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Abstract
Background: Multiple imputation (MI) provides an effective approach to handle missing covariate
data within prognostic modelling studies, as it can properly account for the missing data
uncertainty. The multiply imputed datasets are each analysed using standard prognostic modelling
techniques to obtain the estimates of interest. The estimates from each imputed dataset are then
combined into one overall estimate and variance, incorporating both the within and between
imputation variability. Rubin's rules for combining these multiply imputed estimates are based on
asymptotic theory. The resulting combined estimates may be more accurate if the posterior
distribution of the population parameter of interest is better approximated by the normal
distribution. However, the normality assumption may not be appropriate for all the parameters of
interest when analysing prognostic modelling studies, such as predicted survival probabilities and
model performance measures.

Methods: Guidelines for combining the estimates of interest when analysing prognostic modelling
studies are provided. A literature review is performed to identify current practice for combining
such estimates in prognostic modelling studies.

Results: Methods for combining all reported estimates after MI were not well reported in the
current literature. Rubin's rules without applying any transformations were the standard approach
used, when any method was stated.

Conclusion: The proposed simple guidelines for combining estimates after MI may lead to a wider
and more appropriate use of MI in future prognostic modelling studies.

Background
Prognostic models play an important role in the clinical
decision making process as they help clinicians to deter-
mine the most appropriate management of patients. A
good prognostic model can provide an insight into the

relationship between the outcome of patients and known
patient and disease characteristics [1,2].

Missing covariate data and censored outcomes are unfor-
tunately common occurrences in prognostic modelling
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studies [3], which can complicate the modelling process.
Multiple imputation (MI) is one approach to handle the
missing covariate data that can properly account for the
missing data uncertainty [4]. Missing values are replaced
with m (>1) values to give m imputed datasets. Previously,
three to five imputations were considered sufficient to
give reasonable efficiency provided that the fraction of
missing information is not excessive [4]. However, with
increased computer capabilities, the limitations on m
have diminished and therefore it may be more sensible to
use 20 [5] or more [6] imputations. The imputation
model, used to generate plausible values for the missing
data, should contain all variables to be subsequently ana-
lysed including the outcome and any variables that help
to explain the missing data [7]. Outcome tends to be
incorporated into the imputation model by including
both the event status, indicating whether the event, i.e.
death, has occurred or not, and the survival time, with the
most appropriate transformation [7]. Due to censoring,
this approach is not exact and may introduce some bias,
but should still help to preserve important relationships
in the data. The m imputed datasets are each analysed
using standard statistical methods. The estimates from
each imputed dataset must then be combined into one
overall estimate together with an associated variance that
incorporates both the within and between imputation
variability [4]. Rubin [4] developed a set of rules for com-
bining the individual estimates and standard errors (SE)
from each of the m imputed datasets into an overall MI
estimate and SE to provide valid statistical results, which
will be described in the methods section. These rules are
based on asymptotic theory [4]. It is assumed that com-
plete data inferences about the population parameter of
interest (Q) are based on the normal approximation

, where  is a complete data estimate of

Q and U is the associated variance for [4]. In a frequen-

tist analysis,  would be a maximum likelihood estimate

of Q, U the inverse of the observed information matrix

and the sampling distribution of  is considered approx-

imately normal with mean Q and variance U [8]. From a

Bayesian perspective,  and associated variance U should

approximate to the posterior mean and variance of Q
respectively, under a reasonable complete data model and
prior [9]. Inference is based on the large sample approxi-
mation of the posterior distribution of Q to the normal
distribution [8]. With missing data, estimates of the
parameters of interest are calculated on each of the m

imputed datasets to give  with associated vari-

ances U1,..., Um. Provided that the imputation procedure

is proper [4], thus reflecting sufficient variability due to
the missing data, and samples are large, the overall MI
estimate and variance approximate the mean and variance
of the posterior distribution of Q [6,8]. The overall MI
estimators and confidence intervals would be improved if
combined on a scale where the posterior of Q is better
approximated by the normal distribution [6,10,11].
When the normality assumption appears inappropriate
for estimates of the parameters of interest, suitable trans-
formations that make the normality assumption more
applicable should be considered [4]. In circumstances
where transformations cannot be identified, alternative
robust summary measures [12], such as medians and
ranges, may provide better results than applying Rubin's
rules. In the context of prognostic modelling, there are no
explicit guidelines for handling estimates of the parame-
ters of interest after MI, such as predicted survival proba-
bilities and assessments of model performance, where it is
unclear whether simply applying Rubin's rules is appro-
priate.

Example techniques and parameters of interest in prog-
nostic modelling studies and the rules currently available
for combining estimates after MI are summarised. This
paper will then provide guidelines on how estimates of
the parameters of interest in prognostic modelling studies
can be combined after performing MI. A review of the cur-
rent practice for combining estimates after MI within pub-
lished prognostic modelling studies is provided.

Methods
Prognostic models
Prognostic models, focusing on time to event data that
may be censored, are often constructed using survival
analysis techniques such as the Cox proportional hazards
model or parametric survival models. Ideally, pre-specifi-
cation of the covariates prior to the modelling process,
and hence fitting the full model results in more reliable
and less biased prognostic models than data derived mod-
els based on statistical significance testing [13]. Such a
model can be as large and complex as permitted by the
number of observed events [13,14].

The parameters of interest in prognostic modelling are
summarised in Table 1. These usually include the regres-
sion coefficients or the hazard ratio for each covariate in
the model and their associated significance in the model.
Assessments of the model performance, for example
model fit, predictive accuracy, discrimination and calibra-
tion are also important issues in prognostic modelling
studies.
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The likelihood ratio chi-square (χ2) statistic tests the
hypothesis of no difference between the null model given
a specified distribution and the fitted prognostic model
with p parameters [15]. Various proportion of explained
variance measures have been proposed as measures of the
goodness of fit and predictive accuracy (e.g. by Schemper
and Stare [16], Schemper and Hendersen [17], O'Quigley,
Xu and Stare [18] and Nagelkerke's R2 [15]). However, no
approach is completely satisfactory when applied to cen-
sored survival data. Discrimination assesses the ability to
distinguish between patients with different prognoses,
which can be assessed using the concordance index (c-
index) [19] or alternatively using the prognostic separa-
tion D statistic [20]. Calibration determines the extent of
the bias in the predicted probabilities compared to the
observed values. A shrinkage estimator provides a meas-
ure of the amount needed to recalibrate the model to cor-
rectly predict the outcome of future patients using the
fitted model [21]. The prognostic model is often summa-
rised by reporting the predictive survival probabilities at
specific time-points of interest or quantiles of the survival
distribution for each prognostic risk group.

Rules for MI inference
The rules developed by Rubin [4] for combining either a
single estimate or multiple estimates from each imputed
dataset into an overall MI estimate and associated SE will
be summarised. Performing hypothesis testing for a single

estimate or based on multiple estimates will be described
together with the extensions for combining χ2 statistics [8]
and likelihood ratio χ2 statistics [22].

Combining parameter estimates

For a single population parameter of interest, Q, e.g. a
regression coefficient, the MI overall point estimate is the
average of the m estimates of Q from the imputed datasets,

[4]. The associated total variance for this

overall MI estimate is , where

 is the estimated within imputation variance

and  is the between imputation

variance [4]. Inflating the between imputation variance by
a factor 1/m reflects the extra variability as a consequence
of imputing the missing data using a finite number of
imputations instead of an infinite number of imputations

[4]. When B dominates  greater efficiency, and hence
more accurate estimates, can be obtained by increasing m.

Conversely, when  dominates B, little is gained from
increasing m [4].
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Table 1: Parameter of interest in prognostic modelling studies and ways to combine estimates after MI

Parameters Possible methods for combining estimates of parameters after MI*

Covariate distribution
Mean Value Rubin's rules
Standard Deviation Rubin's rules
Correlation Rubin's rules after Fisher's Z transformation

Model parameters
Regression coefficient Rubin's rules
Hazard ratio Rubin's rules after logarithmic transformation
Prognostic Index/linear predictor per patient Rubin's rules

Model fit and performance
Testing significance of individual covariate in model Rubin's rules using a Wald test for a single estimates (Table 2(A))
Testing significance of all fitted covariates in model Rubin's rules using a Wald test for multivariate estimates (Table 2(B))
Likelihood ratio χ2 test statistic Rules for combining likelihood ratio statistics if parametric model (Table 2(D)) or χ2 statistics 

if Cox model (Table 2(C))
Proportion of variance explained (e.g. R2 statistics) Robust methods
Discrimination (c-index) Robust methods
Prognostic Separation D statistic Rubin's rules
Calibration (Shrinkage estimate) Robust methods

Prediction
Survival probabilities Rubin's rules after complementary log-log transformation
Percentiles of a survival distribution Rubin's rules after logarithmic transformation

* Reflect the authors' experiences and current evidence.
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These procedures for combining a single quantity of inter-
est can be extended in matrix form to combine k estimates

of parameters, e.g. k regression coefficients, where  is a

k × 1 vector of these estimates and U is the associated k ×
k covariance matrix [4].

Hypothesis testing
Significance level based on a single combined estimate

A significance level for testing the null hypothesis that a
single combined estimate equals a specific value, Q0: H0:

Q = Q0 can be obtained using a Wald test by comparing

the test statistic  against the F distribution

with one and v = (m - 1)(1 + r-1)2 degrees of freedom,

where  is the relative increase in variance

due to the missing data (Table 2(A)) [4]. When the
degrees of freedom, v, are close to the number of imputa-
tions performed, for example with a large fraction of miss-
ing information about the parameter of interest, then
estimates of the parameter may be unstable and more
imputations are required.

Significance level based on combined multivariate estimates

In the context of prognostic modelling, it is useful to test
the global null hypothesis that all k regression estimates

Q̂
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Table 2: Summary of significance tests for combining different estimates from m imputed datasets after MI

Estimate F Test statistic Degrees of freedom (df) Relative increase in 
variance (r)

A) Scalar F1, v

, H0: Q = Q0

v = (m - 1)(1 + r-1)2

B) 
Multivariate 

H0:Q = Q0,

k = number of parameters where a = k(m - 1)

C)
χ2 statistics
w1,..., wm k = df associated with χ2 tests

D) 
Likelihood 
Ratio χ2 

statistics
wL1,..., wLm

k = number of parameters in fitted 
model

 where a = k(m - 1)

KEY: F = value from the F-distribution, which the test statistic is compared to.

 = average of the m imputed data estimates.

 = within imputation variance.
B = between imputation variance.
T = total variance for the combined MI estimate.

wj, j = 1,..., m = χ2 statistics associated with testing the null hypothesis Ho : Q = Qo on each imputed dataset, such that the significance level for the jth 

imputed dataset is P{  > wj}, where  is the χ2 value with k degrees of freedom (Rubin 1987).

 = average of the repeated χ2 statistics.

 = average of the m likelihood ratio statistics, wL1,..., wLm, evaluated using the average MI parameter estimates and the average of the estimates 

from a model fitted subject to the null hypothesis.
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are a specific value, zero say. A significance level for testing

the hypothesis that the combined MI estimate, , equals

a particular vector of values Qo is provided in Table

2(B)[9]. This ideal approach using a Wald test requires a
vector of point estimates and a covariance matrix to be
stored from each imputed dataset, which can be cumber-
some for large k, as can result from fitting categorical var-
iables in the regression model.

Significance level based on combining χ2 statistics

An alternative to testing the multivariate point estimates is

the method for combining χ2 statistics, associated with
testing a null hypothesis of Ho : Q = Qo, e.g. a regression

coefficient is zero or all regression coefficients are zero
(Table 2(C)) [8]. This approach is useful when there are a
large number of parameters to estimate, the full covari-
ance matrix is unobtainable from standard software or too

large to store, or only the χ2 statistics are available. This
approach is deficient compared to the method for com-
bining multivariate estimates and should be used only as
a guide, especially when there are a large number of
parameters compared to only a small number of imputa-
tions [22]. The true p-value lies between a half and twice
this calculated value [8]. A considerable amount of infor-

mation is wasted from only using the χ2 statistics and thus
there is a consequent loss of power [22]. This approach
may be improved by multiplying the relative increase in

variance estimate (r2 in Table 2(C)) by a factor  repre-

senting the number of model parameters. Justification for

this adjustment lies in the fact that each χ2 statistic is
based on k degrees of freedom, but unlike the other
approaches, this is not accounted for in the relative
increase in variance calculations originally proposed by Li
et al. [8].

Significance level based on combining likelihood ratio χ2 statistics
The method for combining the likelihood ratio χ2 statis-
tics [22] from each imputed dataset is used to obtain an
overall significance level for testing the hypothesis of no
difference between two nested prognostic models (Table
2(D)). This is an intermediate approach between combin-
ing multivariate estimates and combining χ2 statistics. The
obtained significance level should be asymptotically
equivalent to that based on the combined multivariate
estimates [22].

The likelihood function needs to be fully specified in
order to calculate the likelihood ratio statistics deter-
mined at the average of the parameter estimates over the

m imputations from fitting the regression model either
subject to the null hypothesis or the alternative hypothe-
sis with covariates included. This may be difficult for the
Cox proportional hazards model, which uses the partial
likelihood function.

Guidelines for combining estimates of interest in 
prognostic studies
The procedures for combining multiply imputed esti-
mates that are of particular interest in prognostic model-
ling are discussed in the following subsections. It is
assumed that the full prognostic model is fitted and its
performance evaluated within each imputed dataset and
the required estimates (as given in Table 1) obtained. The
estimates of the parameters of interest (Table 1) are sepa-
rated into those where the Rubin's rules for MI inference
can be applied, those where suitable transformations can
be found to improve normality and those where suitable
transformations cannot be identified and therefore alter-
native summary measures are proposed.

Combining estimates using Rubin's rules
The sample mean of a covariate, standard deviation,
regression coefficients, individual prognostic index and
the prognostic separation estimates can all be combined
using Rubin's rules for single estimates. It is important to
emphasise that the variance associated with a sample
mean of a covariate is the sample variance divided by the
number of observations and hence not just its sample var-
iance [9]. The standard deviation of the data can be
treated like any other parameter to give a more appropri-
ate and efficient combined MI estimate than reporting the
standard deviation from only one imputed dataset. The
regression coefficients, and hence the prognostic separa-
tion D statistic, from fitting either a Cox proportional haz-
ards or a Weibull model should be asymptotically normal
at least with large samples [15], thus making Rubin's rules
appropriate.

The likelihood ratio statistic for testing the hypothesis of
no difference between two nested prognostic models from
each imputed dataset can be combined using the infer-
ences for likelihood ratio statistics (Table 2(D)), provided
that the log-likelihood function can be fully specified, e.g.
for fully parametric models such as the Weibull model.
The Cox proportional hazards model uses the partial like-
lihood function as the baseline hazards are unspecified,
and therefore can be more difficult to specify. Hence, it
may be easier to use the less precise approach for combin-
ing χ2 statistics (Table 2(C)). However, both these
approaches are less accurate than testing the significance
of the model using a Wald test based on the combined
multivariate regression parameter estimates (Table 2(B)).
The latter approach may be considered the preferred
approach, when possible.

Q

1
k
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Combining estimates using Rubin's rules after suitable 
transformation
The correlation coefficient, hazard ratios, predicted sur-
vival probabilities and percentiles of the survival distribu-
tion can all be combined using Rubin's rules after suitable
transformations to improve normality. The obtained
combined estimates should be back transformed onto
their original scale prior to analysis.

Fisher's z transformation [23] provides a suitable transfor-
mation for the sample correlation coefficient, which has
an approximate normal distribution [9]. For large sam-
ples, the log hazard ratio from a survival model, which is
simply the regression coefficient, is approximately nor-
mally distributed and therefore should be used. A more
extreme pooled estimate than appropriate would be
obtained if the hazard ratio was not transformed, as the
estimates would be averaged over the posterior medians
and not the posterior means as required.

The complementary log-log transformation for the pre-
dicted survival probability at particular time-points gives
a possible range of (-∞, +∞) instead of the survivorship
estimate being bounded by zero and one, and is often
used to determine reasonable confidence intervals [24]. A
suitable transformation for the survival time associated
with the pth percentile of a survival distribution is the log-
arithmic transformation, as this gives a possible range of
(-∞, +∞) instead of being bounded by zero and infinity
and is generally used to obtain a confidence interval [25].
Estimates for the predicted survival probabilities at spe-
cific time-points, e.g. at 2 years, or survival times at partic-
ular percentiles can be obtained within each imputed
dataset for the average covariate values, provided that
researchers acknowledge that this does not represent the
diversity of the patients in the sample [26]. Alternatively,
predicted survival probabilities can be obtained for spe-
cific covariate patterns or for an individual patient.

Combining model performance measures where the normality 
assumption is uncertain and variance estimates are generally 
unavailable
When considering model performance measures, the
imputation model should be more general than the prog-
nostic models being investigated, as the performance
measures are more sensitive to the choice of imputation
model and therefore may produce more bias than seen in
the regression parameter estimates from the prognostic
model. If one is willing to accept the large sample approx-
imation to normality for the proportion of variance
explained measures, e.g. Nagelkerke's R2 statistic [15], the
c-index and the shrinkage estimator, then these estimates
can be simply treated as another estimate that can be aver-
aged using Rubin's rules for single estimates. However,
estimates for these measures are generally bounded by
zero and one, not symmetrically distributed and do not

necessarily follow a specific distribution, so are unlikely to
follow a normal distribution. Therefore the standard MI
techniques for combining into one estimate, even after
applying a transformation, may not provide the best esti-
mate. In addition, an overall MI variance incorporating
sufficient uncertainty cannot be determined as variance
estimates associated with these performance measures are
generally unavailable. The lack of a within imputation
variance estimate also restricts the use of sophisticated
robust location and scale estimators, such as the M-esti-
mators [12]. The median, inter-quartile range or full range
of the m estimates may provide a more appropriate reflec-
tion of the distribution of the values over the imputed
datasets, as reported by Clark and Altman [27] and Sin-
haray, Stern and Russell [28] for the R2 statistics and by
Clark and Altman [27] for the c-index. Using the median
absolute deviation [12] could provide an alternative
measure of the dispersion of values around the median.

Methods for literature review
A literature search was performed within the PubMed
(National Library of Medicine) and Web of Science® bibli-
ographic software of all articles published before June
2008 that used multiple imputation techniques and a sur-
vival analysis to obtain a prognostic model. Methodolog-
ical papers were excluded. The aim of the review was to
identify how estimates of the parameters of interest in
prognostic modelling studies have been combined after
performing MI in the published literature.

Results
Sixteen non-methodological articles were identified. The
MI techniques reported were varied with no overall con-
sensus on technique or statistical software. The number of
imputations ranged from five to 10000, with the majority
of studies using five or ten imputations. The amount of
missingness reported also varied from studies with rela-
tively little missing data [29] to those with large amounts
of missingness [30].

In seven articles, no mention of how the estimates of
interest were combined after MI was given. Clark et al.
[30] reported pooled summary estimates from the
imputed datasets and Rouxel et al. [31] stated that "the
multivariable analysis took into account the potential
multiple imputation". Although neither article provided
any details or references, Rubin's rules were presumably
used. The remaining seven studies reported that Rubin's
rules [4] were used to combine the estimates of interest
after fitting a variety of regression models, such as a Cox
regression model [29,32-34], multiple Poisson regression
models [35] or a Weibull model [36,37]. The estimates
reported in the published literature were predominately
the regression coefficients and associated SEs, hazard
ratios and 95% confidence limits, and significance of the
individual covariates in the model. The estimates also
Page 6 of 8
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included combining percentiles from the Weibull survival
distribution [36] and the median survival time and asso-
ciated 95% confidence intervals from the Cox model [32]
using Rubin's rules. No details of any transformations
applied to these estimates prior to using Rubin's rules
were reported. Gill et al. [29] and Clark et al. [30] reported
model performance measures after MI, but did not explic-
itly state how this was achieved after MI.

Discussion
With the advances in computer technologies and soft-
ware, MI is becoming more accessible. MI has been per-
formed prior to the analysis of several prognostic
modelling studies, e.g. [30,31]. Few published studies
explicitly stated how the reported results were obtained
after MI. None of the articles identified within the current
review reported that transformations were applied prior to
applying Rubin's rules for any of the estimates.

This paper has suggested guidelines for combining multi-
ply imputed estimates that are of interest when a survival
model is fitted to a dataset and suitable performance
measures and predicted survival probabilities are required
for summarising the model (Table 1). These proposed
guidelines are based on our own experiences and current
evidence, although evidence for the appropriateness for
some parameters of interest such as the mean and regres-
sion coefficients are more widely available than for others
such as the model performance measures. Following these
guidelines can provide a more uniform approach for han-
dling these estimates in future studies and hence compa-
rability of reported estimates between similar studies. The
standard Rubin's rules [4] should be applied to the esti-
mates where the asymptotic normality assumption holds
or where suitable transformations can be found. When
the asymptotic normality assumption does not appear to
hold or is not easily achievable, the average estimate and
associated variance may be unsuitable especially with
highly skewed distributions, as this could give undue
weight to the tails of the distribution. Median and ranges
may be more suitable, e.g. for some model performance
measures, where variance estimates are generally unavail-
able. More sophisticated robust estimators, such as the
robust M-estimators [12], may be useful when a within
imputation variance can be easily calculated. However,
these robust techniques are not likelihood based, as is the
case with Rubin's rules. Harel [38] showed that the pro-
portion of variation explained measures, R2, from a linear
regression model fitted to normally distributed data can
be considered as a squared correlation coefficient and can
be transformed by taking the square root and then apply-
ing Fisher's Z transformation as for the correlation coeffi-
cient. However whether this approach would apply to R2

measures from a survival regression model that may be
affected by censored observations as arises in survival

analysis is debatable and therefore robust methods are
recommended here.

In this paper, model performance measures were calcu-
lated within each imputed dataset using the constructed
prognostic model for that dataset and then combined to
give an overall multiply imputed measure. The perform-
ance of a prognostic model derived using a development
sample will also need to be externally validated using an
independent dataset [1], but missing data within the
development and or validation sample complicate these
analyses. At present there are no clear guidelines on the
appropriate handling of missing data and the use of MI
when externally validating a prognostic model and there-
fore further research is required through the use of simu-
lation studies. The extension to constructing prognostic
models using variable selection procedures with multiply
imputed datasets provides an added complexity, which
also requires further investigation. One possible solution
is to perform backwards elimination by fitting the full
model in each imputed dataset and using the combined
estimates to determine the least significant variable for
which to exclude and then refit this reduced model. This
process is continued until all non-prognostic variables
have been eliminated [27]. Alternatively, bootstrapping
could be incorporated [39] or a model averaging
approach, as considered within the Bayesian framework
[40], may also be possible.

Conclusion
The review of current practice highlighted deficiencies in
the reporting of how the multiply imputed estimates
given in the published articles were obtained. Thus, it is
recommended that future studies include a more thor-
ough description of the methods used to combine all esti-
mates after MI.

The ability to use MI methods that are readily available in
standard statistical software and apply simple rules to
combine the estimates of interest rather than requiring
problem specific programmes makes MI more accessible
to practising statistician. We hope that this may lead to a
more widespread and appropriate use of MI in future
prognostic modelling studies and improved comparabil-
ity of the obtained estimates between studies.

Abbreviations
MI: multiple imputation; m: number of imputations; SE:
standard error.
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