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Abstract

Background: Traditionally, phase | oncology trials are designed to determine the maximum tolerated dose (MTD),
defined as the highest dose with an acceptable probability of dose limiting toxicities(DLT), of a new treatment via a
dose escalation study. An alternate approach is to jointly model toxicity and efficacy and allow dose escalation to
depend on a pre-specified efficacy/toxicity tradeoff in a phase I-ll design. Several phase |-l trial designs have been
discussed in the literature; while these model-based designs are attractive in their performance, they are potentially
vulnerable to model misspecification.

Methods: Phase |-l designs often rely on copula models to specify the joint distribution of toxicity and efficacy, which
include an additional correlation parameter that can be difficult to estimate. We compare and contrast three models
for the joint probability of toxicity and efficacy, including two copula models that have been proposed for use in phase
-l clinical trials and a simple model that assumes the two outcomes are independent. We evaluate the performance
of the various models through simulation both when the models are correct and under model misspecification.

Results: Both models exhibited similar performance, as measured by the probability of correctly identifying the
optimal dose and the number of subjects treated at the optimal dose, regardless of whether the data were generated
from the correct or incorrect copula, even when there is substantial correlation between the two outcomes. Similar

sample sizes used in Phase I-Il clinical trials.

results were observed for a simple model that assumes independence, even in the presence of strong correlation.
Further simulation results indicate that estimating the correlation parameter in copula models is difficult with the

Conclusions: Our simulation results indicate that the operating characteristics of phase I-Il clinical trials are robust to
misspecification of the copula model but that a simple model that assumes independence performs just as well due
to difficulty in estimating the copula model correlation parameters from binary data.

Keywords: Bayesian Adaptive Design, Phase I-ll, Copula models

Background

Phase I oncology trials are primarily concerned with
establishing the safety profile of a new treatment via
determining the maximum tolerated dose (MTD), defined
as the highest dose with the probability of toxicity less
than a pre-specified target toxicity rate. Dose escalation
studies can be categorized as either rule-based, such as
the traditional 3 + 3 [1], or model-based, such as the
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continual reassessment method (CRM) [2]. Standard rule-
based designs are advantageous with their simplicity in
implementation; however, such designs are less desirable
in their performance and efficiency, since the selection
probability for the true MTD can be poor and dose assign-
ment is based on information from the current dose level
only. The standard CRM uses a simple parametric model,
such as a one-parameter power model or two-parameter
logistic regression mode, to characterize the relationship
between dose level and the probability of experiencing
a dose limiting toxicity (DLT). This method assumes a
monotonic dose-response relationship between dose level
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and toxicity and has a variety of proposed modifications
to better ensure patient safety [3].

Standard phase I designs assume that both the proba-
bilities of toxicity and efficacy of a new drug increase as
dose level increases. Nevertheless, in some instances an
increase in dose level may result in a substantial increase
in toxicity but only a small increase in efficacy. Thus, an
alternate approach is to consider the tradeoff between
toxicity and efficacy during dose escalation. To this end,
several phase I-1I study designs that jointly model toxicity
and efficacy have been discussed in the literature [4-6]. As
with the CRM, these methods assume a parametric model
for both the dose-toxicity and dose-efficacy relationship,
which may also include a quadratic term for efficacy to
allow for model flexibility. In addition, these methods
require that we specify a joint probability model for effi-
cacy and toxicity, which is often accomplished using a
copula model.

Copula models provide a flexible framework for spec-
ifying the joint distribution of two random variables [7].
In a copula model, a joint distribution is specified on the
unit square and a joint distribution for any two random
variables can be derived using an inverse transformation.
In the context of a phase I-II clinical trial, we specify
parametric models for the dose-response relationship for
toxicity and efficacy and a copula model is used to specify
a joint model for efficacy and toxicity.

Model-based designs tend to surpass rule-based designs
in their ability to correctly identify the MTD and in the
number of patients treated at the MTD [8], but are poten-
tially vulnerable to model misspecification. This problem
is exacerbated by the presence of a copula model in effi-
cacy/toxicity tradeoff designs. Copula models impose a
rigid structure on the relationship between toxicity and
efficacy, which may not accurately reflect the underlying
data generating process. An incorrectly specified model
could potentially lead to a decreased probability of cor-
rectly identifying the MTD and decreased number of
patients treated at the MTD.

In this manuscript, we use simulation to investigate the
impact of model misspecification in phase I-II clinical tri-
als. We consider five scenarios for the true probabilities
of toxicity and efficacy. Data are simulated assuming one
of two copula models and fit using the correct copula, an
incorrect copula, and a model that assumes independence.
Data are also simulated assuming differing degrees of pos-
itive correlation between toxicity and efficacy. Our results
show that the two models are relatively robust to model
misspecification but that the independence model actually
performs better in many cases.

The remaining sections of this manuscript are organized
as follows. In Section ‘Methods’, we introduce several
joint probability models used in phase I-II clinical tri-
als and describe the dose-finding algorithm used in our
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simulation study. In Section ‘Results and discussion’, we
present simulation results evaluating the performance of
the two copula models when correctly specified and under
model specification. Finally, we conclude with a brief
discussion in Section ‘Conclusions’.

Methods

In this section, we introduce two joint probability models
used in phase I-II clinical trials. In both cases, we specify
marginal models for the probabilities of toxicity and effi-
cacy and develop a joint model using a copula model. First,
we specify models for the marginal probability of toxicity
and the marginal probability of efficacy.

Let Y7 and Yg be the binary indicators of toxicity and
efficacy, respectively. Denote 7 (yr,yelz) = Pr(Yr =
yr, YE = yE|2) as the joint probability of toxicity and effi-
cacy given dose level z, with marginal probabilities of toxi-
city and efficacy, =1 and 7, respectively, also functions of
z. We can model the dose-toxicity and dose-efficacy rela-
tionships with any monotonic function. For simplicity, we
assume logistic regression models for efficacy and toxicity
as follows:

log (1 fY;TT) = Bor + PLr(z—1), (1)

and log (1 j_TEnE> = Boe+BLE(z—1)+Poe(z—1)%
(2)

We include a quadratic term for efficacy to allow model
flexibility should the probability of efficacy level off or
diminish after a certain dose level. We note that the inter-
cept terms in (1) and (2) correspond to the log-odds of
toxicity and efficacy, respectively, at the first dose level.
This is useful for interpretation and prior specification
purposes. We next describe two copula models used in
phase I-1II clinical trials for specifying a joint distribution
for Y7 and YE.

Braun copula
We first consider the copula model discussed by Arnold
and Strauss [9] and applied to joint modeling of efficacy
and toxicity in the setting of a Phase I-II clinical trial by
Braun [5]. These authors specify the joint distribution of
Y7 and YE as:

(7, yEl?) = k(rr, wE, Y1)y (1 — mp) ™ m) T
X (L= ) Ty PR — )
3)
Here, V1 represents the correlation between Y7 and Yg

and takes on values between 0 and 1. y; greater than
0.5 reflects positive correlation, ¥ less than 0.5 reflects
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negative correlation and ¥; = 0.5 represents indepen-
dence. We note also that k(7 , mE, Y1) is a constant that is
included to assure that the four probabilities sum to 1 and
depends on 7T, g, and ¥1. The conditional probability of
Ye|Yr can be derived from the joint probability in (3) and
is equal to:

Ty (=Yt
mEYl (1= YT + (1= Y1) = 7E)|

An analogous conditional probability of Y7|YE can also
be derived.

There are two key properties of the above model that are
worthy of discussion. First, the correlation parameter, ¥/,
has the useful interpretation that vr;/ (1 — 1) is the odds
ratio between Yg and Y7. A second, less desirable prop-
erty, is that w7 and ng are no longer the marginal proba-
bilities of Y7 and Yg equal to 1, respectively, if Y1 # .5.
Instead, the marginal probability of Yr equal to 1 is:

Pr(Ye =1) =k(r, 7, Y1)7e (L —77) (1 — Y1)
+ Y1)
and the marginal probability of Y7 equal to 1 is:
Pr(Yr =1) =k(rr, mg, Yy)mr (1 — 7e) (1 — Y1)
+7ey).

This is a key point that must be considered during dose
finding.

TET =

Gumbel copula

Thall and Cook [4] instead model the joint probability of
efficacy and toxicity using the Gumbel copula discussed
by Murtaugh and Fisher [10], which implies the following
joint probability model for Y7 and Yz:

Ty yEl2) =78 (1 — mp) ER )T (1 — )T
+ (=1)EPTre(1 — np)mr (1 — r) .

(4)

Here, Y € (—1,1) captures the correlation between Yr
and Yg, with ¥, = 0 implying independence and v, €
(0,1) implying positive correlation. We can again derive
the conditional probability of Y given Y7,

1_
wer =g+ (=D Tl — ey 2T (A - wrY T .

The conditional probability of Y7 given Y can be
expressed in an analogous fashion.

An advantage of this model is that both 7 and
nr retain their original interpretations as the marginal
probabilities of efficacy and toxicity, respectively. This
can be easily seen by summing P (Y =1,Y7r =1) and
P (YE =1, Y7 = 0) from (4). Unlike the Braun Copula, the
correlation parameter for the Gumbel copula, 12, does not
have a straight-forward interpretation.
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Independent model

An alternate approach would be to assume independence
between YT and Y, in which case the joint probability of
toxicity and efficacy is simply the product of the marginal
probabilities,

n(y1yele) = 7y (1 — ) T — wp) E, (5)

which is of course what we get by setting ¥; = 0.5 and
Yo = 0 in the Braun and Gumbel copulas, respectively.
While it is unlikely that this model accurately reflects the
true association between Y1 and Y, this model may still
be useful because the sample size in phase I-II oncology
trials is limited and we may lack the sample size to pre-
cisely estimate v; and . If the likelihood contains very
little information about these parameters, it may be that
we do not lose much with respect to our ability to identify
the optimal dose by assuming independence instead of a
more complicated model.

Likelihood and priors

Let (yTyl,yE,l), (yTyz,yE,g),..., (yT,,,,yE,n) be pairs of
binary toxicity and efficacy outcomes at dose lev-
els (z1,z9,...,2z4). The full likelihood for the models
described above is:

n
L@l 5.3 = [ 7 (1 11207795 7 (0, 1jzp) (e
i=1
x 1 (1, 0|z,-)yT,i(1*yE,i) e
x (0, 0|z;)A=77) (1=2E1)

wherg 7w (YT, YE|2) is defined using either (3), (4) or (5)
and B = (Bo,r, B1,1> Bo.E» BLE: Bo,e> Yi) with k = 1,2 for
the two copula models and 8 = (Bo, 7, B1,T> Bo,E> B1,E> B2,E)
for the independence model.

We must specify a prior distribution for each regression
and association parameter, to complete a Bayesian anal-
ysis. We specify the following normal priors for the two
intercept terms and the quadratic term for efficacy: o1 ~
N(=3,sd = 3), Bor ~ N(—1,3), and Bz ~ N (0, ;).
The priors for fo,r and Bo,r correspond to a prior belief of
P(Yr =1z = 1) = 0.05and P(Yg = 1]z = 1) = 0.27
but provide sufficient support over all plausible values for
Bo,r and Bor and represent only mildly informative pri-
ors. The prior for By g is chosen to reflect a strong belief
against a quadratic relationship but allows the model flex-
ibility should there be drastic departures from a linear
relationship. Gamma priors were set for 1,7 and Big
with mean 1 and standard deviation 2, corresponding to
a Gamma(i, }L). Assuming Gamma priors for 81,7 and
B1,e implies that the marginal probability of toxicity will
be monotonically increasing but the same is not true for
the marginal probability of efficacy due to the inclusion
of a quadratic term for the marginal probability of effi-
cacy. Finally, we specify non-informative uniform priors
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for the association parameters: Uniform (0, 1) for ¥r; and
Uniform (—1, 1) for y.

Dose-finding algorithm

For our simulation study, we follow the dose-finding algo-
rithm proposed by Thall and Cook [4]. These authors
identify a set of acceptable doses by defining a maximum
acceptable probability of toxicity assuming 100% efficacy,
a minimum acceptable probability of efficacy assuming
no toxicity and define a desirability index to identify the
optimal dose from the set of acceptable doses.

Let 7 be the maximum acceptable probability of tox-
icity assuming 100% efficacy and w; be the minimum
acceptable probability of efficacy assuming no toxicity, as
specified by the physician. A dose, z, is acceptable if the
posterior probabilities of the two events w7(z) < 7w and
7e(z) > 7 exceed a pre-specified threshold, p, i.e.

Pr(nr(2z) < w7, nE(2) > mg|Data,z) > p. (6)

The trial terminates for futility if, at any point during the
trial, all doses are unacceptable according to Equation (6).
The optimal dose is selected from the set of acceptable
doses using a desirability index. The desirability index
for a (w7(2), me(2z)) pair is defined by Thall and Cook as
follows:

q _ a\ 1/q
Do) =1 ((m(@) . (1 ms(z)> ) @
T l—rmg

where g is defined by identifying a probability of toxicity

and probability of efficacy pair, (n;, ng), that is equally

desirable to (7 7,1.0) and (0, 7), plugging (7%, 7}) into

(7) and solving for g when D(z) equals 0. Larger values

of D(z) are considered more desirable and the optimal

combination, (0.0, 1.0), has D(z) equal to 1 regardless of g.
The dose-finding algorithm proceeds as follows:

1. Treat the first cohort of m patients at the lowest dose
level.

2. Update the posterior distributions of the
probabilities of toxicity and efficacy for each dose
level using data from all previous cohorts.

3. Identify the set of acceptable doses using criterion (6).
If no dose is found acceptable, terminate for futility.

4. Treat the next cohort at the dose that maximizes
D(z) under the restriction that dose levels may not be
skipped when escalating. Return to step 2.

5. Repeat steps 2—4 until the maximum sample size is
reached. The dose that maximizes D(z) at study
completion is considered the optimal dose.

Results and discussion

We completed a small simulation study to evaluate the
performance of phase I-II clinical trials when the cop-
ula model is misspecified. Trial parameters were set as
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follows. We assume a cohort size of 3 patients with a
maximum of 15 cohorts, for a maximum sample size of
45 patients. The maximum acceptable probability of tox-
icity assuming 100% efficacy and minimum acceptable
probability of efficacy assuming no toxicity were set at
mp = 0.5and mg = 0.55, respectively. We set (7%, 7})
equal to (0.25,0.60), which corresponds to ¢ = 2. The
pre-specified threshold, p, to determine the set of accept-
able doses using the posterior probability of toxicity and
efficacy is assumed to be 0.05. We consider four dose lev-
els with dose index, z = {1, 2, 3,4}. All simulations were
completed in R version 2.15.1 [11]. Gibbs sampling was
completed in JAGS as called from R using rjags [12]. We
simulate 1000 trials; within each trial, 1000 iterations were
kept for inference following a period of 5000 iterations for
burn-in.

Scenarios

We simulated data from five scenarios to evaluate the per-
formance of our models in a variety of settings. Table 1
contains the true marginal probability of toxicity, marginal
probability of efficacy and D(z) at each dose level for the
five scenarios, with the optimal dose in bold. Scenarios 1—-
3 represent the case where the probability of toxicity and
efficacy increase as dose increases with the optimal dose
ranging from dose level 1 to dose level 4. In scenario 4,
both dose levels three and four are acceptable but dose
level three is the optimal dose. Finally, in scenario 5, all
doses are safe but none have acceptable efficacy and the
correct decision is to terminate for futility.

For each scenario, we simulated data from both copula
models and fit the data using either the correct copula
model, the incorrect copula model or the independence
model. The association parameters, ¥; and v, were var-
ied to determine the impact of the correlation of Y7 and
Yr on model performance under model misspecification.
The Braun association parameter, v, in (3) ranges from
0.5 to 0.9 by increments of 0.2; this corresponds to an
odds ratio between toxicity and efficacy ranging from 1
to 9. The Gumbel association parameter, ¥ in (4) ranges
from O to 0.8 by increments of 0.4. Recall that efficacy
and toxicity are independent if 1 equals 0.5 for the Braun
model and ¥ equals O for the Gumbel model. In these
cases, the independence model is the correct model and
the Braun and Gumbel models are unnecessarily trying to
estimate a correlation parameter when the two endpoints
are actually independent.

Results

Tables 2, 3, 4, 5 and 6 display the performance of the
Braun, Gumbel, and independence models for the five
scenarios at no, moderate, and very strong degrees of pos-
itive association; each table summarizes the results for
data simulated from both the Braun and Gumbel copula
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Table 1 True marginal probability of toxicity, marginal
probability of efficacy and D (z) for each dose level

Scenario Dose
1 2 3 4
1 P(Toxicity) 0.05 0.12 0.27 0.50
P(Efficacy) 0.38 0.55 0.71 083
D@ -0.38 -0.03 0.16 -0.07
2 P(Toxicity) 0.38 0.52 067 0.79
P(Efficacy) 0.77 0.82 0.86 0.89
D(z) 0.08 -0.11 -0.38 -0.6
3 P(Toxicity) 0.02 0.07 0.15 0.31
P(Efficacy) 0.12 0.25 045 0.67
D(@@) -0.96 -0.67 -0.26 0.04
4 P(Toxicity) 0.05 0.1 0.25 0.46
P(Efficacy) 0.18 0.55 0.79 0.86
D@@) -0.82 -0.02 0.32 0.03
5 P(Toxicity) 0.03 0.08 0.18 0.38
P(Efficacy) 0.18 0.25 0.33 043
D(@@) -0.82 -0.67 -0.53 -0.48

Optimal dose is in bold.

models. Within a model stratum, the first row displays the
posterior probability of selecting that dose; while the sec-
ond row displays the average number of patients treated at
that dose. Operating characteristics for the optimal dose
are in bold.

Table 2 displays results for Scenario 1. Concentrating
first on the results when data are generated from the
Braun model, we see that both copula models perform
similarly well in their ability to select the correct dose
and in the number of patients treated at the optimal
dose regardless of the true correlation. The probability
of correctly identifying the optimal dose differs by less
than 0.024 and the number of patients treated at the
optimal dose differs by less than 1 across the three cor-
relation conditions. Surprisingly, the independence model
also performs very well regardless of the true correlation
and has the highest probability of identifying the optimal
dose in two of the three correlation conditions. Although,
the differences are small and the independence model
has essentially the same performance as the two copula
models.

Similar results are observed when data are generated
from the Gumbel model. Both copula models performed
similarly with respect to the probability of accurately
identifying the optimal dose and the number of patients
treated at the optimal dose. The independence model
again exhibits good performance across the three scenar-
ios, which is surprising because the independence model
lacks the flexibility to model the correlation between the

Page 50of 11

Table 2 Results using the Braun and Gumbel copulas for
data simulation under Scenario 1

Data Yk  Model Dose
Futility 1 2 3 4
Braun 05 Braun 0.039 0045 0.212 0.475 0229
591 12792 1713 8298
Gumbel 0038 0039 0225 0.482 0216
6.075 12738 16.596 8.775
Indep 0.037 0.046 0.223 0.504 0.19
6 13146 16.923 8.115
0.7 Braun 0.037 0.034 0.197 0.514 0218
5667 12966 17.496 7.86
Gumbel 0023 0032 0235 0524 0.186
5613 1332 17.562 7941
Indep 0033 0035 0219 0528 0.185
579 13356 17.334 7.77
0.9 Braun 0.024 0.018 0.208 0.514 0.236
519 12.888 17.58 8814
Gumbel 0011 0.037 0.225 0.538 0.189
5901 13428 17.895 7.542
Indep 0006 0041 0226 0.526 0.201
5994 13605 17.349 7.95
Gumbel 0 Braun 0042 0033 0217 0503 0205
6.054 12786 17.007 8373
Gumbel 0.042 0.041 0.21 0.499 0.208
6.033 12651 17.094 8.28
Indep 0.034 0.054 0.208 0.478 0.226
6.591 12447 16.671 8.622
04  Braun 0036 0034 0216 0506 0208
5871 12828 17.157 8322
Gumbel 0029 0039 0222 0.461 0249
5775 13287 16.029 9.081
Indep 0.018 0.044 0.213 0.501 0.224
5.946 1281 17.205 8.67
0.8 Braun 0.036 0.028 0.237 0.475 0.224
5886 13875 16.119 8307
Gumbel 0016 0036  0.231 0.506 0211
5877 13.182 17.34 822
Indep 0032 0032 0216 0524 0.19%
5388 13.242 17.616 8.079

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. Y7 and Ys are simulated with association,

Y k = 1,2 when appropriate. The operating characteristics for the target dose
are in bold.

two outcomes. Across the three correlation scenarios,
the probability of correctly identifying the optimal dose
differed by less than 0.05 and the average number of
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Table 3 Results using the Braun and Gumbel copulas for
data simulation under Scenario 2

Data Yk  Model Dose
Futility 1 2 3 4
Braun 0.5  Braun 0.147  0.748 0094 0011 0
33.159 5922 0798 0042
Gumbel 0.13 0.732 0.121 0016 0.001
32.652 06984 1.161 0.084
Indep 0.129 0.770 0.093 0.008 0
34.542 5826 0825 0.063
0.7 Braun 0.16 0.744 0091 0.005 0
32919 6315 0645 0039
Gumbel 0106  0.761 0.117 0016 0
34.059 6762 081 0.09
Indep 0098  0.781 0.109 0012 0
34.671 6516 0.705 0.09
0.9 Braun 0.204 0.707 0.086 0.003 0
31.878 6.18 039 0018
Gumbel 0.071 0.799 0.114 0015 0.001
34.977 72 063 0063
Indep 0.095 0.773 0.122 0009 0.001
34329 6789 0795 0078
Gumbel 0 Braun 0.14 0.722 0.126 0.012 0
32.889 6.69 0756 0.051
Gumbel 0.124 0.745 0.122 0.008 0.001
33.714 06564 0.786 0.069
Indep 0.13 0.751 0.111  0.007 0.001
33.585 6465 0.738 0.099
04  Braun 0159  0.741 0.09 0009 0.001
33.39 588 096 0.066
Gumbel 0.127 0.755 0.1 0016 0.002
33.882 6234 1.02 0.09
Indep 0.118 0.758 0.113 0.011 0
33.36 /059 0927 0036
0.8 Braun 0.16 0.742 0094 0.004 0
32,991 6048 0534 006
Gumbel 0.081 0.799 0.104 0014 0.002
35.247 6657 084 0048
Indep 0.113 0.76 0.118 0.009 0
34.068 6528 0801 0.081

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. Y7 and Ys are simulated with association,
Y, k = 1,2 when appropriate. The operating characteristics for the target dose
arein bold.

patients treated at the optimal dose differed by less than
1.5 between the three models.

Results for Scenarios 2 and 3 are found in Tables 3
and 4, respectively. The results for Scenarios 2 and 3 are
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Table 4 Results using the Braun and Gumbel copulas for
data simulation under Scenario 3

Data Yk  Model Dose
Futility 1 2 3 4
Braun 0 Braun 0.195 0.001 0.004 0.045 0.755
3426 3636 5358 27.504
Gumbel 0174 0.001 0.005 0.042 0.778
3459 3744 5418 27.855
Indep 0.149 0.001 0.003 0.035 0.812
3.384 3.69 4938 29.169
04  Braun 0.162 0.001 0.005 0.025 0.807
3297 3762 4884 28.719
Gumbel 0.139 0 0003 0042 0.816
3417 3693 5487 29.025
Indep 013 0 0003 0.049 0.818
3423 3705 5547 28.857
0.8 Braun 0.143 0 0002 0.033 0.822
3351 3552 5502 29.19
Gumbel 0.101 0 0002 0037 0.86
3387 3636 5568 29.775
Indep 0.093 0 0002 004 0.865
3381 3804 5628 29.592
Gumbel 0 Braun 0.189 0.001 0.004 0.047 0.759
3327 3585 531 27.942
Gumbel 0173 0 0004 0.044 0.779
3336 3675 5313 28.224
Indep 0.16  0.001 0 0034 0.805
3435 3789 5172 28.434
04  Braun 0.16 0 0001 0048  0.791
345 363 561 28.101
Gumbel 0.163 0 0.004 0.049 0.784
3363 3.666 549 28.164
Indep 0.156 0 0001 0.034 0.809
3405 3591 4977 28.875
08  Braun 0.171 0.001 0001 0029 0.798
3342 3645 525 28.116
Gumbel 0.156  0.001 0.004 0.029 0.81
3384 3702 5262 28.776
Indep 0.144 0 0002 0.042 0.812
3342 3804 5484 28.824

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. Y7 and Ys are simulated with association,
Yk, k = 1,2 when appropriate. The operating characteristics for the target dose
are in bold.

similar to the results for Scenario 1. The probability of
correctly identifying the optimal dose and the average
number of patients treated at the optimal dose are sim-
ilar for both copula models regardless of how the data
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Table 5 Results using the Braun and Gumbel copulas for
data simulation under Scenario 4

Data Yk  Model Dose
Futility 1 2 3 4
Braun 0.5 Braun 0.023 0003 0.057 0.665  0.252
342 639  23.19 11.268
Gumbel 0015 0.001 0055 0.683  0.246
3402 7.041 23.358 10.809
Indep 0.017 0.003 0.078 0.621 0.281
3351 7.071 22.74 11304
0.7 Braun 0.02 0001 0.057 0.684 0.238
3333 6849 24.066 10.146
Gumbel 0019 0003 0069 0.671 0238
339 7107 23.286 1068
Indep 001 0001 0085 0.655 0.249
339 7593 22.854 10875
0.9 Braun 0.017 0.001 0.062 0.658 0.262
3303 699% 23.376 10.839
Gumbel 0.002 0 0078 0.698 0.222
3315 7476  23.46 10.695
Indep 0.007 0.001 0.081 0.647  0.264
3543 7743 22329 11.172
Gumbel 0 Braun 0027 0002 0064 0.664 0243
3282 6885 23.109 11.034
Gumbel 0.027 0.001 0.065 0.657 0.25
3351 6711 22,95 11.136
Indep 0.025 0.002 0.084 0.633 0.256
3375 7374 22,767 10.788
04  Braun 0025 0002 0066 0.631 0276
3504 7338 22515 11.013
Gumbel 0021 0002 0074 0.655 0.248
345 7296 22,599 11.013
Indep 0.013 0.001 0.069 0.649 0.268
3315 7032 22,542 11.787
0.8 Braun 0.012 0.002 0.063 0.65 0.273
3318 7152 22.647 11502
Gumbel 0019 0001 0075 0.669  0.236
3297 7038 23.154 10923
Indep 0013 0004 0075 0.673 0235
333 7389 23.172 10755

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. Y7 and Ys are simulated with association,
Yk, k = 1,2 when appropriate. The operating characteristics for the target dose
are in bold.

are generated and the independence model provides sim-
ilar performance even though the independence model is
unable to appropriately model the correlation between Yr
and Y.
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Table 6 Results using the Braun and Gumbel copulas for
data simulation under Scenario 5

Data Yk  Model Dose
Futility 1 2 3 4
Braun 0.5 Braun 0.87 0.001 0005 0.023 0.101
4086 459 462 11946
Gumbel 0.872 0 0006 0022 0.1
4.05 444 489 11316
Indep 0.872 0.002 0.009 0016 0.101
4176 4656 4803 11319
0.7 Braun 0.928 0 0004 0.009 0.059
4065 4209 456 10.095
Gumbel 0.887 0002 0014 0014 0083
3936 4485 4869 11748
Indep 0.895 0002 001 0016 0077
4254 4467 459 11.256
0.9 Braun 0.945 0.001 0.004 0.009 0.041
4.053 429 4566 9.531
Gumbel 0.904 0.003 0.006 0016 0.071
4248 4701 5148 11.091
Indep 0.905 0 0006 0016 0073
4227 4608 5196 11.22
Gumbel 0 Braun 0.895 0001 0011 0.01 0.083
4.035 441 4674 11.196
Gumbel 0.878 0.003 0.008 0.015 0.096
3.999 4293 4692 11391
Indep 0.897 0.001 0.007 0014 0.081
4197 4494 4659 11.886
04  Braun 0.898 0002 001 0013 0.077
3966 4254 4368 11.061
Gumbel 0.901 0001 0004 0.021 0.073
4179 4452 489 11112
Indep 0.892 0.004 0.006 0018 0.08
4065 4365 4644 11559
0.8 Braun 0913 0.003 0.005 0013 0.066
4002 4536 4623 10794
Gumbel 0.925 0002 0005 0013 0.055
4152 4488 4632 11.028
Indep 0.897 0003 0006 0012 0082
4179 4611 4452 11.286

The first row is the selection probability for dose z; and the second is the average
number of patients treated at dose z. Y7 and Ys are simulated with association,

Y k = 1,2 when appropriate. The operating characteristics for the target dose
are in bold.

Scenario 4 (Table 5), represents the scenario where mul-
tiple dose levels are acceptable, dose levels 3 and 4, but
dose level 3 is optimal. This scenario represents one of
the primary motivations for phase I-II designs as there is
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a dose level where further escalation results in a greater
probability of toxicity but relatively little efficacy benefit.
The results for Scenario 4 are consistent with our previous
results: there is little difference between the three models
in the probability of correctly identifying the optimal dose
and the average number of patients treated at the optimal
dose regardless of the correlation between endpoints and
how the data are generated. Finally, the results for Sce-
nario 5 can be found in Table 6. In this scenario, all dose
levels are safe but have unacceptable efficacy and the cor-
rect decision is to terminate for futility. The Gumbel and
independence models exhibit similar performance across
all scenarios but we do observe that the Braun model is
more likely to terminate for futility when Y7 and Yg are
correlated and the data are generated for the Braun model.
Although, the differences are small in both cases.

The simulations results presented in Tables 2, 3, 4, 5
and 6 indicate that specifying the correct copula model
has little impact on the operating characteristics of Phase
I-1I clinical trials but are dependent on a number of fac-
tors, including the sample size and priors specified for
the logistic regression models used for efficacy and toxi-
city. In order to account for these factors, we completed
additional simulations to evaluate the robustness of our
conclusions to changing the sample size and prior distri-
butions. Figure 1 presents simulation results to evaluate
the impact of sample size on our conclusions. Presented
are the simulated probabilities of correctly identifying the
optimal dose for Scenario 1 for maximum sample sizes of
30, 45, 60 and 75 subjects, with data simulated from both
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models and various levels of correlation. As expected,
the probability of correctly identifying the optimal dose
increases as the maximum sample size increases. More
importantly, increasing the sample size appears to have no
impact on our primary conclusion that incorrectly speci-
fying the copula model has little impact on the probability
of correctly identifying the optimal dose regardless of the
level of correlation between the two endpoints and the
model from which the data are generated.

Figure 2 presents simulation results to evaluate the
impact of changing the priors for the parameters of
the logistic regression models for efficacy and toxicity.
We considered four prior specifications. Prior specifi-
cation 1 is the original priors: Bor ~ N (—3,sd = 3),
Bog ~ N(-1,3), Br ~ Gamma(y,,;) and g ~
Gamma (}L, }L), in prior specification 2, we increase the
prior variances for the intercept parameters: o1 ~
N (—3,5) and Bor ~ N (—1,5), in prior specification 3,
we increase the prior variances for the slope parameters
but not the intercept parameters: 1,7 ~ Gamma (215, 215)
and Bi1g ~ Gamma (215, 215) and in prior specification
4, we increase the prior variances of both the slope and
intercept parameters: 80,7 ~ N (=3, 5), Bog ~ N (—1,5),
Bir ~ Gamma ()5, 55) and Br.g ~ Gamma (s, 55 ). Pre-
sented are the simulated probabilities of correctly identi-
fying the optimal dose for Scenario 1 for the four prior
specifications, with data simulated from both models and
various levels of correlation. We see that increasing the
prior variance of the intercept terms has little impact on
the probability of correctly identifying the optimal dose

Simulated from Braun Model: w, = 0.5

Simulated from Braun Model: w, = 0.7

Simulated from Braun Model: w, = 0.9

5 070
L

—— Fit Using Braun lodel
-4~ Fi Using Gumbel Model
=+ Ft Using Independence Model

040 045 050 055 D60 065 070
L

040 045 050 055 060 065 070
L

Probability of Selecting the Optimal Dose
040 045 050 055 060 065
Probability of Selecting the Optimal Dose

Maximum Sample Size

Simulated from Gumbel Model: v, = 0.0

Maximum Sample Size
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30 45 80 75

Probability of Selecting the Optimal Dose
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Simulated from Gumbel Model: w, =0.8
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0860 065 070
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5

040 045 050 055

080 085 070
L

040 045 050 055
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Probability of Selecting the Optimal Dose
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Figure 1 Probability of correctly identifying the optimal dose for Scenario 1 for the Braun, Gumbel and Independence model for various
combinations of the true model, level of correlation and maximum sample size.

30 45 &0 s
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Simulated from Braun Model: v, = 0.7
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Figure 2 Probability of correctly identifying the optimal dose for Scenario 1 for the Braun, Gumbel and Independence model for various
combinations of the true model, level of correlation and prior specification for the regression parameters in the logistic regression
models for efficacy and toxicity. PS 1: o7 ~ N (=3,3), Bog ~ N (=1,3), Bi7 ~ Gamma (}, }), Brg ~ Gamma (1, }); PS 2: Boy ~ N(=3,5),
Bog ~ N(=1,5), Bir ~ Gamma (}, }), Bre ~ Gamma (}, });PS 3: Boy ~ N (=3,3), Bog ~ N(=1,3), Br.r ~ Gamma (s, 55 ),

Bre ~ Gamma (55, 5 ); PS4: Bor ~ N(=3,5), Bog ~ N(=1,5), B17 ~ Gamma ()5, 5 ), Bre ~ Gamma (55, 35 )-

PS3 PS4 PS1 PS2 PS3 PS4

Probability of Selecting the Optimal Dose

Prior Specification

but increasing the variance of the slope decreases the
probability of correctly identifying the optimal dose con-
siderably. More importantly, we see that the independence
model performs as well or better than the other model in
all cases. In addition, we see that the Braun model per-
forms worse than the other two models when we increase
the prior variance of the slope parameters with a larger
effect observed with moderate and high correlation. This
effect is similar regardless of how the data are generated
and, in fact, appears slightly larger when the Braun model
is actually the correct model.

Our simulation results suggest that specifying the cor-
rect copula model does not improve the operating char-
acteristics of our study compared to simply using an
independence model and, in fact, results in worse operat-
ing characteristics in many cases. This is counter-intuitive
as specifying the correct model should result in more effi-
cient estimates of the model parameters. One possible
explanation for this phenomenon is that the correlation
parameter between Y7 and Yr may be too difficult to esti-
mate given the limited sample size. We completed a small
simulation study to investigate our ability to estimate v,
and v, in the Braun and Gumbel copulas, respectively.
For each scenario, we considered a study with 11 subjects
at each dose level, for a total of 44 subjects, and consid-
ered various levels of correlation between Y7 and Yz. 1000
simulations were considered for each scenario. Table 7
presents the mean and standard deviation of the posterior

mean for ¢; and ¥, under various levels of correla-
tion. We see that the Braun model, while certainly biased
towards independence, appears to be learning about
and has posterior means of approximately 0.65 and 0.80
when v is equal to 0.70 and 0.90, respectively. In contrast,
there is little information about v/, in the Gumbel model
and the posterior means are approximately 0.10 and 0.20
when yr, is equal to 0.40 and 0.80, respectively.

Conclusions

We completed a simulation study to evaluate the perfor-
mance of copula models in phase I-II clinical trials under
model misspecification. Our results suggest that the oper-
ating characteristics of our study are relatively robust to
misspecifying the copula model. Both models exhibited
similar performance, as measured by the probability of
correctly identifying the optimal dose and the number of
subjects treated at the optimal dose, regardless of whether
the data were generated from the correct or incorrect cop-
ula, even when there is substantial correlation between
Yr and Yg. These results were robust to changes in the
maximum sample size and the prior distributions for the
parameters of the logistic regression models for toxicity
and efficacy. In comparing the two models, there was little
difference in the operating characteristics, although, the
straight-forward interpretation of the model parameters
in the Gumbel model may make the Gumbel model more
desirable.
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Table 7 Average posterior mean (standard deviation) for the correlation parameters, Y, k = 1,2, when 11 subjects are

treated at each dose level

Braun model Scenario 1 Scenario 2
Y1 =05 0.535 0.546
(0.023) (0.021)
Y1 =07 0.659 0.668
(0.020) (0.018)
Y1 =09 0.784 0.824
(0.010) (0.008)
Gumbel model Scenario 1 Scenario 2
¥ =00 -0.001 -0.003
(0.075) (0.081)
vy =04 0.115 0.105
(0.073) (0.076)
Y, =038 0.225 0.244
(0.062) (0.065)

Scenario 3 Scenario 4 Scenario 5
0.531 0.546 0.495
(0.024) (0.024) (0.025)
0.656 0.660 0.643
(0.021) (0.019) (0.021)
0.792 0.777 0.811
(0.012) (0.010) (0.010)

Scenario 3 Scenario 4 Scenario 5
0.005 -0.005 -0.002
(0.067) (0.067) (0.072)
0.119 0.091 0118
(0.063) (0.06) (0.072)
0.194 0.212 0.219
(0.06) (0.057) (0.061)

Data are generated assuming the correct model and specified true correlation between Y7 and Y ().

Surprisingly, the naive model that ignores the correla-
tion between Yr and Y1 performed as well, better in some
cases, with respect to correctly identifying the optimal
dose and the number of subjects treated at the optimal
dose than even the correct model. This was true regard-
less of the scenario and true correlation between Yr and
Yr. This result is not intuitive as we would expect that
correctly specifying the copula model would result in
more efficient parameter estimates and improved operat-
ing characteristics of our study.

There are several possible explanations for the lack
of benefit when utilizing the correct copula model in
Phase I-1I clinical trials. First, it is possible that the likeli-
hood contains very little information about the correlation
parameter and any benefit of modeling the correlation is
negated by the need to estimate an additional correlation
parameter. In this case, fitting a copula model may result
in more variable estimates, in general, which would result
in performance that is no better, and potentially worse,
than simply assuming that the two endpoints are indepen-
dent. A second explanation is that Phase I-1II clinical trials
do not provide sufficient information for selecting the cor-
rect copula model. Phase I-II clinical trials utilize small
sample sizes, which makes it difficult to properly evaluate
the fit of a model. Furthermore, regulatory bodies typically
require that a model is specified in advance when utilizing
an adaptive trial design. These challenges make it difficult
to identify the correct copula from the data, which may
negate any benefit from modeling the correlation between
the toxicity and efficacy endpoint. Finally, properly mod-
eling the correlation between two endpoints is necessary
to complete proper inference (hypothesis tests, credible
intervals, etc.) but it may be that modeling this correlation

is not necessary in a Phase I-II clinical trial where the goal
is to select a dose at study completion regardless of the
error associated with estimates of the probability of effi-
cacy and toxicity. In this case, we would not expect any
benefit from modeling the correlation, which is consistent
with our simulation results.

We completed a second simulation study to investigate
the model’s ability to estimate the correlation parameters
with the sample sizes used in phase I-II clinical trials in
order to fully understand the behavior of copula models
in phase I-II clinical trials. Estimates of the correlation
parameters were biased towards the prior mean of no cor-
relation in both cases but the average posterior mean of
the correlation parameter in the Braun model was much
closer to the true value of the correlation parameter than
in the Gumbel model. This suggests that, while the like-
lihood for the Braun model contains a fair amount of
information for the correlation parameter, the likelihood
for the Gumbel model contains very little information
about the correlation parameter and provides a poten-
tial explanation for the apparent lack of benefit due to
properly modeling the correlation between efficacy and
toxicity in phase I-1I clinical trials.

The results of this manuscript are dependent the deci-
sion rule proposed by Thall and Cook [4]. Other decision
rules have been proposed for phase I-II clinical trials
[5,13] and it is possible that the results of our simula-
tion study would change with a different decision rule.
We think that this is unlikely given that we consistently
found no benefit of appropriately modeling the correla-
tion between toxicity and efficacy in all scenarios and
additional simulation results illustrated that the likelihood
contains little information for estimating the correlation
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parameters in the two copulas we considered for sample &

sizes typical of phase I-II clinical trials. Nevertheless, this

issue should be considered when evaluating the results of
our simulation study. 8.

Our results do not indicate a preference for one model
over the other. Both models performed similarly, regard-

less of how the data were generated. Although, the per- o

formance of the Braun model suffered more than the

performance of the Gumbel model when vague priors

were placed on the slope parameters in the logistic regres-
sion models for efficacy and toxicity. The other primary
difference between the two models is the interpretation of
the model parameters. In the Gumbel model, 7r and 7t
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respectively, but are conditional probabilities that depend
on the correlation parameter in the Braun model. This
property could make the Gumbel model preferable given
the similar performance of the two models. That said, our
results indicate that it would be acceptable for a practi-
tioner to simply fit the model that assumes independence
even though the two outcomes are likely correlated. The
performance of the two copula models could possibly be
improved by utilizing informative priors for the correla-
tion parameters but strongly informative priors would be
required to overcome the apparent lack of information in
the likelihood and it is unlikely that such prior informa-
tion exists in early phase clinical trials. In this case, fitting
a model that assumes independence is preferable.
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