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Abstract

Background: Traditionally, phase I oncology trials are designed to determine the maximum tolerated dose (MTD),
defined as the highest dose with an acceptable probability of dose limiting toxicities(DLT), of a new treatment via a
dose escalation study. An alternate approach is to jointly model toxicity and efficacy and allow dose escalation to
depend on a pre-specified efficacy/toxicity tradeoff in a phase I-II design. Several phase I-II trial designs have been
discussed in the literature; while these model-based designs are attractive in their performance, they are potentially
vulnerable to model misspecification.

Methods: Phase I-II designs often rely on copula models to specify the joint distribution of toxicity and efficacy, which
include an additional correlation parameter that can be difficult to estimate. We compare and contrast three models
for the joint probability of toxicity and efficacy, including two copula models that have been proposed for use in phase
I-II clinical trials and a simple model that assumes the two outcomes are independent. We evaluate the performance
of the various models through simulation both when the models are correct and under model misspecification.

Results: Both models exhibited similar performance, as measured by the probability of correctly identifying the
optimal dose and the number of subjects treated at the optimal dose, regardless of whether the data were generated
from the correct or incorrect copula, even when there is substantial correlation between the two outcomes. Similar
results were observed for a simple model that assumes independence, even in the presence of strong correlation.
Further simulation results indicate that estimating the correlation parameter in copula models is difficult with the
sample sizes used in Phase I-II clinical trials.

Conclusions: Our simulation results indicate that the operating characteristics of phase I-II clinical trials are robust to
misspecification of the copula model but that a simple model that assumes independence performs just as well due
to difficulty in estimating the copula model correlation parameters from binary data.
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Background
Phase I oncology trials are primarily concerned with
establishing the safety profile of a new treatment via
determining themaximum tolerated dose (MTD), defined
as the highest dose with the probability of toxicity less
than a pre-specified target toxicity rate. Dose escalation
studies can be categorized as either rule-based, such as
the traditional 3 + 3 [1], or model-based, such as the
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continual reassessmentmethod (CRM) [2]. Standard rule-
based designs are advantageous with their simplicity in
implementation; however, such designs are less desirable
in their performance and efficiency, since the selection
probability for the trueMTD can be poor and dose assign-
ment is based on information from the current dose level
only. The standard CRM uses a simple parametric model,
such as a one-parameter power model or two-parameter
logistic regression mode, to characterize the relationship
between dose level and the probability of experiencing
a dose limiting toxicity (DLT). This method assumes a
monotonic dose-response relationship between dose level
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and toxicity and has a variety of proposed modifications
to better ensure patient safety [3].
Standard phase I designs assume that both the proba-

bilities of toxicity and efficacy of a new drug increase as
dose level increases. Nevertheless, in some instances an
increase in dose level may result in a substantial increase
in toxicity but only a small increase in efficacy. Thus, an
alternate approach is to consider the tradeoff between
toxicity and efficacy during dose escalation. To this end,
several phase I-II study designs that jointly model toxicity
and efficacy have been discussed in the literature [4-6]. As
with the CRM, these methods assume a parametric model
for both the dose-toxicity and dose-efficacy relationship,
which may also include a quadratic term for efficacy to
allow for model flexibility. In addition, these methods
require that we specify a joint probability model for effi-
cacy and toxicity, which is often accomplished using a
copulamodel.
Copula models provide a flexible framework for spec-

ifying the joint distribution of two random variables [7].
In a copula model, a joint distribution is specified on the
unit square and a joint distribution for any two random
variables can be derived using an inverse transformation.
In the context of a phase I-II clinical trial, we specify
parametric models for the dose-response relationship for
toxicity and efficacy and a copula model is used to specify
a joint model for efficacy and toxicity.
Model-based designs tend to surpass rule-based designs

in their ability to correctly identify the MTD and in the
number of patients treated at the MTD [8], but are poten-
tially vulnerable to model misspecification. This problem
is exacerbated by the presence of a copula model in effi-
cacy/toxicity tradeoff designs. Copula models impose a
rigid structure on the relationship between toxicity and
efficacy, which may not accurately reflect the underlying
data generating process. An incorrectly specified model
could potentially lead to a decreased probability of cor-
rectly identifying the MTD and decreased number of
patients treated at the MTD.
In this manuscript, we use simulation to investigate the

impact of model misspecification in phase I-II clinical tri-
als. We consider five scenarios for the true probabilities
of toxicity and efficacy. Data are simulated assuming one
of two copula models and fit using the correct copula, an
incorrect copula, and amodel that assumes independence.
Data are also simulated assuming differing degrees of pos-
itive correlation between toxicity and efficacy. Our results
show that the two models are relatively robust to model
misspecification but that the independencemodel actually
performs better in many cases.
The remaining sections of thismanuscript are organized

as follows. In Section ‘Methods’, we introduce several
joint probability models used in phase I-II clinical tri-
als and describe the dose-finding algorithm used in our

simulation study. In Section ‘Results and discussion’, we
present simulation results evaluating the performance of
the two copula models when correctly specified and under
model specification. Finally, we conclude with a brief
discussion in Section ‘Conclusions’.

Methods
In this section, we introduce two joint probability models
used in phase I-II clinical trials. In both cases, we specify
marginal models for the probabilities of toxicity and effi-
cacy and develop a jointmodel using a copulamodel. First,
we specify models for the marginal probability of toxicity
and the marginal probability of efficacy.
Let YT and YE be the binary indicators of toxicity and

efficacy, respectively. Denote π(yT , yE|z) = Pr(YT =
yT ,YE = yE|z) as the joint probability of toxicity and effi-
cacy given dose level z, withmarginal probabilities of toxi-
city and efficacy, πT and πE , respectively, also functions of
z. We can model the dose-toxicity and dose-efficacy rela-
tionships with any monotonic function. For simplicity, we
assume logistic regressionmodels for efficacy and toxicity
as follows:

log
(

πT
1 − πT

)
= β0,T + β1,T (z − 1), (1)

and log
(

πE
1 − πE

)
= β0,E+β1,E(z−1)+β2,E(z−1)2.

(2)

We include a quadratic term for efficacy to allow model
flexibility should the probability of efficacy level off or
diminish after a certain dose level. We note that the inter-
cept terms in (1) and (2) correspond to the log-odds of
toxicity and efficacy, respectively, at the first dose level.
This is useful for interpretation and prior specification
purposes. We next describe two copula models used in
phase I-II clinical trials for specifying a joint distribution
for YT and YE .

Braun copula
We first consider the copula model discussed by Arnold
and Strauss [9] and applied to joint modeling of efficacy
and toxicity in the setting of a Phase I-II clinical trial by
Braun [5]. These authors specify the joint distribution of
YT and YE as:

π(yT , yE|z) = k(πT ,πE,ψ1)π
yE
E (1 − πE)

1−yEπ
yT
T

× (1 − πT )1−yTψ
yT yE
1 (1 − ψ1)

1−yT yE .
(3)

Here, ψ1 represents the correlation between YT and YE
and takes on values between 0 and 1. ψ1 greater than
0.5 reflects positive correlation, ψ1 less than 0.5 reflects
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negative correlation and ψ1 = 0.5 represents indepen-
dence. We note also that k(πT ,πE,ψ1) is a constant that is
included to assure that the four probabilities sum to 1 and
depends on πT , πE , and ψ1. The conditional probability of
YE|YT can be derived from the joint probability in (3) and
is equal to:

πE|T = πEψ
yT
1 (1 − ψ1)1−yT

πEψ
yT
1 (1 − ψ1)1−yT + (1 − ψ1)(1 − πE)

.

An analogous conditional probability of YT |YE can also
be derived.
There are two key properties of the above model that are

worthy of discussion. First, the correlation parameter, ψ1,
has the useful interpretation that ψ1/ (1 − ψ1) is the odds
ratio between YE and YT . A second, less desirable prop-
erty, is that πT and πE are no longer the marginal proba-
bilities of YT and YE equal to 1, respectively, if ψ1 �= .5.
Instead, the marginal probability of YE equal to 1 is:

Pr(YE = 1) = k(πT ,πE,ψ1)πE ((1 − πT ) (1 − ψ1)

+πTψ1)

and the marginal probability of YT equal to 1 is:

Pr(YT = 1) = k(πT ,πE,ψ1)πT ((1 − πE) (1 − ψ1)

+πEψ1) .

This is a key point that must be considered during dose
finding.

Gumbel copula
Thall and Cook [4] instead model the joint probability of
efficacy and toxicity using the Gumbel copula discussed
by Murtaugh and Fisher [10], which implies the following
joint probability model for YT and YE :

π(yT , yE|z) =π
yE
E (1 − πE)

1−yEπ
yT
T (1 − πT )1−yT

+ (−1)yE+yTπE(1 − πE)πT (1 − πT )ψ2.
(4)

Here, ψ2 ∈ (−1, 1) captures the correlation between YT
and YE , with ψ2 = 0 implying independence and ψ2 ∈
(0, 1) implying positive correlation. We can again derive
the conditional probability of YE given YT ,

πE|T = πE + (−1)1+yT πE(1− πE)π
1−yT
T (1 − πT )yTψ2.

The conditional probability of YT given YE can be
expressed in an analogous fashion.
An advantage of this model is that both πE and

πT retain their original interpretations as the marginal
probabilities of efficacy and toxicity, respectively. This
can be easily seen by summing P (YE = 1,YT = 1) and
P (YE = 1,YT = 0) from (4). Unlike the Braun Copula, the
correlation parameter for theGumbel copula,ψ2, does not
have a straight-forward interpretation.

Independentmodel
An alternate approach would be to assume independence
between YT and YE , in which case the joint probability of
toxicity and efficacy is simply the product of the marginal
probabilities,

π(yT , yE|z) = π
yT
T (1 − πT )1−yTπ

yE
E (1 − πE)

1−yE , (5)

which is of course what we get by setting ψ1 = 0.5 and
ψ2 = 0 in the Braun and Gumbel copulas, respectively.
While it is unlikely that this model accurately reflects the
true association between YT and YE , this model may still
be useful because the sample size in phase I-II oncology
trials is limited and we may lack the sample size to pre-
cisely estimate ψ1 and ψ2. If the likelihood contains very
little information about these parameters, it may be that
we do not lose much with respect to our ability to identify
the optimal dose by assuming independence instead of a
more complicated model.

Likelihood and priors
Let

(
yT ,1, yE,1

)
,
(
yT ,2, yE,2

)
, . . . ,

(
yT ,n, yE,n

)
be pairs of

binary toxicity and efficacy outcomes at dose lev-
els (z1, z2, . . . , zn). The full likelihood for the models
described above is:

L( �β| �yT , �yE, �z) =
n∏

i=1
π (1, 1|zi)yT ,iyE,i π (0, 1|zi)(1−yT ,i)yE,i

× π (1, 0|zi)yT ,i(1−yE,i) π

× (0, 0|zi)(1−yT ,i)(1−yE,i)

where π (YT ,YE|z) is defined using either (3), (4) or (5)
and �β = (β0,T , β1,T , β0,E, β1,E, β2,E,ψk) with k = 1, 2 for
the two copula models and �β = (β0,T , β1,T , β0,E, β1,E, β2,E)
for the independence model.
We must specify a prior distribution for each regression

and association parameter, to complete a Bayesian anal-
ysis. We specify the following normal priors for the two
intercept terms and the quadratic term for efficacy: β0,T ∼
N(−3, sd = 3), β0,E ∼ N(−1, 3), and β2,E ∼ N

(
0, 14

)
.

The priors for β0,T and β0,E correspond to a prior belief of
P(YT = 1|z = 1) = 0.05 and P(YE = 1|z = 1) = 0.27
but provide sufficient support over all plausible values for
β0,T and β0,E and represent only mildly informative pri-
ors. The prior for β2,E is chosen to reflect a strong belief
against a quadratic relationship but allows the model flex-
ibility should there be drastic departures from a linear
relationship. Gamma priors were set for β1,T and β1,E
with mean 1 and standard deviation 2, corresponding to
a Gamma( 14 ,

1
4 ). Assuming Gamma priors for β1,T and

β1,E implies that the marginal probability of toxicity will
be monotonically increasing but the same is not true for
the marginal probability of efficacy due to the inclusion
of a quadratic term for the marginal probability of effi-
cacy. Finally, we specify non-informative uniform priors



Cunanan and Koopmeiners BMCMedical ResearchMethodology 2014, 14:51 Page 4 of 11
http://www.biomedcentral.com/1471-2288/14/51

for the association parameters: Uniform (0, 1) for ψ1 and
Uniform (−1, 1) for ψ2.

Dose-finding algorithm
For our simulation study, we follow the dose-finding algo-
rithm proposed by Thall and Cook [4]. These authors
identify a set of acceptable doses by defining a maximum
acceptable probability of toxicity assuming 100% efficacy,
a minimum acceptable probability of efficacy assuming
no toxicity and define a desirability index to identify the
optimal dose from the set of acceptable doses.
Let πT be the maximum acceptable probability of tox-

icity assuming 100% efficacy and πE be the minimum
acceptable probability of efficacy assuming no toxicity, as
specified by the physician. A dose, z, is acceptable if the
posterior probabilities of the two events πT (z) < πT and
πE(z) > πE exceed a pre-specified threshold, p, i.e.

Pr(πT (z) < πT ,πE(z) > πE|Data, z) > p. (6)

The trial terminates for futility if, at any point during the
trial, all doses are unacceptable according to Equation (6).
The optimal dose is selected from the set of acceptable
doses using a desirability index. The desirability index
for a (πT (z),πE(z)) pair is defined by Thall and Cook as
follows:

D(z) = 1 −
((

πT (z)
πT

)q
+

(
1 − πE(z)
1 − πE

)q)1/q
, (7)

where q is defined by identifying a probability of toxicity
and probability of efficacy pair,

(
π∗
T ,π

∗
E
)
, that is equally

desirable to (πT , 1.0) and
(
0,πE

)
, plugging

(
π∗
T ,π

∗
E
)
into

(7) and solving for q when D(z) equals 0. Larger values
of D(z) are considered more desirable and the optimal
combination, (0.0, 1.0), hasD(z) equal to 1 regardless of q.
The dose-finding algorithm proceeds as follows:

1. Treat the first cohort of m patients at the lowest dose
level.

2. Update the posterior distributions of the
probabilities of toxicity and efficacy for each dose
level using data from all previous cohorts.

3. Identify the set of acceptable doses using criterion (6).
If no dose is found acceptable, terminate for futility.

4. Treat the next cohort at the dose that maximizes
D(z) under the restriction that dose levels may not be
skipped when escalating. Return to step 2.

5. Repeat steps 2–4 until the maximum sample size is
reached. The dose that maximizes D(z) at study
completion is considered the optimal dose.

Results and discussion
We completed a small simulation study to evaluate the
performance of phase I-II clinical trials when the cop-
ula model is misspecified. Trial parameters were set as

follows. We assume a cohort size of 3 patients with a
maximum of 15 cohorts, for a maximum sample size of
45 patients. The maximum acceptable probability of tox-
icity assuming 100% efficacy and minimum acceptable
probability of efficacy assuming no toxicity were set at
πT = 0.5 and πE = 0.55, respectively. We set

(
π∗
T ,π

∗
E
)

equal to (0.25, 0.60), which corresponds to q = 2. The
pre-specified threshold, p, to determine the set of accept-
able doses using the posterior probability of toxicity and
efficacy is assumed to be 0.05. We consider four dose lev-
els with dose index, z = {1, 2, 3, 4}. All simulations were
completed in R version 2.15.1 [11]. Gibbs sampling was
completed in JAGS as called from R using rjags [12]. We
simulate 1000 trials; within each trial, 1000 iterations were
kept for inference following a period of 5000 iterations for
burn-in.

Scenarios
We simulated data from five scenarios to evaluate the per-
formance of our models in a variety of settings. Table 1
contains the truemarginal probability of toxicity,marginal
probability of efficacy and D(z) at each dose level for the
five scenarios, with the optimal dose in bold. Scenarios 1–
3 represent the case where the probability of toxicity and
efficacy increase as dose increases with the optimal dose
ranging from dose level 1 to dose level 4. In scenario 4,
both dose levels three and four are acceptable but dose
level three is the optimal dose. Finally, in scenario 5, all
doses are safe but none have acceptable efficacy and the
correct decision is to terminate for futility.
For each scenario, we simulated data from both copula

models and fit the data using either the correct copula
model, the incorrect copula model or the independence
model. The association parameters, ψ1 and ψ2, were var-
ied to determine the impact of the correlation of YT and
YE on model performance under model misspecification.
The Braun association parameter, ψ1, in (3) ranges from
0.5 to 0.9 by increments of 0.2; this corresponds to an
odds ratio between toxicity and efficacy ranging from 1
to 9. The Gumbel association parameter, ψ2 in (4) ranges
from 0 to 0.8 by increments of 0.4. Recall that efficacy
and toxicity are independent ifψ1 equals 0.5 for the Braun
model and ψ2 equals 0 for the Gumbel model. In these
cases, the independence model is the correct model and
the Braun and Gumbel models are unnecessarily trying to
estimate a correlation parameter when the two endpoints
are actually independent.

Results
Tables 2, 3, 4, 5 and 6 display the performance of the
Braun, Gumbel, and independence models for the five
scenarios at no, moderate, and very strong degrees of pos-
itive association; each table summarizes the results for
data simulated from both the Braun and Gumbel copula
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Table 1 Truemarginal probability of toxicity,marginal
probability of efficacy andD (z) for each dose level

Scenario Dose

1 2 3 4

1 P(Toxicity) 0.05 0.12 0.27 0.50

P(Efficacy) 0.38 0.55 0.71 0.83

D(z) -0.38 -0.03 0.16 -0.07

2 P(Toxicity) 0.38 0.52 0.67 0.79

P(Efficacy) 0.77 0.82 0.86 0.89

D(z) 0.08 -0.11 -0.38 -0.6

3 P(Toxicity) 0.02 0.07 0.15 0.31

P(Efficacy) 0.12 0.25 0.45 0.67

D(z) -0.96 -0.67 -0.26 0.04

4 P(Toxicity) 0.05 0.11 0.25 0.46

P(Efficacy) 0.18 0.55 0.79 0.86

D(z) -0.82 -0.02 0.32 0.03

5 P(Toxicity) 0.03 0.08 0.18 0.38

P(Efficacy) 0.18 0.25 0.33 0.43

D(z) -0.82 -0.67 -0.53 -0.48

Optimal dose is in bold.

models. Within a model stratum, the first row displays the
posterior probability of selecting that dose; while the sec-
ond row displays the average number of patients treated at
that dose. Operating characteristics for the optimal dose
are in bold.
Table 2 displays results for Scenario 1. Concentrating

first on the results when data are generated from the
Braun model, we see that both copula models perform
similarly well in their ability to select the correct dose
and in the number of patients treated at the optimal
dose regardless of the true correlation. The probability
of correctly identifying the optimal dose differs by less
than 0.024 and the number of patients treated at the
optimal dose differs by less than 1 across the three cor-
relation conditions. Surprisingly, the independence model
also performs very well regardless of the true correlation
and has the highest probability of identifying the optimal
dose in two of the three correlation conditions. Although,
the differences are small and the independence model
has essentially the same performance as the two copula
models.
Similar results are observed when data are generated

from the Gumbel model. Both copula models performed
similarly with respect to the probability of accurately
identifying the optimal dose and the number of patients
treated at the optimal dose. The independence model
again exhibits good performance across the three scenar-
ios, which is surprising because the independence model
lacks the flexibility to model the correlation between the

Table 2 Results using the Braun and Gumbel copulas for
data simulation under Scenario 1

Data ψk Model Dose

Futility 1 2 3 4

Braun 0.5 Braun 0.039 0.045 0.212 0.475 0.229

5.91 12.792 17.13 8.298

Gumbel 0.038 0.039 0.225 0.482 0.216

6.075 12.738 16.596 8.775

Indep 0.037 0.046 0.223 0.504 0.19

6 13.146 16.923 8.115

0.7 Braun 0.037 0.034 0.197 0.514 0.218

5.667 12.966 17.496 7.86

Gumbel 0.023 0.032 0.235 0.524 0.186

5.613 13.32 17.562 7.941

Indep 0.033 0.035 0.219 0.528 0.185

5.796 13.356 17.334 7.77

0.9 Braun 0.024 0.018 0.208 0.514 0.236

5.19 12.888 17.58 8.814

Gumbel 0.011 0.037 0.225 0.538 0.189

5.901 13.428 17.895 7.542

Indep 0.006 0.041 0.226 0.526 0.201

5.994 13.605 17.349 7.95

Gumbel 0 Braun 0.042 0.033 0.217 0.503 0.205

6.054 12.786 17.007 8.373

Gumbel 0.042 0.041 0.21 0.499 0.208

6.033 12.651 17.094 8.28

Indep 0.034 0.054 0.208 0.478 0.226

6.591 12.447 16.671 8.622

0.4 Braun 0.036 0.034 0.216 0.506 0.208

5.871 12.828 17.157 8.322

Gumbel 0.029 0.039 0.222 0.461 0.249

5.775 13.287 16.029 9.081

Indep 0.018 0.044 0.213 0.501 0.224

5.946 12.81 17.205 8.67

0.8 Braun 0.036 0.028 0.237 0.475 0.224

5.886 13.875 16.119 8.307

Gumbel 0.016 0.036 0.231 0.506 0.211

5.877 13.182 17.34 8.22

Indep 0.032 0.032 0.216 0.524 0.196

5.388 13.242 17.616 8.079

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. YT and YS are simulated with association,
ψk ; k = 1, 2when appropriate. The operating characteristics for the target dose
are in bold.

two outcomes. Across the three correlation scenarios,
the probability of correctly identifying the optimal dose
differed by less than 0.05 and the average number of
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Table 3 Results using the Braun and Gumbel copulas for
data simulation under Scenario 2

Data ψk Model Dose

Futility 1 2 3 4

Braun 0.5 Braun 0.147 0.748 0.094 0.011 0

33.159 5.922 0.798 0.042

Gumbel 0.13 0.732 0.121 0.016 0.001

32.652 6.984 1.161 0.084

Indep 0.129 0.770 0.093 0.008 0

34.542 5.826 0.825 0.063

0.7 Braun 0.16 0.744 0.091 0.005 0

32.919 6.315 0.645 0.039

Gumbel 0.106 0.761 0.117 0.016 0

34.059 6.762 0.81 0.09

Indep 0.098 0.781 0.109 0.012 0

34.671 6.516 0.705 0.09

0.9 Braun 0.204 0.707 0.086 0.003 0

31.878 6.18 0.396 0.018

Gumbel 0.071 0.799 0.114 0.015 0.001

34.977 7.2 0.63 0.063

Indep 0.095 0.773 0.122 0.009 0.001

34.329 6.789 0.795 0.078

Gumbel 0 Braun 0.14 0.722 0.126 0.012 0

32.889 6.69 0.756 0.051

Gumbel 0.124 0.745 0.122 0.008 0.001

33.714 6.564 0.786 0.069

Indep 0.13 0.751 0.111 0.007 0.001

33.585 6.465 0.738 0.099

0.4 Braun 0.159 0.741 0.09 0.009 0.001

33.39 5.886 0.96 0.066

Gumbel 0.127 0.755 0.1 0.016 0.002

33.882 6.234 1.02 0.09

Indep 0.118 0.758 0.113 0.011 0

33.36 7.059 0.927 0.036

0.8 Braun 0.16 0.742 0.094 0.004 0

32.991 6.048 0.534 0.06

Gumbel 0.081 0.799 0.104 0.014 0.002

35.247 6.657 0.84 0.048

Indep 0.113 0.76 0.118 0.009 0

34.068 6.528 0.801 0.081

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. YT and YS are simulated with association,
ψk ; k = 1, 2when appropriate. The operating characteristics for the target dose
are in bold.

patients treated at the optimal dose differed by less than
1.5 between the three models.
Results for Scenarios 2 and 3 are found in Tables 3

and 4, respectively. The results for Scenarios 2 and 3 are

Table 4 Results using the Braun and Gumbel copulas for
data simulation under Scenario 3

Data ψk Model Dose

Futility 1 2 3 4

Braun 0 Braun 0.195 0.001 0.004 0.045 0.755

3.426 3.636 5.358 27.504

Gumbel 0.174 0.001 0.005 0.042 0.778

3.459 3.744 5.418 27.855

Indep 0.149 0.001 0.003 0.035 0.812

3.384 3.69 4.938 29.169

0.4 Braun 0.162 0.001 0.005 0.025 0.807

3.297 3.762 4.884 28.719

Gumbel 0.139 0 0.003 0.042 0.816

3.417 3.693 5.487 29.025

Indep 0.13 0 0.003 0.049 0.818

3.423 3.705 5.547 28.857

0.8 Braun 0.143 0 0.002 0.033 0.822

3.351 3.552 5.502 29.19

Gumbel 0.101 0 0.002 0.037 0.86

3.387 3.636 5.568 29.775

Indep 0.093 0 0.002 0.04 0.865

3.381 3.804 5.628 29.592

Gumbel 0 Braun 0.189 0.001 0.004 0.047 0.759

3.327 3.585 5.31 27.942

Gumbel 0.173 0 0.004 0.044 0.779

3.336 3.675 5.313 28.224

Indep 0.16 0.001 0 0.034 0.805

3.435 3.789 5.172 28.434

0.4 Braun 0.16 0 0.001 0.048 0.791

3.45 3.63 5.61 28.101

Gumbel 0.163 0 0.004 0.049 0.784

3.363 3.666 5.49 28.164

Indep 0.156 0 0.001 0.034 0.809

3.405 3.591 4.977 28.875

0.8 Braun 0.171 0.001 0.001 0.029 0.798

3.342 3.645 5.25 28.116

Gumbel 0.156 0.001 0.004 0.029 0.81

3.384 3.702 5.262 28.776

Indep 0.144 0 0.002 0.042 0.812

3.342 3.804 5.484 28.824

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. YT and YS are simulated with association,
ψk ; k = 1, 2when appropriate. The operating characteristics for the target dose
are in bold.

similar to the results for Scenario 1. The probability of
correctly identifying the optimal dose and the average
number of patients treated at the optimal dose are sim-
ilar for both copula models regardless of how the data



Cunanan and Koopmeiners BMCMedical ResearchMethodology 2014, 14:51 Page 7 of 11
http://www.biomedcentral.com/1471-2288/14/51

Table 5 Results using the Braun and Gumbel copulas for
data simulation under Scenario 4

Data ψk Model Dose

Futility 1 2 3 4

Braun 0.5 Braun 0.023 0.003 0.057 0.665 0.252

3.42 6.39 23.19 11.268

Gumbel 0.015 0.001 0.055 0.683 0.246

3.402 7.041 23.358 10.809

Indep 0.017 0.003 0.078 0.621 0.281

3.351 7.071 22.74 11.304

0.7 Braun 0.02 0.001 0.057 0.684 0.238

3.333 6.849 24.066 10.146

Gumbel 0.019 0.003 0.069 0.671 0.238

3.39 7.107 23.286 10.68

Indep 0.01 0.001 0.085 0.655 0.249

3.39 7.593 22.854 10.875

0.9 Braun 0.017 0.001 0.062 0.658 0.262

3.303 6.996 23.376 10.839

Gumbel 0.002 0 0.078 0.698 0.222

3.315 7.476 23.46 10.695

Indep 0.007 0.001 0.081 0.647 0.264

3.543 7.743 22.329 11.172

Gumbel 0 Braun 0.027 0.002 0.064 0.664 0.243

3.282 6.885 23.109 11.034

Gumbel 0.027 0.001 0.065 0.657 0.25

3.351 6.711 22.95 11.136

Indep 0.025 0.002 0.084 0.633 0.256

3.375 7.374 22.767 10.788

0.4 Braun 0.025 0.002 0.066 0.631 0.276

3.504 7.338 22.515 11.013

Gumbel 0.021 0.002 0.074 0.655 0.248

3.45 7.296 22.599 11.013

Indep 0.013 0.001 0.069 0.649 0.268

3.315 7.032 22.542 11.787

0.8 Braun 0.012 0.002 0.063 0.65 0.273

3.318 7.152 22.647 11.502

Gumbel 0.019 0.001 0.075 0.669 0.236

3.297 7.038 23.154 10.923

Indep 0.013 0.004 0.075 0.673 0.235

3.33 7.389 23.172 10.755

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. YT and YS are simulated with association,
ψk ; k = 1, 2when appropriate. The operating characteristics for the target dose
are in bold.

are generated and the independence model provides sim-
ilar performance even though the independence model is
unable to appropriately model the correlation between YT
and YE .

Table 6 Results using the Braun and Gumbel copulas for
data simulation under Scenario 5

Data ψk Model Dose

Futility 1 2 3 4

Braun 0.5 Braun 0.87 0.001 0.005 0.023 0.101

4.086 4.59 4.62 11.946

Gumbel 0.872 0 0.006 0.022 0.1

4.05 4.44 4.896 11.316

Indep 0.872 0.002 0.009 0.016 0.101

4.176 4.656 4.803 11.319

0.7 Braun 0.928 0 0.004 0.009 0.059

4.065 4.209 4.56 10.095

Gumbel 0.887 0.002 0.014 0.014 0.083

3.936 4.485 4.869 11.748

Indep 0.895 0.002 0.01 0.016 0.077

4.254 4.467 4.596 11.256

0.9 Braun 0.945 0.001 0.004 0.009 0.041

4.053 4.29 4.566 9.531

Gumbel 0.904 0.003 0.006 0.016 0.071

4.248 4.701 5.148 11.091

Indep 0.905 0 0.006 0.016 0.073

4.227 4.608 5.196 11.22

Gumbel 0 Braun 0.895 0.001 0.011 0.01 0.083

4.035 4.41 4.674 11.196

Gumbel 0.878 0.003 0.008 0.015 0.096

3.999 4.293 4.692 11.391

Indep 0.897 0.001 0.007 0.014 0.081

4.197 4.494 4.659 11.886

0.4 Braun 0.898 0.002 0.01 0.013 0.077

3.966 4.254 4.368 11.061

Gumbel 0.901 0.001 0.004 0.021 0.073

4.179 4.452 4.89 11.112

Indep 0.892 0.004 0.006 0.018 0.08

4.065 4.365 4.644 11.559

0.8 Braun 0.913 0.003 0.005 0.013 0.066

4.002 4.536 4.623 10.794

Gumbel 0.925 0.002 0.005 0.013 0.055

4.152 4.488 4.632 11.028

Indep 0.897 0.003 0.006 0.012 0.082

4.179 4.611 4.452 11.286

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. YT and YS are simulated with association,
ψk ; k = 1, 2when appropriate. The operating characteristics for the target dose
are in bold.

Scenario 4 (Table 5), represents the scenario where mul-
tiple dose levels are acceptable, dose levels 3 and 4, but
dose level 3 is optimal. This scenario represents one of
the primary motivations for phase I-II designs as there is
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a dose level where further escalation results in a greater
probability of toxicity but relatively little efficacy benefit.
The results for Scenario 4 are consistent with our previous
results: there is little difference between the three models
in the probability of correctly identifying the optimal dose
and the average number of patients treated at the optimal
dose regardless of the correlation between endpoints and
how the data are generated. Finally, the results for Sce-
nario 5 can be found in Table 6. In this scenario, all dose
levels are safe but have unacceptable efficacy and the cor-
rect decision is to terminate for futility. The Gumbel and
independence models exhibit similar performance across
all scenarios but we do observe that the Braun model is
more likely to terminate for futility when YT and YE are
correlated and the data are generated for the Braunmodel.
Although, the differences are small in both cases.
The simulations results presented in Tables 2, 3, 4, 5

and 6 indicate that specifying the correct copula model
has little impact on the operating characteristics of Phase
I-II clinical trials but are dependent on a number of fac-
tors, including the sample size and priors specified for
the logistic regression models used for efficacy and toxi-
city. In order to account for these factors, we completed
additional simulations to evaluate the robustness of our
conclusions to changing the sample size and prior distri-
butions. Figure 1 presents simulation results to evaluate
the impact of sample size on our conclusions. Presented
are the simulated probabilities of correctly identifying the
optimal dose for Scenario 1 for maximum sample sizes of
30, 45, 60 and 75 subjects, with data simulated from both

models and various levels of correlation. As expected,
the probability of correctly identifying the optimal dose
increases as the maximum sample size increases. More
importantly, increasing the sample size appears to have no
impact on our primary conclusion that incorrectly speci-
fying the copula model has little impact on the probability
of correctly identifying the optimal dose regardless of the
level of correlation between the two endpoints and the
model from which the data are generated.
Figure 2 presents simulation results to evaluate the

impact of changing the priors for the parameters of
the logistic regression models for efficacy and toxicity.
We considered four prior specifications. Prior specifi-
cation 1 is the original priors: β0,T ∼ N (−3, sd = 3),
β0,E ∼ N (−1, 3), β1,T ∼ Gamma

( 1
4 ,

1
4
)
and β1,E ∼

Gamma
( 1
4 ,

1
4
)
, in prior specification 2, we increase the

prior variances for the intercept parameters: β0,T ∼
N (−3, 5) and β0,E ∼ N (−1, 5), in prior specification 3,
we increase the prior variances for the slope parameters
but not the intercept parameters: β1,T ∼ Gamma

( 1
25 ,

1
25

)
and β1,E ∼ Gamma

( 1
25 ,

1
25

)
and in prior specification

4, we increase the prior variances of both the slope and
intercept parameters: β0,T ∼ N (−3, 5), β0,E ∼ N (−1, 5),
β1,T ∼ Gamma

( 1
25 ,

1
25

)
and β1,E ∼ Gamma

( 1
25 ,

1
25

)
. Pre-

sented are the simulated probabilities of correctly identi-
fying the optimal dose for Scenario 1 for the four prior
specifications, with data simulated from both models and
various levels of correlation. We see that increasing the
prior variance of the intercept terms has little impact on
the probability of correctly identifying the optimal dose

Figure 1 Probability of correctly identifying the optimal dose for Scenario 1 for the Braun, Gumbel and Independence model for various
combinations of the true model, level of correlation andmaximum sample size.
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Figure 2 Probability of correctly identifying the optimal dose for Scenario 1 for the Braun, Gumbel and Independence model for various
combinations of the true model, level of correlation and prior specification for the regression parameters in the logistic regression
models for efficacy and toxicity. PS 1: β0,T ∼ N (−3, 3), β0,E ∼ N (−1, 3), β1,T ∼ Gamma

( 1
4 ,

1
4

)
, β1,E ∼ Gamma

( 1
4 ,

1
4

)
; PS 2: β0,T ∼ N (−3, 5),

β0,E ∼ N (−1, 5), β1,T ∼ Gamma
( 1
4 ,

1
4

)
, β1,E ∼ Gamma

( 1
4 ,

1
4

)
; PS 3: β0,T ∼ N (−3, 3), β0,E ∼ N (−1, 3), β1,T ∼ Gamma

( 1
25 ,

1
25

)
,

β1,E ∼ Gamma
( 1
25 ,

1
25

)
; PS 4: β0,T ∼ N (−3, 5), β0,E ∼ N (−1, 5), β1,T ∼ Gamma

( 1
25 ,

1
25

)
, β1,E ∼ Gamma

( 1
25 ,

1
25

)
.

but increasing the variance of the slope decreases the
probability of correctly identifying the optimal dose con-
siderably. More importantly, we see that the independence
model performs as well or better than the other model in
all cases. In addition, we see that the Braun model per-
forms worse than the other two models when we increase
the prior variance of the slope parameters with a larger
effect observed with moderate and high correlation. This
effect is similar regardless of how the data are generated
and, in fact, appears slightly larger when the Braun model
is actually the correct model.
Our simulation results suggest that specifying the cor-

rect copula model does not improve the operating char-
acteristics of our study compared to simply using an
independence model and, in fact, results in worse operat-
ing characteristics in many cases. This is counter-intuitive
as specifying the correct model should result in more effi-
cient estimates of the model parameters. One possible
explanation for this phenomenon is that the correlation
parameter between YT and YE may be too difficult to esti-
mate given the limited sample size. We completed a small
simulation study to investigate our ability to estimate ψ1
and ψ2 in the Braun and Gumbel copulas, respectively.
For each scenario, we considered a study with 11 subjects
at each dose level, for a total of 44 subjects, and consid-
ered various levels of correlation between YT and YE . 1000
simulations were considered for each scenario. Table 7
presents the mean and standard deviation of the posterior

mean for ψ1 and ψ2 under various levels of correla-
tion. We see that the Braun model, while certainly biased
towards independence, appears to be learning about ψ1
and has posterior means of approximately 0.65 and 0.80
whenψ1 is equal to 0.70 and 0.90, respectively. In contrast,
there is little information about ψ2 in the Gumbel model
and the posterior means are approximately 0.10 and 0.20
when ψ2 is equal to 0.40 and 0.80, respectively.

Conclusions
We completed a simulation study to evaluate the perfor-
mance of copula models in phase I-II clinical trials under
model misspecification. Our results suggest that the oper-
ating characteristics of our study are relatively robust to
misspecifying the copula model. Both models exhibited
similar performance, as measured by the probability of
correctly identifying the optimal dose and the number of
subjects treated at the optimal dose, regardless of whether
the data were generated from the correct or incorrect cop-
ula, even when there is substantial correlation between
YT and YE . These results were robust to changes in the
maximum sample size and the prior distributions for the
parameters of the logistic regression models for toxicity
and efficacy. In comparing the twomodels, there was little
difference in the operating characteristics, although, the
straight-forward interpretation of the model parameters
in the Gumbel model may make the Gumbel model more
desirable.
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Table 7 Average posterior mean (standard deviation) for the correlation parameters,ψk, k = 1, 2, when 11 subjects are
treated at each dose level

Braunmodel Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

ψ1 = 0.5 0.535 0.546 0.531 0.546 0.495

(0.023) (0.021) (0.024) (0.024) (0.025)

ψ1 = 0.7 0.659 0.668 0.656 0.660 0.643

(0.020) (0.018) (0.021) (0.019) (0.021)

ψ1 = 0.9 0.784 0.824 0.792 0.777 0.811

(0.010) (0.008) (0.012) (0.010) (0.010)

Gumbel model Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

ψ2 = 0.0 -0.001 -0.003 0.005 -0.005 -0.002

(0.075) (0.081) (0.067) (0.067) (0.072)

ψ2 = 0.4 0.115 0.105 0.119 0.091 0.118

(0.073) (0.076) (0.063) (0.06) (0.072)

ψ2 = 0.8 0.225 0.244 0.194 0.212 0.219

(0.062) (0.065) (0.06) (0.057) (0.061)

Data are generated assuming the correct model and specified true correlation between YT and YE (ψk).

Surprisingly, the naive model that ignores the correla-
tion between YE and YT performed as well, better in some
cases, with respect to correctly identifying the optimal
dose and the number of subjects treated at the optimal
dose than even the correct model. This was true regard-
less of the scenario and true correlation between YE and
YT . This result is not intuitive as we would expect that
correctly specifying the copula model would result in
more efficient parameter estimates and improved operat-
ing characteristics of our study.
There are several possible explanations for the lack

of benefit when utilizing the correct copula model in
Phase I-II clinical trials. First, it is possible that the likeli-
hood contains very little information about the correlation
parameter and any benefit of modeling the correlation is
negated by the need to estimate an additional correlation
parameter. In this case, fitting a copula model may result
in more variable estimates, in general, which would result
in performance that is no better, and potentially worse,
than simply assuming that the two endpoints are indepen-
dent. A second explanation is that Phase I-II clinical trials
do not provide sufficient information for selecting the cor-
rect copula model. Phase I-II clinical trials utilize small
sample sizes, which makes it difficult to properly evaluate
the fit of amodel. Furthermore, regulatory bodies typically
require that a model is specified in advance when utilizing
an adaptive trial design. These challenges make it difficult
to identify the correct copula from the data, which may
negate any benefit frommodeling the correlation between
the toxicity and efficacy endpoint. Finally, properly mod-
eling the correlation between two endpoints is necessary
to complete proper inference (hypothesis tests, credible
intervals, etc.) but it may be that modeling this correlation

is not necessary in a Phase I-II clinical trial where the goal
is to select a dose at study completion regardless of the
error associated with estimates of the probability of effi-
cacy and toxicity. In this case, we would not expect any
benefit frommodeling the correlation, which is consistent
with our simulation results.
We completed a second simulation study to investigate

the model’s ability to estimate the correlation parameters
with the sample sizes used in phase I-II clinical trials in
order to fully understand the behavior of copula models
in phase I-II clinical trials. Estimates of the correlation
parameters were biased towards the prior mean of no cor-
relation in both cases but the average posterior mean of
the correlation parameter in the Braun model was much
closer to the true value of the correlation parameter than
in the Gumbel model. This suggests that, while the like-
lihood for the Braun model contains a fair amount of
information for the correlation parameter, the likelihood
for the Gumbel model contains very little information
about the correlation parameter and provides a poten-
tial explanation for the apparent lack of benefit due to
properly modeling the correlation between efficacy and
toxicity in phase I-II clinical trials.
The results of this manuscript are dependent the deci-

sion rule proposed by Thall and Cook [4]. Other decision
rules have been proposed for phase I-II clinical trials
[5,13] and it is possible that the results of our simula-
tion study would change with a different decision rule.
We think that this is unlikely given that we consistently
found no benefit of appropriately modeling the correla-
tion between toxicity and efficacy in all scenarios and
additional simulation results illustrated that the likelihood
contains little information for estimating the correlation
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parameters in the two copulas we considered for sample
sizes typical of phase I-II clinical trials. Nevertheless, this
issue should be considered when evaluating the results of
our simulation study.
Our results do not indicate a preference for one model

over the other. Both models performed similarly, regard-
less of how the data were generated. Although, the per-
formance of the Braun model suffered more than the
performance of the Gumbel model when vague priors
were placed on the slope parameters in the logistic regres-
sion models for efficacy and toxicity. The other primary
difference between the two models is the interpretation of
the model parameters. In the Gumbel model, πE and πT
represent the marginal probability of efficacy and toxicity,
respectively, but are conditional probabilities that depend
on the correlation parameter in the Braun model. This
property could make the Gumbel model preferable given
the similar performance of the two models. That said, our
results indicate that it would be acceptable for a practi-
tioner to simply fit the model that assumes independence
even though the two outcomes are likely correlated. The
performance of the two copula models could possibly be
improved by utilizing informative priors for the correla-
tion parameters but strongly informative priors would be
required to overcome the apparent lack of information in
the likelihood and it is unlikely that such prior informa-
tion exists in early phase clinical trials. In this case, fitting
a model that assumes independence is preferable.

Competing interests
Both authors declare that they have no competing interests.

Authors’ contributions
KC implemented the simulation study, interpreted the results and drafted the
manuscript. JK conceived of the study and edited the manuscript. Both
authors read and approved the final manuscript.

Acknowledgements
This research was partially supported by a research grant from Medtronic, Inc.
and a grant-in-aid of research, artistry and scholarship from the University of
Minnesota. The authors would also like to thank the Associate Editor and two
Referees for their helpful comments, which improved the manuscript.

Received: 14 November 2013 Accepted: 8 April 2014
Published: 14 April 2014

References
1. Storer BE: Design and analysis of phase I clinical trials. Biometrics 1989,

45(3):925–937.
2. O’Quigley J, Pepe M, Fisher L: Continual reassessment method: a

practical design for phase 1 clinical trials in cancer. Biometrics 1990,
46:33–48.

3. Goodman SN, Zahurak ML, Piantadosi S: Some practical improvements
in the continual reassessment method for phase I studies. Stat Med
1995, 14(11):1149–1161.

4. Thall PF, Cook JD: Dose-finding based on efficacy/toxicity trade-offs.
Biometrics 2004, 60(3):684–693.

5. Braun TM: The bivariate continual reassessment method: extending
the CRM to phase I trials of two competing outcomes. Control Clin
Trials 2002, 23(3):240–256.

6. Zhang W, Sargent DJ, Mandrekar S: An adaptive dose-finding design
incorporating both toxicity and efficacy. Stat Med 2006,
25(14):2365–2383.

7. Nelsen R: An Introduction to Copulas. New York: Springer; 1999.
8. Iasonos A, Wilton AS, Riedel ER, Seshan VE, Spriggs DR: A comprehensive

comparison of the continual reassessment method to the standard
3 + 3 dose escalation scheme in phase I dose-finding studies. Clin
Trials 2008, 5(5):465–477.

9. Arnold BC, Strauss DJ: Bivariate distributions with conditionals in
prescribed exponential families. J Roy Stat Soc B 1991, 53(2):365–375.
[http://www.jstor.org/stable/2345747]

10. Murtaugh PA, Fisher LD: Bivariate binarymodels of efficacy and
toxicity in dose-ranging trials. CommStat Theor Meth 1990,
19(6):2003–2020.

11. R Core Team: R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing; 2013.
[http://www.R-project.org/]

12. Plummer M: rjags: Bayesian Graphical Models usingMCMC/2013.
[http://CRAN.R-project.org/package=rjags] [R package version 3-10].

13. Yin G, Li Y, Ji Y: Bayesian dose-finding in phase I/II clinical trials using
toxicity and efficacy odds ratios. Biometrics 2006, 62(3):777–787.

doi:10.1186/1471-2288-14-51
Cite this article as: Cunanan and Koopmeiners: Evaluating the performance
of copula models in phase I-II clinical trials under model misspecification.
BMCMedical ResearchMethodology 2014 14:51.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.jstor.org/stable/2345747
http://www.R-project.org/
http://CRAN.R-project.org/package=rjags

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Braun copula
	Gumbel copula
	Independent model
	Likelihood and priors
	Dose-finding algorithm

	Results and discussion
	Scenarios
	Results

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

