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Abstract

Background: Previous research on educational data has demonstrated that Rasch fit statistics
(mean squares and t-statistics) are highly susceptible to sample size variation for dichotomously
scored rating data, although little is known about this relationship for polytomous data. These
statistics help inform researchers about how well items fit to a unidimensional latent trait, and are
an important adjunct to modern psychometrics. Given the increasing use of Rasch models in health
research the purpose of this study was therefore to explore the relationship between fit statistics
and sample size for polytomous data.

Methods: Data were collated from a heterogeneous sample of cancer patients (n = 4072) who
had completed both the Patient Health Questionnaire — 9 and the Hospital Anxiety and Depression
Scale. Ten samples were drawn with replacement for each of eight sample sizes (n = 25 to n =
3200). The Rating and Partial Credit Models were applied and the mean square and t-fit statistics
(infit/outfit) derived for each model.

Results: The results demonstrated that t-statistics were highly sensitive to sample size, whereas
mean square statistics remained relatively stable for polytomous data.

Conclusion: It was concluded that mean square statistics were relatively independent of sample
size for polytomous data and that misfit to the model could be identified using published
recommended ranges.

Background

Although Rasch Models [1] were originally designed and
used for educational assessment in recent years they have
increasingly been used in health research. This renewed
interest in these models has largely been encouraged by a
number of potential advantages of Rasch models over tra-

ditional psychometric methods, including the ability to
decrease the number of items in questionnaires to reduce
patient burden whilst retaining the psychometric proper-
ties of the instrument, and the pooling of data drawn from
different samples allowing more accurate parameter esti-
mation. Recent studies in health have explored the use of
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Rasch models in instrument development [2-4], modifi-
cation of existing questionnaires [5-8], as well as in instru-
ment and cross-linguistic comparison [9,10].

Rasch Models are a family of measurement models [11]
which can be used to describe latent traits where items
from questionnaires and person scores are located along
the same scale of the latent trait. Item location ("difficul-
ties") and person measures ("abilities") are estimated sep-
arately to produce estimates for each parameter which are
sample and item independent respectively [12]. Rasch
Models specify a number of criteria, which if fulfilled
result in interval scales where adjacent scores along the
scale are equally spaced, a feature which is particularly
important for interpreting clinically meaningful differ-
ences [13]. Firstly, the data should describe a unidimen-
sional construct, that is, a single latent trait should explain
the variance in the data. The existence of dimensionality
can be assessed using principal components analyses of
the residuals [14]. Secondly, item invariance stipulates
that item (or person) parameters should be independent
of the sample (or items) used. This item invariance crite-
rion can be evaluated using differential item functioning
to determine whether item bias is present. The final crite-
rion, which will form the focus of this paper, is item fit, in
other words whether individual items in a scale fit the
Rasch model.

There has been and there continues to be a considerable
debate around the issue of which is the most appropriate
fit statistic to use, what range of fit statistics to be
employed when evaluating fit, and how fit statistics
should be interpreted [15,16].

The use of chi-square statistics or infit and outfit mean
squares to assess item fit to the model (described in more
detail below) has been advocated. The mean squares can
be converted through a cube-root transformation (Wil-
son-Hilferty) to (infit/outfit) t-statistics.

The mean square fit statistics are perhaps the most com-
monly used fit statistics in health research. A series of
ranges has been suggested [17] to be employed when eval-
uating item fit depending on the type of test, however the
majority of studies employ a range of 0.7 to 1.3. Despite
the popularity of this approach some concerns have been
voiced about the use of a single, universal range to evalu-
ate fit and the lack of adjustment of the range to sample
size. For instance, Smith et al. [16] using simulated data-
sets on dichotomous data have determined that Type I
error rates (defined here as the probability of falsely reject-
ing an item as not fitting the Rasch model) were signifi-
cantly less than a = 0.05 for both infit and outfit mean
squares using a range of critical values (0.7, 0.8, 0.9 - 1.1,
1.2, 1.3). Furthermore, Type I error rates decreased for the
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outfit mean square as sample size was increased. In con-
trast, the Type I error rates for the t-statistics, although not
equal to 5% demonstrated fewer discrepancies.

More recently, studies [18] have demonstrated using data
collected from a large sample of examinees' results that t-
statistics may potentially identify more items that do not
fit the model than both the infit and outfit mean square
fit statistics. For instance, the number of misfitting items
identified by the t-statistic was four times greater than
those identified by the mean square fit statistic (23 and 5,
respectively).

In addition to research on the dichotomous model, recent
work on the polytomous (Rating Scale) model with simu-
lated data has suggested that the variability of mean
squares is dependent on sample size and furthermore that
the standard deviations for the t-statistics are generally
smaller than their expected value (unity) [19]. These
authors propose adjusting the critical range employed for
both types of fit statistic depending on sample size.

Finally, Smith & Suh [18] have concluded that using mean
square statistics may lead researchers to missing signifi-
cant numbers of misfitting items, which may have an
important impact on the development of unidimensional
instruments, and that there is, furthermore, a need to
understand Type I error rates associated with critical val-
ues for fit statistics. On the basis of this Smith and col-
leagues [16,18] have suggested that the t-statistic rather
than the weighted and unweighted mean squares should
be used to identify misfit, given that this statistic appears
to be less sensitive to changes in sample size or alterna-
tively to adjust mean square fit statistics using a correction
based on the square root of the sample size [16].

However, despite this assertion there are a number of
other methodological studies [15,20] which have shown
that the t-statistic is highly sample dependent.

The evaluation and identification of item misfit is critical
to the development of unidimensional instruments, and
reliable fit statistics play an important part in this. There is
uncertainty in the literature to assist health researchers in
determining the most appropriate fit statistic to select for
developing or modifying questionnaires. Previous
research on simulated datasets has focused on the rela-
tionship between sample size and fit statistics at the level
of groups of items. However, for test users the emphasis is
more on which fit statistics are able to identify misfit con-
sistently for individual items. Identification and removal
of misfitting items will not only reduce patient burden,
but may also improve person measure assessment [5].
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Therefore the aim of this study was to investigate the
impact of sample size on four commonly used fit statis-
tics, i.e. infit/outfit mean square and their t-statistics for
two polytomous Rasch models using data collected from
a cancer patient sample.

The study attempted to determine: 1). whether fit statistics
(and therefore Type I error rates, i.e. the probability of
falsely rejecting an item which does fit the Rasch model)
vary with sample size and 2). whether there were any dif-
ferences in this variation between the different types of fit
statistic.

Methods

Participants

Patient data were pooled from a number of studies carried
out by Cancer Research - UK Psychological Medicine
Group, Western General Hospital, Edinburgh (Scotland)
over the past decade. The data have been collated from
patients who completed a touchscreen version of both the
HADS and the PHQ-9 in outpatient oncology clinics.

A total of 4072 patients completed the HADS (2781
females and 1291 males), and 3556 patients completed
the PHQ-9 (2268 females and 1288 males). The average
age of the sample was 60 years. Further clinical and demo-
graphic details are available from the published studies
[21].

The studies from which these data have been drawn have
all received ethical approval from the local research ethics
committee.

Instruments

The Hospital Anxiety & Depression Scale (HADS)

The Hospital Anxiety and Depression Scale (HADS) [22]
was originally developed for screening for psychological
distress in the general medical population. The scale con-
sists of 7 items forming a Depression subscale (HADS-D),
and 7 items forming an Anxiety subscale (HADS-A).
Patients are asked to rate how they have felt in the past
week on a 4-point scale (scored 0-3). It has been claimed
that scores on the two subscales may also be summed to
provide a total score (HADS-T), measuring psychological
distress [23]. Previous research in a large heterogeneous
cancer population [6] has shown potential misfit on three
of the instruments' items: Anxiety 6 ("] get a sort of fright-
ened feeling") and Depression 5 and 7 ("I have lost inter-
estin my appearance” and "I can enjoy a good book, radio
or TV programme" respectively). This misfit was present
both in the full, 14-item version of the HADS as well as for
the individual subscales. Although a principal compo-
nents analysis of the residuals did not reveal the presence
of any additional factors, given the misfitting items the
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analysis presented here will focus on the two subscales,
HADS-Anxiety (A) and HADS-Depression (D).

Patient Health Questionnaire (PHQ-9)

The Patient Health Questionnaire — 9 (PHQ-9) [24] is a
nine-item self-administered questionnaire which may be
used for detecting and assessing the severity of depression.
The instrument is based on the Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) [25] criteria for
diagnosing depression, and is scored on a 4-point scale
("not at all" to "nearly every day"). Patients are asked to
rate any problems experienced over the last two weeks.

Rasch Models

Both the Rating Scale and Partial Credit models are mem-
bers of the family of Rasch Models [1]. The Rating Scale
Model [26] is commonly employed to analyse Likert-type
data [see Additional file 1]. As with all Rasch Models, the
Rating Scale describes a probabilistic relationship
between item difficulty (D) and person ability (B). In
addition to this, thresholds are derived for each adjacent
response category in a scale. In general, for k response cat-
egories, there are k-1 thresholds. Each threshold has its
own estimate of difficulty (F,). The Rating Scale Model
[see Additional file 1] describes the probability, P,; of a
person with ability B,, choosing a given category with a
threshold F, and item difficulty D;. A single set of thresh-
olds is estimated for all items in a scale. The Partial Credit
Model [27] can be seen as a modification of the Rating
Scale Model where the threshold estimates are not con-
strained, that is, threshold estimates are free to vary
between each item within a scale. Therefore for N items
there will be N(k - 1) threshold estimates for the Partial
Credit Model.

Rasch Fit Statistics

Rasch fit statistics describe the fit of the items to the
model. The mean square fit statistics have a chi-square dis-
tribution and an expected value of 1, where fit statistics
greater than 1 can be interpreted as demonstrating more
variation between the model and the observed scores, e.g.
a fit statistic of 1.25 for an item would indicate 25% more
variation (or "noise") than predicted by the Rasch model
[11], in other words there is an underfit with the model.
Conversely, an item with a fit statistic of 0.70 would indi-
cate 30% less variation (or "overlap") than predicted or
the items overfit the model. Items demonstrating more
variation than predicted by the model can be considered
as not conforming to the unidimensionality requirement
of the Rasch model.

There are two commonly used mean square fit statistics,
namely the infit mean square (also referred to as the
weighted mean square) and outfit (or unweighted) mean
square. Both mean squares are derived from the squared
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standardised residuals for each item/person interaction
[see Additional file 1]. The outfit mean square is the aver-
age of the standardised residual variance across items and
persons and is unweighted, meaning that the estimate
produced is relatively more affected by unexpected
responses distant to item or person measures. For the infit
mean square the residuals are weighted by their individ-
ual variance (W,;) [see Additional file 1] to minimise the
impact of unexpected responses far from the measure. The
infit mean square is relatively more affected by unex-
pected responses closer to item and person measures [11].

The infit and outfit mean squares can be converted to an
approximately normalised t-statistic using the Wilson-
Hilferty transformation [see Additional file 1]. These infit/
outfit t-statistics have an expected value of 0 and a stand-
ard deviation of 1. These statistics are evaluated against +
2, where values greater than +2 are interpreted as demon-
strating more variation than predicted.

Method

The relationship between sample size and fit statistics was
explored using the two Rasch models, that is, the Rating
Scale Model [26], and Partial Credit Model [27]. The anal-
ysis was performed using Winsteps version 3.64 [14]. Eight
sample sizes were used for each questionnaire: 25, 50,
100, 200, 400, 800, 1600, and 3200. Ten samples were
drawn with replacement for each sample size for each
item for the two instruments. Therefore, for the HADS
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there were 1120 data points (14 items x 8 sample sizes x
10 samples), and 720 data points for the PHQ-9 (9 items
x 8 samples sizes x 10 samples). Ten samples were col-
lated for each sample size (25 to 3600) for each question-
naire to produce an average for each of the four fit
statistics (infit/outfit mean squares (MNSQ) and t-statistic
(ZSTD in Winsteps)) for each item. This process was com-
pleted for both Rasch models.

Results

I. Fit Statistics — Type | error rate

Tables 1, 2, 3, 4 show the fit statistics for each item aver-
aged across sample size and provide an indication of the
Type I error rates. For both the HADS subscales and PHQ-
9 a Type I error rate of 5% would translate into approxi-
mately 1 misfitting item identified by chance alone.

Tables 1 and 2 demonstrate that for both HADS subscales
there was a broad agreement between the infit and outfit
statistics. In other words, the numbers of items identified
as misfitting were relatively consistent for the infit and
outfit versions of the same type of statistic irrespective of
the Rasch model applied.

However for the PHQ-9 (Tables 3 and 4) consistently
more items were identified as misfitting by t-statistics
(infit/outfit t-statistic) than by the equivalent mean
square statistics. In terms of underfit to the model the
Type I error rate for the t-statistics was at least double that

Table I: Fit statistics for the HADS subscale items (collapsed across sample size) for the Rating Scale Model

Infit MNSQ SE Infit t SE Outfit MNSQ SE Outfit t SE

ANXI 0.92 0.04 -1.12 0.26 0.93 0.04 -1.07 0.26

ANX2 1.02 0.02 0.11 0.17 0.98 0.02 -0.40 0.18

ANX3 0.95 0.04 -1.06 0.25 0.95 0.04 -1 0.27

ANX4 0.90 0.03 -1.38 0.28 0.97 0.04 -0.13 0.28

ANX5 0.87 0.03 -1.71 0.23 0.88 0.04 -1.37 0.22

ANXé 1.46 0.03 5.92 0.20 1.46 0.03 5.97 0.2

ANX7 0.80 0.03 -3.49 0.33 0.76 0.03 -3.71 0.28
Underfit >1.30 1.00 >2 1.00 >1.30 1.00 >2 1.00
Overfit <0.70 0 <-2 1.00 <0.70 0 <-2 1.00

Infit MNSQ SE Infit t SE Outfit MNSQ SE Outfit t SE

DEPI 1.02 0.04 -0.18 0.25 0.91 0.03 -1.56 0.21

DEP2 1.09 0.06 1.35 0.31 0.97 0.07 0.01 0.25

DEP3 0.86 0.06 -1.82 0.33 0.81 0.05 -1.72 0.27

DEP4 1.03 0.03 0.51 0.22 1.10 0.04 1.65 0.32

DEP5 1.34 0.07 3.48 0.29 1.18 0.09 1.17 0.22

DEPé 0.77 0.03 -3.06 0.23 0.68 0.03 -3.83 0.19

DEP7 1.37 0.07 3.78 0.29 1.33 0.07 2.24 0.18
Underfit >1.30 2.00 >2 2.00 >1.30 1.00 >2 1.00
Overfit <0.70 0 <-2 1.00 <0.70 1.00 <-2 1.00
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Table 2: Fit statistics for the HADS subscale items (collapsed across sample size) for the Partial Credit Model

Infit MNSQ SE Infit t SE Outfit MNSQ SE Outfit t SE

ANXI 0.97 0.04 -0.17 0.25 0.98 0.04 -0.06 0.27

ANX2 0.88 0.03 -1.87 0.23 0.87 0.03 -1.78 0.22

ANX3 0.86 0.03 -2.41 0.26 0.90 0.04 -1.89 0.28

ANX4 1.05 0.03 0.95 0.23 1.06 0.04 .12 0.24

ANXS 0.92 0.03 -0.93 0.20 091 0.04 -0.97 0.22

ANX6 1.45 0.04 5.36 0.22 1.44 0.05 5.24 0.24

ANX7 0.78 0.03 -3.61 0.28 0.74 0.03 -3.48 0.26
Underfit >1.30 1.00 >2 1.00 >1.30 1.00 >2 1.00
Overfit <0.70 0 <-2 2.00 <0.70 0 <-2 1.00

Infit MNSQ SE Infit t SE Outfit MNSQ SE Outfit t SE

DEPI 0.96 0.04 -0.74 0.20 0.88 0.04 -1.51 0.19

DEP2 0.97 0.04 -0.03 0.25 0.98 0.08 0.17 0.23

DEP3 0.86 0.04 -1.76 0.28 0.85 0.06 -0.93 0.29

DEP4 .17 0.03 2.54 0.21 I.11 0.03 1.71 0.19

DEP5 1.12 0.06 1.26 0.27 1.20 0.11 1.06 0.21

DEPé6 0.73 0.03 -3.82 0.20 0.64 0.03 -3.20 0.19

DEP7 1.17 0.06 .41 0.25 1.68 0.19 2.74 0.19
Underfit >1.30 0 >2 1.00 >1.30 1.00 >2 1.00
Overfit <0.70 0 <-2 1.00 <0.70 1.00 <-2 1.00

Table 3: Fit statistics for PHQ-9 items (collapsed across sample size) for the Rating Scale Model

Infit MNSQ SE Infit t SE Outfit MNSQ SE Outfit t SE

PHQI 1.01 0.01 0.33 0.09 1.02 0.02 0.30 0.13

PHQ2 0.72 0.01 -4.04 0.08 0.71 0.01 -3.36 0.07

PHQ3 1.14 0.01 2.39 0.09 I.15 0.02 2.25 0.11

PHQ4 0.87 0.01 -2.09 0.09 0.93 0.01 -0.82 0.09

PHQ5 1.37 0.01 4.19 0.08 1.28 0.02 2.46 0.08

PHQ6 1.10 0.01 1.27 0.08 0.95 0.02 -0.42 0.07

PHQ7 1.04 0.01 0.60 0.08 0.86 0.01 -1.16 0.06

PHQS8 1.25 0.02 2.46 0.08 0.97 0.02 -0.08 0.07

PHQ9 1.17 0.03 1.48 0.10 0.84 0.05 -0.87 0.08
Underfit >1.30 1.00 >2 3.00 >1.30 0 >2 2.00
Overfit <0.70 0 <-2 2.00 <0.70 0 <-2 1.00

of the corresponding mean square, e.g. for the Rating
Scale Model, the total number of items exceeding the
thresholds for infit t-statistic was 3, whereas for the infit
mean square 1, and for the Partial Credit Model infit t-sta-
tistic it was 2, and the infit mean square 0. A similar pat-
tern of results was also found for those items overfitting
the models.

Finally, it can also be seen that the standard errors were
uniformly smaller for the mean square statistics than
those for the t-statistics, indicating greater levels of stabil-
ity in the parameter estimates. This was particularly

noticeable for the HADS, but also applied to some extent
to the PHQ-9.

2. Fit Statistics — Sample Size

The relationship between sample size and fit statistics is
shown in Tables 5, 6, 7, 8. This analysis has been broken
down into overfitting (MNSQ < 0.7/t < -2) and underfit-
ting/misfitting items (MNSQ > 1.3/t > 2).

Oveffitting items

It can be seen that for both the infit and outfit mean
squares few items were identified with mean square fit sta-
tistics < 0.7 for the HADS subscales (Tables 5 and 7) and
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Table 4: Fit statistics for PHQ-9 items (collapsed across sample size) for the Partial Credit Model

Infit MNSQ SE Infit t SE Outfit MNSQ SE Outfit t SE

PHQI 0.98 0.01 -0.02 0.09 0.96 0.02 -0.27 0.11

PHQ2 0.79 0.01 -2.99 0.07 0.74 0.0l -3.19 0.07

PHQ3 1.17 0.01 2.95 0.08 1.17 0.02 2.55 0.10

PHQ4 1.0l 0.0l 0.05 0.08 0.98 0.01 -0.25 0.08

PHQ5 1.22 0.01 2.47 0.08 1.30 0.03 1.93 0.09

PHQ6 0.95 0.01 -0.36 0.07 0.97 0.03 -0.26 0.08

PHQ7 091 0.01 -1.00 0.07 0.86 0.02 -1.04 0.07

PHQS8 1.05 0.02 0.34 0.08 0.95 0.03 -0.08 0.08

PHQ9 0.92 0.02 -0.22 0.06 1.00 0.10 -0.41 0.10
>1.30 0 >2 2.00 >1.30 0 >2 1.00
<0.70 0 <-2 1.00 <0.70 0 <2 1.00

Table 5: HADS - Rating Scale Model Error rates by sample size (collapsing across items)

HADS A Infitt Infitt Infit MNSQ Infit MNSQ Infit MNSQ Outfitt Outfitt Outfit Outfit Outfit

MNSQ MNSQ MNSQ

<-2 >2 <0.7 >1.2 >1.3 <-2 >2 <0.7 >1.2 >1.3

25 0 0 | | | 0 0 | | |

50 0 | 0 | | 0 | 0 | |

100 0 | 0 | | 0 | 0 | |

200 0 | 0 | | 0 | 0 | |

400 | | 0 | | | | 0 | |

800 | | 0 | | | | 0 | |

1600 5 | 0 | | 4 | 0 | |

3200 5 | 0 | | 4 | 0 | |

HADS D Infitt Infitt Infit MNSQ Infit MNSQ Infit MNSQ Outfitt Outfitt Outfit Outfit Outfit

MNSQ MNSQ MNSQ

<2 >2 <0.7 >1.2 >1.3 <2 >2 <0.7 >1.2 >1.3

25 0 0 0 2 2 0 0 | 2 |

50 0 0 0 2 2 0 0 | | |

100 0 0 0 2 2 | 0 | 2 2

200 0 2 0 2 2 | 0 0 2 0

400 | 2 0 2 | | | 0 | |

800 | 2 0 2 2 2 | | | |

1600 2 3 0 2 2 3 3 0 | |

3200 2 3 0 2 2 3 3 0 | |

The number of items exceeding the fit criteria are shown in each column

the PHQ-9 (Tables 6 and 8). In contrast to this, the corre-
sponding t-statistics (< -2) demonstrated that as sample
size increased, the number of items identified as misfit-
ting rapidly increased. For instance, for the Rating Scale
Model, the infit mean squares for HADS-D (Table 5) con-
sistently failed to identify a single instance of an item mis-
fitting as sample size increased, whereas the
corresponding t-statistic identified no misfit between
sample sizes 25 and 200. Furthermore, there was only 1
instance of misfit at sample sizes of 400 and 800, and 2

instances at sample sizes of 1600 and beyond. This pat-
tern was particularly evident for the HADS-A Partial Credit
Model (Table 7). A similar pattern was also observed for
the PHQ-9 (Table 8).

Underfitting items

There was a clear link observed between sample size and
fit statistic when comparing infit and outfit mean squares
above 1.2 with t-statistics > +2. Once again, t-statistics
increased in proportion to sample size, whereas the mean
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Infit and Outfit statistics by sample size for HADS-Depression 6.

square equivalents remained approximately invariant to
sample size changes (compare for instance the infit statis-
tics on the Rating Scale for HADS-D in Table 5, as well as
for the PHQ-9 in Table 6). Additionally, more instances of
misfit were identified, in general, when a mean square of
>1.2 was used compared with 1.3, although this was not
always consistently the case.

3. Fit Statistics, Sample size and individual items

Items not demonstrating misfit

In terms of agreement between the four statistics for indi-
vidual items not exhibiting misfit it can be seen from
Table 1 that, for instance for HADS-A, the infit and outfit
means squares agreed with their equivalent t-statistic on 5
items for the Rating Scale Model; similarly there was

agreement between the fit statistics for 4 items from the
HADS-D. Slightly less consistency was observed for both
subscales on the Partial Credit Model (Table 2) and for
both models using the PHQ-9, although again there was
agreement for the majority of items (Tables 3 and 4).

An example of an item (HADS-A1) which had demon-
strated fit across all four statistics is shown in Figure 1.
Although Table 1 demonstrated fit for the t-statistics it can
be seen that whereas the item demonstrated consistent
(infit and outfit) mean square statistics (approx. 0.92)
across sample size, the infit and outfit t-statistics became
increasingly more negative as sample size increased (>
200), resulting in the t-statistics highlighting significant
overfit for this item at sample sizes greater than 1600.
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Table 6: PHQ9 - Rating Scale Model Error rates by sample size (collapsing across items)
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Table 7: HADS - Partial Credit Scale Model Error rates by sample size (collapsing across items)
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Oveffitting items

For the Rating Scale Model one HADS-A item (7) and one
HADS-D item (6), as well as two PHQ-9 items (2 and 4)
were identified as overfitting by the t-statistics but not by
the mean squares. The Partial Credit Model demonstrated
overfit for HADS-D6, as well as HADS-A3, and PHQ?2. Fig-
ure 2 demonstrates once again that whereas the mean
squares remained consistent across sample size, the t-sta-
tistics became increasingly more negative (sample size >
200).

Underfitting items

HADS-D5 and HADS-D7 were identified as underfitting
on the Rating Scale Model (RSM) for both the in- and out-
fit t-statistics, but not the mean squares, although neither
was identified as misfitting on the Partial Credit Model
(PCM); HADS-D4 was identified as misfitting (i.e. under-
fitting) on the Partial Credit Model by the infit t alone.
PHQ3 and 5 were identified as misfitting by both infit and
outfit t-statistics for the RSM and PCM, but not by the
mean squares. Finally, HADS-A item 6 was consistently
identified as misfitting (underfitting) by all four statistics,
yet when the four statistics are plotted against sample size
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Figure 3

Infit and Outfit statistics by sample size for HADS-Anxiety 6.

(Figure 3) it is apparent that this item was only identified
by the t-statistics as under/misfitting once the sample size
exceeded 200.

In summary, two instances of misfit for the t-statistics
could be discerned from the data: 1). instances where
mean square statistics fell within the critical (0.7 - 1.3)
range (i.e. "fit"), and 2). instances where mean square sta-
tistics fell outside this range, in particular exceeding 1.3
(misfit).

Items identified as falling within range (0.7 - 1.3) showed
consistent mean squares (infit/outfit) as sample size
increased; on the other hand, the corresponding t-statis-
tics increased with sample size (i.e. identified misfit where
none was identified as such by the corresponding mean
square). Items identified as falling outside the critical
range (0.7 - 1.3) were consistently identified as misfitting
by mean squares, but only identified as such by the corre-
sponding t-statistics when sample size exceeded 200.
Beyond these limits t-statistics increased in proportion
with sample size. In other words, the t-statistic only iden-
tified items as misfitting for larger sample sizes.

Discussion

The aim of this study was to explore the relationship
between sample size and four commonly used fit statistics
for two polytomous Rasch Models. The results of this
study demonstrated that Type I error rates — defined
strictly in this study as falsely rejecting an item as not fit-
ting the Rasch model - for the t-statistic were at least twice
those of the corresponding fit statistic for both infit and
outfit for both Rasch Models. In addition, the results of
the analysis of sample size and fit statistic suggested that
whereas the mean square fit statistics broadly remained
constant in the number of items whether identified as fit-

ting or misfitting (under and over), the instances of misfit
identified by the t-statistics increased proportionally with
sample size. Further analysis of the individual item fit and
sample size suggested that although in the majority of
cases there was agreement between mean square and t-sta-
tistics in terms of identifying fit and misfit (>50% for both
models and instruments), there were discrepancies in
Type I error rate as defined in this study and a lack of sam-
ple size invariance for the t-statistics.

The results of the study suggest that t-statistics are highly
dependent on sample size which has the effect of inflating
putative Type I error rates. Specifically, for cases where
mean square statistics fell within the range 0.7 - 1.3, the
t-statistics increased in magnitude as sample size
increased, therefore for the t-statistic the Type I error rate
was inflated and the probability of identifying misfit
where none was identified by the mean square statistics
increased with sample size. Similarly, where mean square
statistics identified misfit outside the 0.7 - 1.3 range, t-sta-
tistics only identified misfit as the sample size increased to
beyond 200.

In terms of Type I error rates, for Rating Scale Model the
outfit mean square statistics provided the most stable
rates, whereas the infit mean squares were more stable for
the Partial Credit Model, although there was little differ-
ence in identifying misfit between the 1.2 and 1.3 criteria
for mean squares.

Taken together these results suggest that both infit and
outfit mean square statistics are relatively insensitive to
sample size variation for polytomous data, and that t-sta-
tistics may vary considerably with sample size. The latter
has confirmed previously reported findings using simu-
lated data sets [15].
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Table 8: PHQ9 - Partial Credit Scale Model Error rates by sample size (collapsing across items)

Infitt Infitt Infit MNSQ Infit MNSQ Infit MNSQ Outfitt Outfitt Outfit Outfit Outfit
MNSQ MNSQ MNSQ
Sample <-2 >2 <0.7 > 1.2 >1.3 <-2 >2 <0.7 > 1.2 >1.3
25 0 0 0 2 0 0 0 0 2 2
50 0 0 0 | 0 0 0 0 | |
100 0 0 0 2 | 0 0 0 2 2
200 0 0 0 | 0 0 0 0 0 0
400 | 2 0 2 0 | | 0 2 0
800 | 2 0 2 0 | 2 0 2 0
1600 | 2 0 | 0 2 2 0 2 0
3200 2 2 0 | 0 2 2 0 2 0

The potential cause for this sample size dependence for
the t-statistics may lie with the standard deviations. The
results of previous research have demonstrated that the
variability of the mean squares decreases significantly [19]
by sample size. As the t-statistics are derived from the
mean squares and their standard deviations it appears that
t-statistics are disproportionately affected by decreases in
variability. The fact that t-statistics are highly dependent
on the variance and thereby sample size has also been
demonstrated in previous studies with the dichotomous
model [15].

Although the results for the t-statistics confirm results
from previous studies (e.g. "Knox Cube Test") [15] they
differ markedly from existing literature on simulated data
using the dichotomous model [15,16] which, in addition,
has also suggested a significant sample size dependence
for mean square statistics. For instance, Karabatsos [15]
generated data sets with sample sizes of 150, 500 and
1000 and test sizes of 20 and 50 items. Ability, 6, was dis-
tributed as N(0O, 1) and item difficulty, 3, as U(-2 to +2).
Type I error rates were evaluated for both infit and outfit
at critical values: 1.1, 1.2 and 1.3. The results indicated
both fit statistics were clearly a function of sample size,
and test length to a lesser extent.

This gives rise to a potential discrepancy between the
dichotomous and polytomous Rasch Models and Type I
error rates, suggesting a dependence between sample size
and fit for the dichotomous model for both mean square
and t-statistics, in contrast to sample size independence
for mean square fit statistics for the polytomous model as
demonstrated in this study, and further research will be
required to elucidate this issue.

There are a number of limitations to this study: 1). The
primary limitation is that "real" data directly derived from
patients were used rather than simulated data. Previous
work on the HADS in particular had demonstrated the
presence of misfitting items in the scale [6]. The aim was

to observe how effectively the four fit statistics identified
misfit and whether and to what extent this was affected by
sample size. However, we acknowledge that estimates of
true Type I error rates are more optimally derived from
simulated data where fit and misfit may be artificially
manipulated. Further limitations reflect the fact that the
data were restricted to cancer patients only, and only
included mental health questionnaires. Additionally, the
relationship between sample size and instrument length
was not explored, although there were modest differences
in test length between the HADS and PHQ-9. Finally any
potential interactions with dimensionality and item diffi-
culty [15] were also not explored.

The presence of underfitting items in instruments may
have a potentially significant impact by severely degrading
the measures, whereas overfitting items will tend to over-
estimate differences in raw scores [11]. The former may
lead to an under-detection of health problems (e.g. low
levels of screening efficacy), the latter may interfere in
comparisons within and between individuals. Clearly the
need to accurately identify misfitting, particularly under-
fitting items is paramount. This study demonstrated that
low Type I error rates were evidenced by mean square fit
statistics, which appeared independent of sample size.
The clinical impact of erroneously removing misfitting
items has not been directly investigated, however research
suggests that the converse problem of retaining misfitting
items (Type II errors) has little or no impact on the effi-
cacy of, for instance, instruments used to screen for psy-
chological distress [6]. Research on both the HADS [6]
and the Geriatric Depression Scale [28] suggests that mis-
fitting items may be removed from the instruments whilst
maintaining, if not improving screening efficacy (in terms
of diagnosing cases of anxiety or depression) when com-
pared with a gold standard psychiatric interview.
Although the clinical implications of Type I and II errors
needs to be explored further, the results suggest that cor-
rectly identifying misfit has a direct benefit to patients by
reducing the burden of the number of questions needing
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to be answered (whilst maintaining efficacy of the instru-
ment).

Conclusion

In summary, the study suggests that for polytomous Rasch
Models when evaluating against accepted threshold crite-
ria the t-statistics are sample size dependent. In contrast to
this sample size invariance appears to exist for the mean
square fit statistics. [t may therefore be recommended that
t-statistics should be adjusted or interpreted with caution
when judging item fit or attempting to identify misfit in
data, particularly for large samples and polytomous data.
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