between treat-
ment groups, ANCOVA accounts for the imbalance by
including baseline values in a regression model — theor-
etically, this regression-based procedure yields unbiased
estimates of treatment effect [19,20].

Given their different statistical basis, each of these
statistical methods has a potentially marked effect on
the estimate of the treatment effect and its associated
precision, and differing statistical conclusions may there-
fore be reached according to the method of analysis
chosen [21-23]. In addition, contrary views have been re-
ported on the implications of using CSA as a method for
statistical adjustment in an RCT [3,12,24,25] and this
warrants further investigation, to clarify the appropriate-
ness of particular methods.

This study therefore seeks to quantify, through an estab-
lished approach based on data simulation [22,26-28], differ-
ences in the estimate (bias) and precision of treatment
effect and associated statistical power through using either
ANOVA or CSA in relation to the unbiased estimate of
treatment effect by ANCOVA, in differing hypothetical trial
scenarios. Although previous authors [19,29] have provided
theoretical accounts of bias and precision in estimates of
treatment effect derived through ANOVA and CSA when
baseline imbalance exists, we are aware of no previous
study that has sought simultaneously to quantify bias, pre-
cision and statistical power of these three methods in rela-
tion to a wide range of combinations of different levels of
experimental conditions, including baseline imbalance in
the outcome variable, that are typical of pragmatic RCTs.
Addressing this issue will allow practical recommendations
to be made for the future analysis of RCTs in the presence
of baseline imbalance.

Methods

Data simulation

A statistical program was developed in STATA to generate
hypothetical two-arm trials involving specific levels of ex-
perimental conditions, run the regression models for the
statistical methods being studied, and then post selected
results into a file. Each hypothetical trial scenario was re-
peated a thousand times, so as to generate robust estimates
(e.g. allowing statistical power to be estimated with a mar-
gin of error no greater than +3% at a 95% confidence level).
Detailed information on the statistical program is included
in the Appendix.
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Levels of experimental conditions
A population standard deviation of 1 (o0 =1) for the out-
come data was assumed in each trial and these data were
normally distributed at baseline and at follow-up. A 1:1
allocation ratio was employed. Rather than choose arbi-
trary levels of other experimental conditions, these were
selected in relation to specific criteria so as to reproduce
conditions typical of an empirical trial scenario. Data for
the outcome variable (Y1Yc, for the treatment and con-
trol groups, respectively, with higher values taken to be
clinically desirable) were simulated so as to produce a
standardized treatment effect (Y -Y):
~ o Yr-Yc

Yr=Ye= SD(Y)

A treatment effect was taken to be a higher (i.e. better)
score in the treatment than in the control group, and was
set at three levels of 0.2, 0.5 and 0.8, classified by Cohen
[30] as low, ‘medium; and ‘large’ respectively.

For a nominal statistical power of 80%, the required
sample size was utilized for each of these standardized
effect sizes: 394, 64 and 26 per group, respectively. The
correlation between baseline values (Z1, Zc, for the
treatment and control groups, respectively) and post-
treatment values was varied from 0.1 to 0.9 in incre-
ments of 0.2, as it has been argued that the correlation
between baseline covariates and outcome scores in RCTs
may range between these values [31]. A correlation of
zero was also included as a reference value.

For each hypothetical trial, imbalance in baseline
values of the outcome measure was computed as a stan-
dardized score (Z'T—Zé), in terms of its standard error:

Zr-Z¢
2Vn

Here, z is a standard normal deviate. In this way, real-
istic values of imbalance were derived in relation to the
sample size, thus avoiding large absolute imbalance for
large sample sizes that would contradict the principles
of randomization. Imbalance was simulated in both the
same direction (‘positive’ imbalance, where the treatment
group has ‘better’ baseline scores than the control
group) and the opposite direction (‘negative’ imbalance,
where the control group has ‘better’ scores) in relation to
the treatment effect. The predetermined levels of Z~Z
for this study were calculated in relation to standard nor-
mal deviates of +1.28, +1.64 and +1.96, representing 20%,
10% and 5% two-tailed probabilities respectively of the
standard normal distribution.

Hence, the various levels of imbalance had a predeter-
mined probability of occurring, whatever the sample size
and on whatever scale the covariate or outcome variable
is scored.

Zp-Zo= Xz
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In total, 126 scenarios representing hypothetical com-
binations of experimental conditions were simulated at
80% nominal power, comprising:

7 standardized baseline imbalances: —1.96; —1.64; —1.28;
0; 1.28; 1.64; 1.96

6 covariate-outcome (ZY) correlations: 0; 0.1; 0.3; 0.5;
0.7, 0.9

3 standardized treatment effect sizes: 0.2; 0.5; 0.8

Each scenario was analysed by each of the statistical
methods. In the analyses, a binary variable represented
group allocation, such that the estimate of the treatment
effect in each simulated dataset was derived from the as-
sociated regression coefficient (f5).

Bias, precision and power
To quantify bias associated with the estimates of effect by
ANOVA and CSA, the following indices were computed:

biasanova = Bancova Banova

biascsa = Bancova —Bcsa

Bias was assessed not in relation to the nominal stan-
dardized treatment effect, as this effect is liable to be
biased in the presence of confounding. Rather, bias was
determined in relation to the adjusted estimate from
ANCOVA, as this is known to provide the unbiased esti-
mate of outcome, conditional upon the conditions repre-
sented by a given scenario.

In order to quantify the relative precision of the three
methods of analysis, ratios of the resulting standard er-
rors (design effects) were calculated:

SEcsa
SEanova

SEancova
SEcsa

SEancova

SEanovA

Finally, the conditional statistical power of each of the
three methods of analysis was calculated as the percent-
age of rejections of the null hypothesis in the 1000 simu-
lations within each scenario; this was compared to the
nominal power of 80%.

Results

Bias

Figure 1 shows the mean estimated treatment effect and
thereby the directional pattern of bias for ANOVA and
CSA, in relation to ANCOVA as the reference unbiased
analysis. Table 1 indicates the bias, in standardized (SD)
units, for each of ANOVA and CSA, again in relation to
ANCOVA. Values are given in the table conditional on the
three treatment effects, the six levels of ZY correlation, the
situation in which there is no baseline imbalance, and the
six values of standardized imbalance.
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The results displayed in Figure 1 demonstrate that,
when there is no imbalance at baseline (i.e. Z'T—Z,':=0),
all three statistical methods yield the same unbiased esti-
mate of treatment effect, irrespective of the level of ZY
correlation or the standardized effect size. It is also clear
that, for a given nominal treatment effect, the estimates
yielded by ANOVA and CSA do not change in relation
to the level of ZY correlation.

However, when treatment groups differ at baseline (i.e.
Zf —Zé¢0) there is a noticeable difference in the estimate
of treatment effect by these methods. The magnitude of this
difference depends on the degree of ZY correlation and the
size of baseline imbalance. At a given level of baseline im-
balance, ANOVA and ANCOVA give precisely equivalent
estimates when ZY correlation is zero (Figure 1 graphs A, B
and C). However, the bias of ANOVA (relative to the un-
biased estimates derived through ANCOVA) increases as
ZY correlation rises and, holding ZY correlation constant,
also increases with a higher degree of baseline imbalance.
ANOVA and ANCOVA produce similar estimates of effect
when ZY correlation is less than 0.3 (see, for example,
Figure 1 graphs D, E and F), but at higher ZY correlations,
the difference in the estimate of effect for the two methods
becomes more obvious (see, for example, Figure 1 graphs
M, N and O). This bias is equal in magnitude for either dir-
ection of imbalance. Thus, Table 1 shows there is a bias
of 0.07 SD and -0.07 SD respectively associated with
the estimate of effect by ANOVA when a standardized
baseline imbalance of 1.96 exists in the same direction (i.e.
Z~Z:>0), or opposite direction (ie. Z;-Z.<0), at a
standardized treatment effect of 0.2 and a ZY correlation of
0.5 (see Figure 1 graph J).

If the ZY correlation is large, even a small imbalance
yields a substantial bias in the estimate of treatment effect
when using ANOVA (for example, Figure 1 graphs N and
O). Conversely, if the ZY correlation is small, only a small
bias results even if the baseline imbalance is large (for ex-
ample, Figure 1 graphs H and I). Thus, from Table 1, when
the ZY correlation is 0.7, ANOVA shows an upward bias
with regard to ANCOVA of 0.25 SD at a standardized base-
line imbalance of -1.28 and standardized treatment effect
of 0.8. In contrast, when the ZY correlation is 0.3, a larger
imbalance of —1.96 produces an upward bias for ANOVA
of only 0.16 SD when estimating the same effect (Table 1).

Turning to CSA, the magnitude of bias similarly is
greater with an increase in the absolute value of baseline
imbalance, and is equal for both directions of baseline im-
balance (see, for example, Figure 1 graphs K and L). It is ap-
parent from Figure 1 and Table 1 that CSA produces an
opposite bias to that induced by ANOVA; when the one
method overestimates the unbiased treatment effect, the
other method underestimates it, and vice versa. However,
in contrast to the case of ANOVA, at a given level of base-
line imbalance, bias in the estimate of effect through CSA
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Figure 1 Directional bias of statistical methods. Estimates are given at differing levels of baseline-outcome correlation, treatment effect sizes,
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decreases as ZY correlation increases. When baseline imbal-
ance is in the same direction as the treatment effect (i.e.
Zy~Z:>0), the estimate derived from CSA is markedly
lower than that of either ANOVA or ANCOVA if ZY
correlation is low (see, for example, Figure 1 graphs F
and I). Here, CSA underestimates the true treatment
effect to a much larger degree than ANOVA overesti-
mates it. Conversely, the bias associated with CSA is
much smaller than that of ANOVA if ZY correlation is
high (see, for example, Figure 1 graphs O and R).

When ZY correlation is at or below 0.7, CSA yields the
smallest estimate of treatment effect of the three
methods if baseline imbalance is in the same direction
(Z1-Z:>0) as the treatment effect, and the largest esti-
mate of effect if imbalance is in the opposite direction
to the treatment effect (Z;-Z-<0), indicating that it

provides the strongest adjustment for baseline imbalance
in these circumstances. The bias of ANOVA relative to
ANCOVA can be expressed algebraically by the formula:

, , z
YooYl )p—
( T C)p_z\/m

and the bias of CSA to ANCOVA by the formula:

Precision

Figure 2 shows the mean standard error, at each standard-
ized treatment effect size, for the three methods of analysis,
at different levels of ZY correlation (the direction and



Table 1 Bias (standard deviation units) in respect of ANCOVA versus ANOVA and ANCOVA versus CSA

Z'+—Z¢ Treatment effect
0.2 0.5 0.8
ZY correlation ZY correlation ZY correlation

Difference 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9
ANCOVA - ANOVA -1.96 0.00 0.01 0.04 0.07 0.10 0.13 0.00 0.03 0.10 0.17 0.24 0.31 0.00 0.05 0.16 0.27 0.38 049
-1.64 0.00 0.01 0.04 0.06 0.08 0.11 0.00 0.03 0.09 0.14 020 0.26 0.00 0.04 0.14 023 031 041
-1.28 0.00 0.01 0.03 0.05 0.06 0.08 0.00 0.02 0.07 0.11 0.16 0.20 0.00 0.03 0.10 017 0.25 032
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
1.28 000  -001 -003 -004 006 —0.08 000 -003 -007 -011 -0.16  -0.21 000 -004 -0 -018 -025 032

1.64 000 -001 -003 -006 -008 -0.11 000 -003 -009 -015 021 -026 000 -005 -014 -023 -032 -041
1.96 000  -001 -004 -007 =070 -0.13 000 -004 -011 -018 =024 031 000 -006 -017 =028 -038 -049
ANCOVA - CSA -1% -014 -013 -010 007 004 -001 -035 =031 -024 -017 -020 -003 055 -049 -038 -027 -016 -005
-164 -012 -011 -008 -006 -004 -001 -029 -026 -020 -015 -009 -003 046 041 -031 -022 -014 —-005
-128 -009 -008 -006 —-005 -003  -0.01 -023 -020 -016 -012 -007 -003 -036 -032 -025 -017 -010 -003
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.28 0.09 0.08 0.06 0.05 0.03 0.01 023 0.20 0.16 0.11 0.07 0.02 035 032 025 018 0.11 0.04
1.64 0.12 0.10 0.08 0.06 0.04 0.01 0.29 0.26 0.20 0.15 0.09 0.03 045 041 0.32 0.23 0.14 0.05
1.96 0.14 0.13 0.10 0.07 0.04 0.02 035 031 024 0.17 0.10 0.04 0.54 049 038 027 0.16 0.05
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magnitude of baseline imbalance was found to have no ef-
fect on precision and has therefore been ignored). The size
of the standard error is proportional to the treatment effect,
but this simply reflects the sample sizes corresponding to
these effects. For ANOVA (black markers), the standard
error is constant across ZY correlations, reflecting the fact
that this analysis takes no account of the baseline values.
For the other two analyses, it can be observed that the
standard error associated with ANCOVA (grey markers) is
similar to that of ANOVA at a low ZY correlation, but de-
creases monotonically as correlation increases. Standard er-
rors for CSA (white markers) are, however, variable. At a
low ZY correlation, mean standard error is markedly higher
than that of both ANOVA and ANCOVA, whereas at ZY
correlations above 0.5, it is markedly lower than that of
ANOVA and comparable to that of ANCOVA. Overall,
ANCOVA is the most precise analysis, especially at ZY cor-
relations from 0.5 to 0.9.

Table 2 shows the relative precision of the three analyses,
expressed as a ratio of their standard errors. As in Table 1,
values of these ratios are given for the three treatment ef-
fects, the six levels of ZY correlation, the situation in which
there is no baseline imbalance, and the six values of stan-
dardized imbalance. Ratios greater than unity indicate that
the numerator analysis has a larger standard error (ie. is
less precise) than the denominator analysis. Table 2 con-
firms the equivalent precision of CSA and ANOVA at a
correlation of 0.5. However, it shows that when ZY correl-
ation is as low as 0.1, ANOVA can yield approximately a
36% gain in precision against CSA, whereas when ZY cor-
relation is 0.9, CSA provides approximately a 57% gain in
precision over ANOVA. Table 2 also indicates that only at a
correlation of 0.7 or greater does CSA produce comparable
precision to that of ANCOVA.

The computed ratio of the standard errors of ANCOVA
and ANOVA from the simulated datasets approximately

fits the algebraic expression \/1-p?, irrespective of whether
or not treatment groups are balanced at baseline, and the
ratios for CSA and ANOVA and for ANCOVA and CSA

approximately fit the expressions 1/2(1-p) and (")

2(1-p)’
respectively.
Statistical power
The power of ANCOVA, CSA and ANOVA is shown in
Table 3 in terms of increments or decrements in relation
to the nominal power of 80%, again conditional on treat-
ment effect and levels of ZY correlation and baseline im-
balance. Absolute values of power for ANCOVA, CSA
and ANOVA are shown graphically in Figure 3.

The power of ANOVA is at its nominal level of 80%
throughout, subject to some minor fluctuation from one
simulation to the next (i.e. there are small fluctuations
between the graphs in Figure 3). It is clear that for
ANOVA, within any set of simulations (i.e. within any
one graph in Figure 3), power is wholly unaffected by
baseline imbalance, reflecting the fact that the statistical
model for ANOVA has no term that represents such im-
balance. It can be seen that if baseline imbalance is in
the same direction as the treatment effect (indicated by
positive values of Z), the power of both ANCOVA and
CSA decreases with greater levels of imbalance, and
CSA does so more markedly, especially at lower levels of
ZY correlation. Thus, for a treatment effect of 0.2 and a
ZY correlation of 0.1 (Figure 3 graph D), the power of
CSA is as low as 9% if there were to be an extreme posi-
tive imbalance of 1.96. Conversely, when imbalance is in
the opposite direction from the treatment effect, the
power of both ANCOVA and CSA exceeds the nominal
80% power of ANOVA, and if ZY correlation is 0.7 or
greater in these circumstances (Figure 3 graphs M to R),
the superiority of ANCOVA and CSA is equivalent. If,
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Table 2 Design effect (ratio of standard errors) in respect of ANCOVA versus ANOVA, CSA versus ANOVA, and ANCOVA

versus CSA
Z+Z¢ Treatment effect
0.2 0.5 0.8
ZY correlation ZY correlation ZY correlation
Ratio 0 01 03 05 07 09 0 01 03 05 07 09 0 01 03 05 07 09
ANCOVA/ANOVA  -196 100 101 097 086 071 043 102 101 097 083 072 044 105 104 100 090 075 045
-164 100 101 097 087 073 044 101 101 09 088 072 044 104 102 099 090 074 045
-128 100 100 097 087 073 043 101 101 09 087 073 044 103 102 098 089 073 045
000 100 100 09 08 071 043 100 100 09 086 071 043 101 100 09 086 071 043
128 100 100 097 086 071 043 101 103 093 083 070 043 103 101 097 089 072 045
164 100 100 097 086 071 043 101 101 097 08 072 044 104 103 099 090 074 045
196 100 100 097 086 071 043 102 100 097 08 072 044 105 104 100 090 075 046
CSA/ANOVA -196 142 136 114 100 079 043 142 134 118 100 077 044 141 134 118 100 077 044
-164 142 136 120 100 079 044 142 134 118 100 077 044 141 132 118 100 077 045
-128 142 136 114 100 079 043 142 134 118 100 077 044 141 134 118 100 076 045
000 142 136 114 100 079 043 142 134 119 100 077 044 141 134 118 100 077 045
128 142 136 114 101 086 044 142 134 117 100 075 043 141 134 118 100 076 045
164 142 137 120 100 079 043 142 134 118 100 077 044 141 134 118 100 076 045
196 142 136 114 100 079 043 142 134 118 100 077 044 141 134 118 100 076 045
ANCOVA/CSA -196 071 075 085 086 091 100 072 075 082 083 094 099 074 078 085 091 097 102
-164 071 075 081 087 093 100 072 075 081 088 094 099 074 077 084 090 096 1.02
-128 071 074 085 087 093 100 071 075 081 087 093 099 073 076 083 089 097 101
000 071 074 084 08 091 100 071 074 081 087 093 097 072 075 081 087 093 099
128 071 074 085 085 083 097 071 077 080 083 093 099 073 075 083 089 095 100
164 071 073 081 08 091 100 072 075 082 08 094 099 073 077 083 090 098 102
196 071 074 085 086 091 100 072 075 082 08 094 099 074 078 084 091 099 102

however, ZY correlation is 0.3 or less in these circum-
stances, the power of CSA exceeds that of ANCOVA
when negative baseline imbalance is most extreme (Fig-
ure 3 graphs D to I). If there is no baseline imbalance,
the power of ANCOVA is either greater than or equal to
that of ANOVA, whereas the power of CSA is superior
to that of ANOVA at high correlations but inferior at
low correlations. When ZY correlation is zero, ANCOVA
has power approximately equivalent to that of ANOVA
(Figure 3 graphs A to C).

Discussion

This simulation study has examined the effect of baseline
imbalance in an RCT on the bias and precision of estimates
of treatment effect, and the power of a statistical test condi-
tional on such imbalance. Although the statistical implica-
tions of baseline imbalance have previously been described,
they have not hitherto been simultaneously quantified for
these three analyses in relation to various combinations of
levels of associated trial characteristics: effect size, degree of
baseline-outcome (ZY) correlation and both magnitude and
direction of baseline imbalance.

ANCOVA is known to produce unbiased estimates of
treatment effect in the presence of baseline imbalance when
groups are randomized [19,20]. ANOVA and CSA, how-
ever, produce biased estimates in such circumstances. For
both ANOVA and CSA, the direction of bias is related to
the direction of baseline imbalance, and bias is greatest
when baseline imbalance, in either direction, is most pro-
nounced. At a low ZY correlation, ANOVA exhibits less
bias than CSA, but at a high ZY correlation the reverse is
the case. In a situation in which ANOVA overestimates the
unbiased treatment effect, CSA underestimates it, and vice
versa. Both ANOVA and CSA show equal levels of bias (al-
beit in different directions) when the ZY correlation is 0.5.
When ZY correlation is 0, estimates from ANCOVA and
ANOVA are equivalent, as the absence of correlation
means that the ANCOVA takes no account of imbalance
and thereby reduces to ANOVA.

As regards precision, ANOVA and CSA vyield less pre-
cise estimates than ANCOVA. ANOVA is progressively
less precise than ANCOVA as ZY correlation increases;
by contrast, CSA shows increasing precision as ZY cor-
relation increases. CSA is less precise than ANOVA at



Table 3 Increments (positive values) and decrements (negative values) of power (%) for ANCOVA, ANOVA and CSA relative to a nominal power of 80% and

conditional upon levels of baseline imbalance and ZY correlation

Z'+Z Treatment effect
0.8
ZY correlation ZY correlation ZY correlation
Analysis 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9
ANCOVA  —1.96 -1.00 5.10 1360  >199  >199  >199  -1.70 4.10 14.90 1860  >199  >199 140 1.20 10.00 1640 1990  >199
-164 -1.00 450 11.90 1990  >199  >199  -090 3.80 13.90 1840  >199  >199 -80 70 9.50 15.80 1990  >199
-1.28 -0.70 3.60 1040 18.90 >199 >199 -0.90 3.10 12.10 17.30 >199 >199 -10 90 8.80 15.30 19.90 >199
0.00 -040 0.60 2.00 10.50 1720 >199  -010 030 4.10 9.90 1740 >199 00  -130 120 7.60 1410 >199
1.28 -050 -180 -630 -700  -290 1510  -020  —430 -850 -1020  —430 1610 =150 -630 -—11.00 -1240  -7.50 13.20
1.64 -0.70 -280 -=11.10 —=1480 -15.20 3.80 -0.50 -600 -1230 -=1690 -15.60 540 -2.30 -790 -=1710 -2140 -2030 4.10
1.96 -0.70 -370 -=1540 -2120 -2650 —-1290 -0.80 -730 -1530 -2370 -2800 -—13.30 -3.60 -990 -21.00 -2830 -3190 -16.30
CSA -196 11.50 14.70 1770 >199  >199  >1990 10.90 17.10 19.10 1960  >199  >199 12.80 13.70 16.00 1990  >199  >199
-1.64 7.70 11.40 15.80 >199 >199  >19.90 7.30 9.70 16.80 19.00 >199 >199 940 10.60 14.20 19.80 19.90 >199
-1.28 240 6.50 1250 19.90 >199  >19.90 1.10 4.80 1340 18.50 >199 >199 3.10 5.50 11.80 16.00 19.90 >199
0.00 -2660 —2220 -11.60 2.00 1540 >1990 -2770 -2350 -13.10 -30 1510 >199 -2850 -2640 -1580  —140 1200 >199
1.28 -60.00 -5830 5290 4430 -26.60 1030 -5920 5770 -5230 -4540 -28.80 1280 -5840 5760 5430 —4680 -30.20 11.40
1.64 —6720 —-6530 6260 5650 -4690 -610 -6570 6450 -61.00 5600 4550 600 —6540 -6520 6180 5730 —4710 -560
1.96 -7140 -7100 -6870 —6620 -5930 —2950 -6960 —6890 —-6730 —-6450 5760 -3160 —6980 -6940 —6790 -6460 —-5900 —29.80
ANOVA -1.96 -0.60 -0.80 0.20 -1.30 -0.30 0.80 -0.30 0.30 -0.70 0.20 0.10 0.10 2.00 1.00 1.70 1.90 2.80 260
-1.64 -060  —0.80 020 -130 030 080  -030 030 070 0.20 0.10 0.10 2.00 1.00 1.70 1.90 2.80 260
-1.28 -060  -0.80 020 -130 030 080 030 030 -070 0.20 0.10 0.10 2.00 1.00 1.70 1.90 2.80 260
0.00 -0.60 -0.80 0.20 -1.30 -0.30 0.80 -0.30 0.30 -0.70 0.20 0.10 0.10 2.00 1.00 1.70 1.90 2.80 2.60
1.28 -060  -0.80 020 -130 030 080  -030 030 =070 0.20 0.10 0.10 2.00 1.00 1.70 1.90 2.80 260
1.64 -060  -0.80 020 -130 030 080  —-030 030 -070 0.20 0.10 0.10 2.00 1.00 1.70 1.90 2.80 260
1.96 -0.60 -0.80 0.20 -1.30 -0.30 0.80 -0.30 0.30 -0.70 0.20 0.10 0.10 2.00 1.00 1.70 1.90 2.80 260

Maximum increment is given as >19.9 since this would represent a conditional power in excess of 99.9%. Increments/decrements in power for ANOVA are due to random variation of the simulated dataset around the

nominal 80% power.
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ZY correlations below 0.5, but more precise at ZY corre-
lations greater than 0.5, and both analyses present the
same magnitude of associated standard error when the
correlation is 0.5. In no situation do either CSA or
ANOVA exceed the precision of ANCOVA.

The results for statistical power of the three analyses
are not straightforward. The greater precision noted for
ANCOVA might suggest that it would be uncondition-
ally the most powerful analysis. Yet, as Figure 3 shows,
whilst under some circumstances its power exceeds the
nominal 80% power of ANOVA, under other circum-
stances ANOVA has greater power. This can be ex-
plained by the adjusted treatment effect derived through
ANCOVA. When baseline imbalance is in the opposite
direction from the treatment effect, ANCOVA corrects
the resulting bias by producing an adjusted treatment ef-
fect that is larger than the nominal treatment effect, and

ANCOVA therefore has greater power to detect this
effect than ANOVA has to detect the nominal effect, at
the same sample size. Correspondingly, when imbalance
is in the same direction as the treatment effect,
ANCOVA corrects the bias by adjusting the treatment ef-
fect downwards; its power to detect this effect is therefore
less than that of ANOVA to detect the nominal treatment
effect. However, when ZY correlation is 0 (Figure 3 graphs
A to C), ANCOVA and ANOVA produce equivalent
estimates of treatment effect, as noted earlier, and the
difference in power therefore essentially disappears. This
phenomenon also explains why baseline imbalance affects
precision and power differently; precision is unaffected by
imbalance but power reflects imbalance when it is calcu-
lated in relation to an adjusted treatment effect. When
there is no imbalance, the adjusted treatment effect equals
the nominal treatment effect and here ANCOVA is more
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powerful than ANOVA by virtue of its greater precision
[18,31,32]. An important point to emphasize is that, in the
presence of imbalance, nominal power is inappropriate due
to the underlying bias in the estimation of the true treat-
ment effect by ANOVA, which fails to address the baseline
imbalance of the two treatment groups. As regards the ana-
lyses that accommodate baseline imbalance, ANCOVA is
unconditionally more powerful than CSA, especially at
lower ZY correlations [33].

The power of CSA shows a similar pattern to that of
ANCOVA when ZY correlation is 0.7 or greater. At lower
correlations, however, it demonstrates greater extremes of
power than ANCOVA - higher than ANCOVA with im-
balance in the opposite direction from the treatment effect
and lower than ANCOVA with imbalance in the same dir-
ection. This indicates CSA’s over-correction of bias, in both
directions, when ZY correlation is low; this stems from its
failure to account for regression to the mean [24,34]. In the
absence of imbalance, the power of CSA exceeds the nom-
inal 80% power of ANOVA when ZY correlation is high,
but is lower than that of ANOVA when ZY correlation is
low. This reflects the relative precision of these two ana-
lyses conditional upon ZY correlation; CSA is the more pre-
cise at high correlations whereas ANOVA is the more
precise a low correlations, as indicated by the ratios of
standard errors in Table 2.

Relative to ANCOVA, the alternative analyses are thus li-
able to be either too conservative or too liberal [26]. It is
clear therefore that the use of either ANOVA or CSA is in-
advisable when baseline imbalance exists. Although all
three methods are unbiased when there is no baseline im-
balance, the likelihood is that in a clinical trial with several
baseline covariates there will be some degree of imbalance
across a number, if not all, of these variables. Similarly, the
level of correlation between these covariates and the out-
come variable is likely to be greater than zero (or possibly
less than zero, though baseline values of the outcome vari-
able are more likely to be positively than negatively corre-
lated with post-treatment values). Moreover, ANCOVA is
consistently the most precise method of analysis and hence
delivers greatest efficiency in respect of testing against the
null hypothesis and reducing the type II error. Our results
concur with previous literature that emphasizes the advan-
tages of covariate adjustment [3,8,9,12-16,24,35].

These simulations are based on imbalance in a single
covariate. Where imbalance exists in a number of covar-
iates, the degree of bias associated with either ANOVA
or CSA will depend upon the combined effect of imbal-
ances that may be in different directions, and upon the
particular ZY correlations associated with each of these
covariates. However, loss of precision (and hence of stat-
istical power) through the use of ANOVA or CSA is
likely to be greater with imbalance in multiple covariates
than with imbalance in a single covariate, as there will
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normally be a greater proportion of variance in the out-
come measure that is unaccounted for by either of these
analyses.

Our results show the advantages of ANCOVA in redu-
cing bias, increasing precision and providing appropriate
power of statistical testing across a number of practical sit-
uations commonly seen in clinical trials. Several authors
[2,34,36-39] argue that covariates should be selected a
priori in terms of their prognostic importance, rather than
on the basis of examining baseline imbalance in the trial
data — even large imbalance is of little consequence in
terms of bias if the covariate is not related to outcome.
Moreover, the primary analysis in an RCT should be pre-
specified [40,41]. Accordingly, our findings suggest that
ANCOVA should be adopted as the analysis of choice,
regardless of the magnitude of imbalance observed in the
trial data. Consideration should also be given to achieving
balance in important prognostic covariates at baseline in
addition to subsequent statistical adjustment [42] — e.g.
through stratified randomization or covariate-adaptive
methods of allocation [11,43,44].

Limitations

The conditions under which we have investigated the effect
of baseline imbalance — in terms of magnitude of effect
sizes, baseline imbalance and ZY correlation — are plausible
and realistic, although the extremes of baseline imbalance
examined will, reassuringly, be uncommon. Our findings
are therefore readily transferable to specific real-life RCT
scenarios. However, our findings assume equal allocation,
and results may differ where this is not the case. Nor do
our findings necessary generalize fully to trials where
groups are not formed by randomization [45] or where out-
comes are binary or time-to-event [28,42,46]. These results
are also based on analyses whose assumptions were opti-
mally satisfied through the simulation process, and are
likely to differ in respect of real-life data that depart from
such assumptions — e.g. a skewed outcome variable, or het-
erogeneous ZY regression coefficients between groups.
Large trials will produce data that are robust to certain de-
viations in the assumptions underlying parametric analysis.
Nonetheless, future work could usefully explore the impact
of some of these deviations on the conclusions of the
current study.

Conclusion

In conclusion, ANCOVA should be the analysis of choice, a
priori, for RCTs with a single post-treatment outcome
measure previously measured at baseline; its superiority is
particularly marked when baseline imbalance is present,
but also — in terms of precision — when groups are bal-
anced at baseline. We specifically caution against the use of
ANOVA when the baseline-outcome correlation is (or is
anticipated to be) moderate-to-large, and against CSA
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when it is (or is anticipated to be) small-to-moderate.
Randomization generally leads to well-balanced groups,
though non-systematic differences often arise across a
number of covariates, and hence adjustment through
ANCOVA is recommended to reduce risk of bias whilst
also improving the precision of estimates and the power of
the statistical test.

Appendix

Simulation program in STATA. The prime identifies values
that are specific to a particular simulation; i.e. r' indicates
r=0.1, r=03, r=0.5 r=0.7, r=0.9; y indicates y=0.2,
y=0.5, y=038; z' indicates standardized imbalance (the
standard error of absolute imbalance multiplied by the ap-
propriate standard normal deviate).

set seed

set obs n

[defines number of observations (n) for the trial]

g g=mod(_n,2)

[defines two treatment groups — Control (0); Treat-
ment(1)]

g z = invnorm(uniform())*1

[generates normally distributed baseline scores (z) with
mean=0 and SD=1 and randomly assigns these to
treatment groups)

gr=r’

[generates a predetermined correlation between base-
line and post-treatment scores]

g k = invnorm(uniform())*1

[generates another normally distributed set of scores (k)]

gy=zr+Kk¥1-r"2)".5

[transforms k into an outcome score (y) that has a pre-
determined correlation with the baseline score (z)]

replace z=z + g*z’

lapplies a predetermined direction-specific baseline im-
balance to the treatment groups; with ‘z+ g, imbalance
is in the same direction as the treatment effect, but with
z-g’ it is in the opposite direction]

replace y =y + g*y’

[creates a predetermined treatment effect]

gc=y-z

[generates change scores for the treatment groups]

regress y g

[performs analysis of variance]

regress C g

[performs change-score analysis]

regress y g z

[performs analysis of covariance]

Abbreviations
ANCOVA: Analysis of covariance; ANOVA: Analysis of variance; CSA:
Change-score analysis; RCT: Randomized controlled trial.
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