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when estimating relative risks for common binary
outcomes: a simulation study
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Abstract

Background: To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based
methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it
is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based,

scenarios where outliers existed.

binary outcomes

while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust
Poisson models in comparison with log-binomial models is very limited.

Methods: In this study a simulation was conducted to evaluate the performance of the two methods in several

Results: The findings indicate that for data coming from a population where the relationship between the
outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and
mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models
consistently outperformed the log-binomial models even when the level of contamination is low.

Conclusions: The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial
models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the
limitations when choosing appropriate models to estimate relative risks or risk ratios.
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Background

When the outcome of a study is binary, the most com-
mon method to estimate the effect is to calculate an
odds ratio (OR) as an estimate of relative risk (RR) using
a logistic regression. When the outcome prevalence is
high (>10%), the OR can still be estimated by using the
logistic regression model, but the OR is no longer an ac-
ceptable estimate for RR [1]. Interpreting the OR as be-
ing equivalent to the RR still occurs in medical research,
leading to overstated effect in the study findings [2,3].

* Correspondence: Wansu.Chen@kp.org

Kaiser Permanente Southern California, Department of Research and
Evaluation, Pasadena, CA, USA

2Department of Preventive Medicine, Keck School of Medicine, University of
Southern California, Los Angeles, CA, USA

( BioMed Central

The degree of overstatement depends on the outcome
rate (e.g., disease prevalence). A higher outcome rate
leads to higher degree of exaggeration. Zhang and Yu
proposed a formula to convert the adjusted OR derived
from the logistic regression model to a risk ratio in studies
with common outcomes [4]. However, the method was
noted by McNutt et al. to produce biases in both point es-
timates and confidence intervals (Cls) [5]. Miettinen sug-
gested the doubling-of-cases method to estimate OR as an
approximation of RR using logistic regression based on a
modified dataset [6]. Schouten et al. improved the method
by applying robust standard errors [7]. However, this
method was mentioned by Skov et al. to produce preva-
lence greater than one [8]. Several model-based methods
have been proposed to estimate RR and its CI directly [9].
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The most popular ones are the robust (also known as
modified) Poisson model [10-12] and the log-binomial
model [8,11,13]. The performance based on simulations
seemed to be equally good between the log-binomial
model and the robust Poisson model [3,11,12,14] when
sample sizes are reasonably large. Out of the two models,
it was reported that the robust Poisson may be less af-
fected by outliers compared to the log-binomial method
[15]. However, the research in this area is very limited.
The purpose of this study is to evaluate the performance
of the two methods using simulation in several scenarios
when outliers exist and to provide insight into the selec-
tion of the appropriate models.

Methods

Estimation methods

The Poisson regression uses a logarithm as the natural link
function under the generalized linear model framework.
When the outcome is common, the standard Poisson re-
gression over estimates the variance for the measured ef-
fect [10-12]. The robust Poisson regression model uses the
classical sandwich estimator under the generalized estima-
tion equation (GEE) framework to correct the inflated vari-
ance (also known as over-dispersion) in the standard
Poisson regression. This correction can be achieved by
using the REPEATED statement in SAS Proc GENMOD
[12] or the ROBUST option in STATA’s Poisson procedure
[11]. The estimators based on the robust Poisson models
are pseudo-likelihood estimators.

The log-binomial regression approach models the prob-
ability of having the outcome (e.g., disease) based on the
binomial distribution and logrithm of the probability as
the link function in a generalized linear model [8,13]. The
log-binomial model attempts to find a MLE if it exists.
MLEs are preferred estimators because they carry many
good properties including higher efficiency compared to
non-MLE estimators. The analyses can be performed
using SAS’s GENMOD, R's GLM or STATA's GLM pro-
cedure. However, for many situations in which quantita-
tive covariates exist, the MLE can be on the boundary of
the parameter space (i.e. the predicted probability of the
outcome equals to 1), leading to the difficulty of finding
the MLE. To address the non-convergence issue, a SAS
macro called “COPY” was developed [16] and later en-
hanced [17] to increase the chance of finding an approxi-
mate MLE inside the interior of the parameter space using
PROC GENMOD. The COPY method uses the results of
the log-binomial regression if the model converges. When
the log-binomial regression fails to converge, the COPY
method creates C (usually a large number) copies of
the original data and one copy of the original data with
the outcome variable reversed (Y converted to 1-Y) and
then takes the modified data to generate the estimates
[16]. The enhanced version of the COPY method simply
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generated virtual copies by applying weights of C and 1, re-
spectively, to the original dataset and the dataset with the
outcome variable reversed [17]. The choice of C impacts
the accuracy and the efficiency of the estimates as well as
the model convergence. A larger C produces results that
are closer to MLEs yet leads to a higher level of difficulty
in finding the MLEs due to failure of convergence [17].

Simulation methods

Design of uncontaminated datasets

Let X be a binary treatment/exposure variable (X =1 for
treatment/exposure and X =0 for non-treatment/non-
exposure) from a binomial distribution with the prob-
ability of X =1 fixed at 50%. Let Y be a binary common
outcome from a population with the probability of Y =1
varying from 10%, 25% to 40%. Let Z be a continuous
confounder following the Beta (6, 2) distribution. The
Beta distribution offers a wide range of possible forms.
The parameters chosen (¢ =6 and S =2) provided the
distribution with a mean of approximately 0.75. If Z x
100 represents the ages of study subjects, they came
from an elderly population with the average age being
75 years old. The relationship between X and Z is de-
fined by the equation logit (p,) = a¢ + a1Z, where a; =log
(2) or log (4) to indicate moderate or strong association,
respectively. The relationship between Y and X is log-
linear with adjusted RR being 1.5 or 2. Z is designed as a
linear or quadratic confounder.

Linear cofounder Z: log(p,) = B, + ;X + 5,Z, or

Quadratic cofounder Z: log(p,) = B, + B X + B,Z
+(0.5 x )77,

where 8, = log(1.5) or log(2), and 3, = log(2) or log(4)

The value of ; in the models denotes the effect due
to exposure on the log-relative risk scale (ie. B; =log
(RR)). To simplify the design, we set B, = a;. There were
a total of 24 scenarios (2 RRs, 3 outcomes, 2 levels of as-
sociation, 2 types of confounders). A detailed description
of the 24 scenarios is listed in “Additional file 1”.

Data generating process

We first generated the random variable Z following the
Beta (6, 2) distribution for 1,500 subjects. Then we cre-
ated the exposure variable X for each subject based on
the subject-specific probability of exposure. Finally, the
outcome conditional on the exposure status and the co-
variate was randomly generated with the log-binomial dis-
tribution. For each of the 24 scenarios described above,
the values of a and S, were searched iteratively among all
the possible values to guarantee that the expose and the
outcome rates reached the designed level (50% for expos-
ure and 10%, 25% or 40% for outcome). The ay and f3, for
each scenario can be found in Additional file 1. To study
the differences between the two models in samples of
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moderate sizes, the same process was repeated to generate
another set of data with n = 500.

Contaminating the datasets

For each of the 24 scenarios, the simulation datasets were
contaminated by flipping the outcomes (Y becomes 1-Y)
of the records that had the extreme probabilities of having
Y=1 (ie, either very low or very high p,). Models were
assessed by using the original simulated datasets and the
datasets contaminated at the following level.

Contamination rates:

0% — original datasets

2% — flipping the outcomes of records with p,, at
bottom or top 1%

5% — flipping the outcomes of records with p, at
bottom or top 2.5%

Although it is not realistic to expect outliers to solely
come from observations with very low or very high
probabilities of having the outcome, outliers resulting
from flipping the outcome are possible due to documen-
tation or data entry errors. For example, “0” (“not having

Table 1 Relative bias (%) in log scale (n = 1500)
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the disease”) may be erroneously entered into the study
database as “1” (“the disease was present”). Compared to
adding outliers from a distribution that is different from
the underlying one, the flipping approach produced out-
liers that are more likely to be leverage points. In other
words, they are more likely to impact the estimates.

Measures of model performance

For each scenario, the simulation process was repeated
1,000 times to estimate the relative bias, standard error
and mean square error (MSE) for the log-binomial model
and the robust Poisson model. The relative bias was calcu-
lated as the average of the 1,000 estimated RR in log scale
minus the log of the true RR divided by the log of the true
RR. Standard error was defined as the empirical standard
error of the estimated RR in log scale over all 1,000 simu-
lations. MSE was calculated by taking the sum of the
squared bias in log scale and the variances.

Due to the non-convergence issue in standard statis-
tical software, we used the COPY method to generate
the estimates of the log-binomial models. However, the
accuracy of parameter estimates depends on the number
of virtual copies. For this evaluation the number of copies

RR Prob Contamination Association bet Z and Y:

Association bet Z and Y:

Association bet Z and Y:  Association bet Z and Y:

Y=1) rate Linear Linear Non-Linear Non-Linear
Level of association bet Z Level of association bet Z Level of association bet Z Level of association bet Z
and X, Z and Y: Moderate and X, Z and Y: Strong and X, Z and Y: Moderate and X, Z and Y: Strong

LB RP LB RP LB RP LB RP

15 10% 0% 1.8 18 20 20 0.0 00 -06 -0.8
2% =178 -16.7 -16.0 -16.0 =300 =195 -285 -204

5% -434 -36.7 -418 -369 =517 -413 —49.1 —43.0

25% 0% -04 -04 04 03 05 05 -08 -0.8

2% -104 -109 -10.1 -114 =141 =118 -186 -16.2

5% =253 —244 -266 =273 —346 —282 -434 -36.2

40% 0% 02 02 -0.7 -0.7 -00 —-0.1 09 0.7

2% =75 -8.0 -9.8 -10.8 =110 =105 -149 =131

5% -19.2 -194 —234 —24.6 -269 —24.7 -36.9 -32.2

20 10% 0% 04 04 15 15 -02 -02 06 0.7
2% -189 -18.1 =17.1 -16.8 -26.3 -19.0 =250 -180

5% -42.0 =375 —40.2 -36.7 -479 -39.5 —474 -396

25% 0% 05 05 03 03 03 03 09 038

2% -9.0 -92 -9.2 -99 -123 -104 =137 =117

5% -233 —22.2 -237 -236 -300 -24.7 -345 -285

40% 0% -0.1 0.1 0.1 0.1 03 03 -03 -03

2% -6.7 -7.0 -7.2 -7.8 -84 -8.0 =109 -10.2

5% -169 -16.6 -185 -19.0 -21.2 -19.5 -266 —24.5

Association between Z and X always linear.
LB: Log-Binomial Model.
RP: Robust Poisson.

Relative bias was defined as the average of the 1,000 estimated RR in log scale minus the log of the true RR divided by the log of the true RR.
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were set to 1,000,000, the default of the COPY method
[17]. All the datasets were generated and analyzed using
SAS Version 9.2 [18].

Results

Relative bias

Table 1 and Figure 1 revealed the relative biases of the
estimated RR in log scale from the two models in each
of the 24 scenarios mentioned above when n =1,500. As
expected, both models accurately estimated f5; or log
(RR) when the simulated databases were not contami-
nated (level of contamination = 0%). When the data were
contaminated (level of contamination > 0%), the relative
biases were all negative, indicating that the point esti-
mates were biased towards null. For a fixed RR and an
outcome rate, the absolute value of the relative biases in-
creased quickly with the level of contamination. How-
ever, the pace of such an increase varied by the outcome
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rate. Scenarios with lower outcome rates seemed to be
associated with more elevated absolute relative biases.

Models with linear confounder Z

When the models contained a linear confounder Z, the
two models yielded comparable relative biases (Table 1,
Figures 1A and B) except for a few scenarios in which
the biases from the log-binomial models were slightly
larger than those of the robust Poisson models. The lar-
gest differences occurred when the contamination rate
was 5% and the outcome rate was 10%, in which the log-
binomial models had 3.5%-6.7% higher biases compared
to the corresponding robust Poisson models.

Models with non-linear confounder Z

With the non-linear confounder Z, the robust Poisson
model outperformed the log-binomial model when the
data was contaminated (Table 1, Figure 1C and D). The
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difference between the two models was visible even
when the level of contamination was only 2%. The mag-
nitude of difference between the two models also varied
with the outcome rate. A larger difference was associ-
ated with smaller outcomes.

Standard Error (SE)

When the simulated databases were not contaminated
(level of contamination = 0%), the SEs of the two models
were identical at the 2nd decimal point (Table 2). When
the levels of contamination were greater than 0%, the es-
timated SEs remained comparable between the two
models when the outcome rates were high (25% or 40%).
However, when the outcome rate was low (10%), the SEs
derived from the log-binomial models seemed to be
slightly higher than those of robust Poisson in some of
the scenarios.

Mean Square Error (MSE)

The same pattern was observed for the MSEs as those of
relative biases (Table 3). When the models contained a
linear confounder Z, the two models had comparable

Table 2 Standard error in log scale (n=1500)
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MSEs except when the outcome rate was 10% and the
contamination reached 5%. When the models contained a
non-linear confounder Z, the two models diverged even
when the degree of contamination was only 2% (Table 3).

When the simulation was conducted based on samples
of moderate sizes (n=500), the same pattern was ob-
served. As expected, the SEs based on the small samples
were larger compared to those derived from large sam-
ples (n=1,500). The results summarized from samples
of size 500 were included in “Additional file 2”.

Discussion

In this study, evaluation was performed on the statistical
properties of the two most popular model-based ap-
proaches to estimate RR for common binary outcomes
in various scenarios when outliers existed. The results
suggest that for data coming from a population in which
the true relationship between the outcome and the
covariate is not in a simple form (e.g., containing a
higher order term), the robust Poisson model consist-
ently outperforms the log-binomial model even when
the level of contamination is low (e.g., 2%). Statistical

RR Prob Contamination Association betZand Y: Association bet Z and Y:  Association bet Z and Y:  Association bet Z and Y:
(Y=1) rate Linear Linear Non-Linear Non-Linear
Level of association bet Z Level of association bet Z Level of association bet Z Level of association bet Z
and X, Z and Y: Moderate and X, Z and Y: Strong and X, Z and Y: Moderate and X, Z and Y: Strong
LB RP LB RP LB RP LB RP
15 10% 0% 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
2% 0.14 0.14 0.14 0.14 0.15 0.14 0.14 0.14
5% 0.13 0.12 0.13 0.12 0.15 0.13 0.15 0.13
25% 0% 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09
2% 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
5% 0.08 0.08 0.08 0.08 0.09 0.09 0.08 0.08
40% 0% 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06
2% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
5% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
20 10% 0% 0.17 0.17 0.16 0.16 0.16 0.16 0.17 0.17
2% 0.15 0.15 0.15 0.15 0.16 0.15 0.15 0.15
5% 0.14 0.13 0.13 0.13 0.15 0.13 0.16 0.13
25% 0% 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
2% 0.09 0.09 0.10 0.10 0.09 0.09 0.09 0.09
5% 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.09
40% 0% 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
2% 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
5% 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Association between Z and X always linear.
LB: Log-Binomial Model.
RP: Robust Poisson.

Standard error was defined as the empirical standard error of the estimated RR in log scale over all 1,000 simulations.



Chen et al. BMIC Medical Research Methodology 2014, 14:82
http://www.biomedcentral.com/1471-2288/14/82

Table 3 Mean Square Error (MSE) in log scale (n =1500)
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RR Prob
(Y=1)

Contamination Association bet Z and Y:

rate Linear Linear

Association bet Z and Y:

Association bet Z and Y:
Non-Linear

Association bet Z and Y:
Non-Linear

Level of association bet Z
and X, Z and Y: Moderate

Level of association bet Z
and X, Z and Y: Strong

Level of association bet Z
and X, Z and Y: Strong

Level of association bet Z
and X, Z and Y: Moderate

LB RP LB RP LB RP LB RP

1.5 10% 0% 0.025 0.025 0.027 0.027 0.025 0.025 0.024 0.024
2% 0.026 0.025 0.025 0.024 0.036 0.026 0.033 0.026

5% 0.049 0.038 0.045 0.038 0.066 0.044 0.063 0.046

25% 0% 0.008 0.008 0.008 0.008 0.009 0.009 0.008 0.008

2% 0.010 0.010 0.009 0.010 0.011 0.010 0.013 0.012

5% 0.018 0.017 0.019 0.019 0.027 0.020 0.038 0.028

40% 0% 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

2% 0.005 0.005 0.006 0.006 0.006 0.006 0.008 0.007

5% 0.010 0.010 0013 0.014 0.016 0014 0.027 0.021

20 10% 0% 0.028 0.028 0.027 0.027 0.027 0.027 0.029 0.029
2% 0.040 0.038 0.035 0.035 0.057 0.039 0.053 0.038

5% 0.105 0.085 0.096 0.081 0.134 0.091 0.135 0.093

25% 0% 0.009 0.009 0.010 0.010 0.009 0.009 0.009 0.010

2% 0.012 0.013 0014 0.014 0.016 0014 0.018 0016

5% 0.034 0.031 0013 0.035 0.051 0.036 0.065 0.047

40% 0% 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

2% 0.007 0.007 0.007 0.008 0.008 0.008 0.011 0010

5% 0.018 0.018 0.021 0.022 0.026 0.023 0.039 0.034

Association between Z and X always linear.
LB: Log-Binomial Model.
RP: Robust Poisson.

Mean square error was calculated by taking the sum of the squared bias in log scale and the variances.

software utilizes iterative weighted least squares (IWLS)
approach or variations of IWLS to find MLEs for general-
ized linear models. For log-binomial models, the weights
used by the IWLS approach contain the term 1/(1-p),
where p = exp (X”f8) with a range from 0 to 1 [19]. Lumley
et al. pointed out that the MLE of a log-binomial model
is likely to be too sensitive to outliers because a very
large p (referred to as y by the authors) has a large influ-
ence on the weights, even though the sum of the covariate
values are still bounded [15]. In our study both the MLE,
generated by the log-binomial models and the pseudo-
likelihood estimators, produced by the robust Poisson
models, were deteriorated when outliers were introduced.
However, the level of deterioration differed when the rela-
tionships between the confounder and the outcome was
not in a simple form, possibly due to the bigger “u’s
yielded by the log-binomial model when the higher-order
term of Z was added into the model.

Deddens and Pertersen compared the log-binomial and
robust Poisson models by using three real-life examples
[20]. Out of the three examples, two produced different
point estimates and SEs. In one of these two examples, the
difference was nearly two folds for both point estimates

and SEs for one of the covariates. The authors concluded
that “the decision on which method to use is very import-
ant” [20]; however, since the truth was unknown, it is un-
likely to tell that between the log-binomial model and the
robust Poisson model, which one can yield estimates that
are closer to the truth. In one of the two examples in
which differences between the two models were observed,
the model contained a higher-order (quadratic) term. It is
unclear whether or not the complexity of the model degen-
erated the performance of the models, especially for the
log-binomial model.

Of the two methods, the log-binomial method is
generally preferred due to the fact that the MLEs esti-
mated by the log-binomial models are more efficient
compared to the pseudo-likelihood estimators used by the
robust Poisson models ([10], page 2300). Spiegelman and
Hertzmark recommend using the log-binomial models
over the robust Poisson models when convergence is not
an issue [21]. Very small differences were observed in a
simulation study with a sample size of 100 and a single
independent variable with a uniform distribution [14].
When data perfectly follows a log-binomial distribution
(i.e., without outliers), the current study did not observe
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any difference in either biases or variances between the
log-binomial and the robust Poisson models for large
(n =1,500) and moderate (n = 500) sample sizes. It appears
that the gain in efficiency is beneficial to log-binomial
models only for samples of small sizes.

It is not a surprise to observe negative biases when the
simulation datasets were contaminated, because flipping
the outcomes of the records that have the very low or
very high probabilities tend to weaken the associations
between the exposure and the outcome leading the asso-
ciations towards null. The observation of more elevated
biases when outcome rate = 10% compared to those of
25% and 40% comes with no surprise either since the
impact of flipping on the estimates is expected to be
more significant for scenarios with more extreme out-
comes (close to 0% or 100%).

Robust methods to detect outliers especially high le-
verage points for logistic regression models are available
in popular statistical software packages [22-24]. How-
ever, similar approaches for log-binomial models are not
yet available in commercial software packages although
the adoption of the diagnostic statistics from those of lo-
gistic regression models were demonstrated and applied
in a real life example [25]. Efforts to develop goodness of
fit tests resulted in reasonable type I errors yet low to
moderate power [25]. For this reason, the robust Poisson
model seems to be a more attractive choice due to its
capability of providing more robust results when outliers
are undetected.

For the COPY method, the accuracy of parameter esti-
mates depends on the number of virtual copies. Peterson
and Deddens pointed out that “with 10,000 copies the re-
sults were generally accurate to three decimal places” in
their scenarios [17]. Therefore, the number of virtual cop-
ies we used (1,000,000) should provide accuracies that are
high enough for our evaluation. The number of virtual
copies should be carefully chosen, because a high number
of virtual copies may result in failure of convergence.

Occasionally, failure of convergence remains to be an
issue for log-binomial models even if the COPY method
is applied. Peterson and Deddens [14] included a con-
tinuous exposure variable (referred to as the continuous
covariate by the authors) when applying the COPY
method in the simulation and reported a range of con-
vergence between 70% and 100%. In this study where C,
the number of the virtue copies, was set to be 1,000,000,
the COPY method converged in all 1,000 simulations in
all the 48 scenarios with the linear confounder, and in
30 of out 48 scenarios with the non-linear confounder.
In the 18 scenarios in which the COPY method did not
converge in all 1,000 simulations (failed in 1 or more
simulations), the converge rates ranged from 0.983 to
0.999 (median 0.996). If the COPY method fails to con-
verge and the maximum likelihood-based estimators are
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desired, one can choose the Non-Linear Programming
(NLP) procedure in SAS [26]. The NLP method is compu-
tationally expensive. However, it does not encounter any
convergence issues.

Given the lack of robustness of log-binomial models,
the authors recommend using robust Poisson models
to estimate RR when there are continuous covariates
in the model, especially when the covariates are not
in a simple linear form. Due to the concern of lack of ef-
ficiency for the robust Poisson models for small samples,
log-binomial may still be the choice when the sample
size is small.

A potential limitation of this study is that complex
forms between the confounder and the outcome were
generated by a quadratic equation. It is not clear whether
or not the findings can be generalized to other complex
situations. In addition, all of the outliers generated oc-
curred to records with very low or very high probabilities
and such outliers are more likely to be leverage points.
The impact of the outliers generated by this study could
be more significant compared to that of another study
with outliers that were differently distributed.

In summary, the current study revealed the evidence
to support the robustness of the robust Poisson model
in various scenarios. Further research should focus on
the model misspecification due to deviations of under-
lying probabilities. It is desirable for future studies to de-
velop methods to identify leverage points and efficient
goodness-of-fit test for log-binomial models.

Conclusions

The robust Poisson models are more robust to outliers
compared to the log-binomial models when estimating
relative risks or risk ratios for common binary outcomes.
Users should be aware of the limitations when choos-
ing appropriate models to estimate relative risks or risk
ratios.
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