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Abstract

Background: Comparing the relative utility of diagnostic tests is challenging when available datasets are small,
partial or incomplete. The analytical leverage associated with a large sample size can be gained by integrating
several small datasets to enable effective and accurate across-dataset comparisons. Accordingly, we propose a
methodology for a holistic comparative analysis and ranking of cancer diagnostic tests through dataset integration
and imputation of missing values, using urothelial carcinoma (UC) as a case study.

Methods: Five datasets comprising samples from 939 subjects, including 89 with UC, where up to four diagnostic
tests (cytology, NMP22°, UroVysion® Fluorescence In-Situ Hybridization (FISH) and Cxbladder Detect) were integrated
into a single dataset containing all measured records and missing values. The tests were firstly ranked using three
criteria: sensitivity, specificity and a standard variable (feature) ranking method popularly known as signal-to-noise
ratio (SNR) index derived from the mean values for all subjects clinically known to have UC versus healthy subjects.
Secondly, step-wise unsupervised and supervised imputation (the latter accounting for the ‘clinical truth” as
determined by cystoscopy) was performed using personalized modelling, k-nearest-neighbour methods, multiple
logistic regression and multilayer perceptron neural networks. All imputation models were cross-validated by
comparing their post-imputation predictive accuracy for UC with their pre-imputation accuracy. Finally, the
post-imputation tests were re-ranked using the same three criteria.

Results: In both measured and imputed data sets, Cxbladder Detect ranked higher for sensitivity, and urine cytology a
higher specificity, when compared with other UC tests. Cxbladder Detect consistently ranked higher than FISH and all
other tests when SNR analyses were performed on measured, unsupervised and supervised imputed datasets.
Supervised imputation resulted in a smaller cross-validation error. Cxbladder Detect was robust to imputation showing
a 2 % difference in its predictive versus clinical accuracy, outperforming FISH, NMP22 and cytology.

Conclusion: All data analysed, pre- and post-imputation showed that Cxbladder Detect had higher SNR and
outperformed all other comparator tests, including FISH. The methodology developed and validated for
comparative ranking of the diagnostic tests for detecting UC, may be further applied to other cancer diagnostic
datasets across population groups and multiple datasets.
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Background

Currently there are no effective information science
methods for comparing and ranking diagnostic test per-
formance across sample populations, particularly when
different combinations of diagnostic tests are compared
in different studies with different populations. Further-
more, comparisons are challenging when missing values
are present in each sample population.

Data imputation has previously been used to success-
fully manage missing data in several cancer studies. This
has been particularly successful where one or more com-
mon variables are present across datasets. Population-
based studies, particularly those analysing records where
data are incomplete, benefit from multiple imputation
by permitting a fuller analysis of incomplete records [1].
For example, Nur et al. [1] used imputation techniques
to refine mortality estimates by including stage, morph-
ology and grade data for colorectal cancer patients from
an additional 45 % of the patient cohort where data were
incomplete. Other studies have also indicated that im-
putation can be used to manage missing clinical data,
for example, tumor stage, from patients with colorectal,
lung and breast cancers and melanoma [2-5].

In addition, genotype imputation is already used in the
analysis of genome-wide association scans [6]. This tech-
nique involves imputing the genotypes of unsequenced
parts of the genome based on data from more fully se-
quenced reference individuals and is particularly useful
if data are combined from studies that used different se-
quencing panels across different populations. A variety
of other examples of imputation in biological and clin-
ical data and different modelling approaches to this data
can be found [7].

Various statistical and machine learning methods for
data imputation have been proposed and applied so far.
Rubin [8, 9] and Little and Rubin [10] provide an over-
view of statistical methods for multiple imputation and
analysis of data with missing values. Su et al. [11] pro-
vides Bayesian methods, multiple imputation and model
diagnostics. The Markov chain MonteCarlo (MCMC)
approach to Bayesian modelling estimates the condi-
tional distribution of model parameters given the
observed data and the prior parameter distribution (the
a-posteriori distribution) [12]. This approach may be
interpreted as a multiple imputation procedure where
many sets of missing observations are generated from
their a-posteriori distribution. However, the imputed data
sets do not play a direct role in the estimation of parame-
ters as in the classical approach developed by Little and
Rubin [10].

The majority of patients with UC present with uro-
logical symptoms, such as macroscopic hematuria (vis-
ible blood in the urine), microscopic hematuria (>3 red
blood cells per high-powered field) or irritative voiding
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in the absence of a benign cause. The current standard
of care for diagnosing these patients is cystoscopy and
pathological examination of biopsies [13].

A number of non-invasive urine tests are now avail-
able that can be used as an adjunct to, or in low-risk
cases, a replacement for, investigative cystoscopy. In
urine cytology, cells present in voided urine or bladder
wash samples are examined and described as being posi-
tive or negative for the presence of malignant cells, atyp-
ical or having suspicious cells present [14]. NMP22° is a
nuclear mitotic protein involved in chromatin segrega-
tion that is used to diagnose patients with UC in two
urinary assays, a reference laboratory enzyme immuno-
assay (ELISA) and a cassette point-of-care test (NMP22
BladderChek®). A cut-off level assessed by the NMP22
test kit has been validated to distinguish positive from
negative results [15]. UroVysion® Fluorescence In-Situ
Hybridization (FISH) is a urine-based test that detects
aneuploidy of chromosomes 3, 7 and 17, and loss of
both 9p21 loci in malignant urothelial cells from voided
urine samples [16, 17]. Changes in these chromosomes
correlate with the transition from normal urothelium to
carcinoma, tumor progression and pathological stage
and grade. FISH is not generally used to diagnose pri-
mary UC, but is applied as a reflex test for atypical cy-
tology in a monitoring for recurrence setting. Cxbladder
Detect is a gene expression test, which quantifies five
mRNA biomarkers found in urine: four biomarkers
(IGFBP5, HOXA13, MDK and CDKI) are associated
with the growth and propagation of tumor tissue,
whereas the fifth biomarker (CXCR2) is a marker of in-
flammation that is used to reduce false-positive results
by identifying patients with non-malignant inflammatory
conditions [18]. The relative performance of Cxbladder
Detect, NMP22 Bladderchek and NMP22 ELISA have
been prospectively compared with all tests offering com-
parable specificity [18], but no comprehensive analysis
has been attempted on all currently available non-
invasive urine tests because no study published to date
has simultaneously assessed all tests.

In this study, we propose a methodology for compara-
tive analysis and ranking of diagnostic tests across popu-
lation groups, by integrating datasets and imputing data
using datasets from sample populations. We have ap-
plied this methodology to the diagnosis of UC using
urine cytology, NMP22, FISH and Cxbladder Detect be-
cause there have been few broad multi-test head-to-head
comparisons between urinary tests for UC, and the vary-
ing population demographics, sample sizes and method-
ologies used across studies have made comparing and
interpreting data difficult.

A data imputation method has considerable appeal in
making a comprehensive comparison possible. More spe-
cifically, in the present study, we propose a methodology
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for globally ranking and comparing the accuracy of differ-
ent diagnostic tests when each test has only been applied
to a subgroup of patients. The novel approach presented
here uses measured values from the integrated dataset to
impute values for other UC tests in the same subject. As
each test measures a somewhat different aspect of human
pathophysiology, the comparative analysis is truly of a hol-
istic nature.

Methods

Datasets

Five datasets, all owned by the authors of the manu-
script, consisting of 939 patients obtained from different
populations of patients who had either presented with
macrohematuria at their primary diagnosis (Datasets 1—
3) or for surveillance for UC recurrence (Datasets 4 and
5) were available for the study (Table 1). Some individual
data points were missing in each of the datasets where
not all of the tests analysed in this study were used for
each of the subpopulations on all patients. Up to four
diagnostic UC tests were performed in each study and
for this analysis all tests were treated as having a binary
outcome of being positive or negative for UC (see
below). Any patient samples lacking a diagnosis based
on cystoscopy as the gold standard (i.e. in the absence of
a record of clinical truth), or where only one test result
was available, were discarded. Patients with a diagnosis
of other causes, e.g. kidney stones, were reclassified as a
non-UC diagnosis alongside patients whose diagnosis
was normal. All datasets were combined into a single in-
tegrated dataset containing all records, including sam-
ples with missing values.

In Datasets 1-3 and 5, cytology and NMP22 were
measured using the methods described by O’Sullivan
et al. [18] and Cxbladder Detect was measured using a
method based on O’Sullivan et al. [18]. The methods
used to measure cytology and NMP22 in Dataset 4 were

Table 1 UC diagnostic test datasets used in the analysis

Page 3 of 12

described in [19]. FISH was measured in Datasets 4 and
5 according to the manufacturer’s instructions.

Original outcomes were used for all tests and desig-
nated as either ‘positive’ or ‘negative’ for UC. For urine
cytology, negative and atypical results were considered
negative for UC (coded as 1 and 2, respectively), while
positive and suspicious results were considered positive
for UC (coded as 3 and 4, respectively) for the initial de-
velopment of the integrated dataset and for the accuracy
analysis (see below for details of the statistical handling
of the data). For NMP22, a score of <10U was consid-
ered negative (coded as 1), while a score of >10U was
considered positive (coded as 2) and the binary classifi-
cation was used for all analyses. Positive and negative
results for FISH were defined according to the manufac-
turer’s instructions and the binary classification was used
for all analyses (coded as 2 and 1, respectively). A
Cxbladder Detect result of ‘Low’ was classed as negative
(coded as 1) and results of ‘Elevated’ and ‘High’ were
classed as positive for the imputation and accuracy ana-
lysis (coded as 2). Two further variables that may be pre-
dictive of UC, age and gender, were also included in the
initial integrated and imputation analysis.

The proposed methodology

The proposed methodology in this study includes several
well-known computational methods and procedures per-
formed and interpreted in unique combinations:

Signal-to-noise ratio (SNR) ranking of variables

The discriminative power of each diagnostic test (vari-
able) to separate samples from patients with and without
UC across all samples from the integrated datasets was
calculated using a feature ranking technique, popularly
known as SNR (see Additional file 1 for the mathemat-
ical formula). Mean values from patients with UC were
considered as ‘signal’ and mean values from patients with-
out UC as ‘noise’. For each test, an index of separation was

Dataset  Study/publication Original dataset, n Data analyzed  Cytology ~NMP22  FISH  Cxbladder Detect
(UC/non-UQ)
1 Pacific Edge Limited, NZ [18] 476, Primary detection 63/411
2 Canterbury Urology Research Trust, 94, Primary detection 6/74
Canterbury, NZ (Pacific Edge Limited,
Unpublished data)
3 North Shore Hospital, Takapuna, NZ 84, Primary detection 5/63
(Pacific Edge Limited, Unpublished data)
4 Kamat, USA [19] 200, Secondary monitoring  6/187
5 Clinical Trials USA (Pacific Edge Limited, 124, Secondary monitoring ~ 9/115

Unpublished data)

The closed symbol (+) indicates that the test was carried out in the study. A gap indicates that the test was not carried out. Data analyzed differs from the study
population as any patient samples either without diagnosis or where only one test result was available were discarded. Primary detection means the study
population was composed of patients presenting with hematuria prior to UC diagnosis. Secondary monitoring means that patients were presenting after primary

UC diagnosis and treatment



Breen et al. BVIC Medical Research Methodology (2015) 15:45

calculated using the difference between the mean test value
of samples from patients with and without UC. A higher
index represented greater separation between mean test re-
sults for patients with and without UC, and consequently
greater accuracy when using a binary classification.

Data imputation method

A step-wise imputation technique was applied to impute
all missing test values in the integrated dataset to obtain
a new, imputed, comprehensive dataset (all variables, all
sites). The dataset with the smallest number of missing
values for a test was imputed first. This dataset was sub-
sequently used to impute test variables in other datasets
with the next smallest number of missing values, and so
on until all missing values were imputed. If imputed
values were not required in future imputations they were
not used. Therefore, the maximum amount of known
data was used to impute missing data, thus reducing im-
putation error.

Two different computational modelling approaches
are used here to impute a missing value in a sample: per-
sonalized (individualized) modelling, and global model-
ling [7, 20]. To implement the personalized approach we
used the k-nearest neighbour (k\NN) method with differ-
ent values for k (i.e. 3, 5, 10) (see Additional file 2).

To implement the global modelling approach we de-
rived, from a subset of complete samples of selected in-
put variables, a global function that was applied for the
imputation of the missing test values. In this case the
imputation was performed in terms of building a classifi-
cation model of N inputs (the tests and variables with
known values in a complete sub-set from the integrated
data set) and one output — the test under imputation.
Such a model was trained on input—output samples with
known values and then recalled to calculate the un-
known output values for the imputed test. Two global
modelling methods were used in our experiments —
multiple linear regression (MLR) and multi-layer percep-
tron (MLP) neural network (see Additional file 3).

Supervised versus unsupervised imputation

Data imputation was performed using two methods, de-
pending on whether the known clinical truth (healthy or
UC) was used (supervised) or not (unsupervised) during
data imputation as an input variable. When unsuper-
vised imputation was performed, missing values were
imputed on the basis of outcomes reported for tests
without taking into account the clinical truth. In con-
trast, when using a supervised imputation method, the
clinical truth for each sample was considered as an input
variable when the imputation function was derived and
imputed values were calculated.
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Assessment of diagnostic test accuracy - sensitivity and
specificity

The true accuracy of each test in terms of how often the
test outcome (negative or positive) matched the clinical
truth (healthy or UC) was calculated as the probability of a
positive test result (sensitivity) for a positive patient and
negative test result (specificity) result for a negative patient.

Sensitivit P Specificit TN
ensiLivi = eclficlL =
Y= TP+ EN P Y= TN+ EDP

wherein, TP and TN are the number of true positive and
true negative results, respectively, and FN and FP are the
number of false negative and false positive results, respect-
ively. Univariate logistic regression was used to estimate
the sensitivity and specificity as well as 95 % confidence
intervals (CI) for each test using only the observed data.

Bayesian estimates of sensitivity and specificity

The MCMC methods [12] were used to estimate a prob-
ability model for the data. The measured data were allo-
cated into either Tumor or Normal groups according to
the cystoscopy result. For each group a multinomial
model was used to assign a probability to each distinct
set of each of the four binary test results, giving 16 prob-
abilities for each group. We used uniform distributions
on the interval (0,1) as priors for each of these probabil-
ities. The transition probabilities for a Markov chain
were constructed with a limiting distribution identical to
joint conditional distribution of parameters given the ob-
served data. Missing observations are on the same foot-
ing as parameters. Two thousand realizations from the
Markov chain were simulated. Sensitivity is the marginal
probability that a given test is positive in the Tumor
group; similarly specificity is the marginal probability
that a given test is negative for samples from the Normal
group. Summary statistics were computed from these
marginal distributions to obtain estimates and confi-
dence intervals for sensitivities and specificities.

Assessment of the accuracy of the imputation techniques

The accuracy of each imputation method was first evalu-
ated through cross-validation using the leave-one-out
cross-validation technique (see [7]). For each imputation
method and for each imputed diagnostic test, we used
complete data samples to train and validate the method.
The technique involves ‘taking out’ one complete sample
for which the values of both input variables and the
value of diagnostic test under imputation are known;
then after applying the imputation method, the two
values are compared and accuracy is calculated based on
the ratio between the number of correctly imputed
values and all imputation values. The lower the differ-
ence between the imputed data and the measured
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Table 2 Imputation process, in order of execution, for each of the datasets in the integrated dataset
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Imputation step Model inputs Imputed variable output
Datasets Variables Dataset Variable Number of samples imputed
1 5 Age, gender, cytology, FISH, Cxbladder Detect 5 NMP22 2
2 5 Age, gender, NMP22, FISH, Cxbladder Detect 5 Cytology 3
3 1,4,5 Age, gender, cytology, NMP22 4 Cxbladder Detect 193
4 1,2,3,45 Age, gender, cytology, Cxbladder Detect 2 NMP22 80
3 NMP22 80
5 3,4,5 Age, gender, cytology, Cxbladder Detect 3 FISH 68
6 2,45 Age, gender, cytology, Cxbladder Detect 2 FISH 80
7 1,4,5 Age, gender, cytology, Cxbladder Detect 1 FISH 474

Note: all imputations maintain at least a 70 % level of known data

values, the closer the imputation matches known values.
The leave-one-out cross validation technique is closer to
the personalized modelling approach, when for every
new individual data sample, we create a model to classify
(predict) the outcome of this individual, using all avail-
able data samples of other individuals, and derive a per-
sonalized profile of the individual [21].

The SNR, sensitivity and specificity criteria were calcu-
lated again on the whole imputed data set. As another
imputation evaluation procedure, the difference in sensi-
tivity and specificity calculated in the imputed dataset
and the integrated measured dataset for each diagnostic
test and imputation method is calculated. If similar sen-
sitivity and specificity values were achieved before and
after imputation, the imputation method was considered
to be consistent with the measured data, thus permitting
further ranking of the tests and further study using the
much larger integrated and imputed data that was sub-
sequently available.

A novel integrated comparative analysis based on
combined SNR, sensitivity and specificity evaluations before
and after imputation

Each of the evaluation criteria — SNR, sensitivity and
specificity, evaluates and ranks the UC diagnostic tests

from a single point of view and using all of them to-
gether, rather than using only one of them, would be
more appropriate when comparing the diagnostic tests
in a holistic way. For example, SNR measures the dis-
criminative power of a test, sensitivity measures prob-
ability of detecting UC, while specificity measures the
probability of detecting healthy subjects. Different clinical
laboratories may have different requirements according to
their policy and goals. For an integrated comparison, our
methodology includes a three-dimensional comparative
analysis and ranking of the tests in the dimensions of the
three criteria.

UC case study results presentation

All tests were compared and ranked according to the
three criteria — SNR index, sensitivity and specificity,
using data from the integrated dataset as measured and
after supervised and unsupervised imputation of missing
values.

Results and discussion

The global integrated dataset comprised five contributing
datasets and represented diagnostic test results for UC
collected in different population studies. Patient samples
lacking a diagnosis, or with only one test result available,

Table 3 Measured and published sensitivity and specificity for each test in the integrated dataset before imputation, mean and

95 % Cls

Measured Published

Sensitivity, % (95 % Cl) Specificity, % (95 % Cl) Sensitivity, % (95 % Cl) Specificity, % (95 % Cl)
Cytology 455 (40.6-50.4) 96.3 (94.5-97.9) 56.1 (43.3-68.3) [18] 94.5 (91.9-96.5) [18]
NMP22 449 (374-52.3) 89.0 (86.5-91.5) 50.0 (374-62.6) [18] 88.0 (84.6-91.0) [18]
FISH 400 (22.7-52.3) 87.3 (83.7-91.6) 72 (69-75) [22] 83 (82-85) [22]

Cxbladder Detect 795 (71.1-87.8)

82.2 (79.2-85.0)

61.9 [23] 89.7 [23]
18 [24] 90 [24]
81.8 [18] 85.1 (fixed) [18]
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Table 4 Sensitivity and specificity for each test from the
Bayesian estimate of conditional distribution of parameters and
missing observations given observed data, mean and 95 % Cls

Sensitivity, % (95 % Cl) Specificity, % (95 % Cl)

Cytology 46.0 (36.3-55.8) 95.3 (93.7-96.6)
NMP22 45.9 (35.9-56.3) 88.0 (85.5-90.2)
FISH 47.7 (31.5-63.3) 87.7 (84.7-90.3)
Cxbladder Detect 736 (65.1-81.7) 81.7 (78.7-844)

were discarded; the remaining global integrated dataset
comprised 939 samples (Table 1), including samples from
89 patients with UC and samples from 850 patients who
did not have UC.

As indicated in Table 1, Datasets 1-4 did not have
values for all UC diagnostic tests, but the clinical truth
as determined by cystoscopy, was available for all sam-
ples. Only Dataset 5 was complete in terms of all tests
being performed, but five individual values were missing.
Altogether, values were missing for urine cytology in
three patients, NMP22 in 162 patients, FISH in 622 pa-
tients and Cxbladder Detect in 193 patients. Age and
gender data were available for all patients (see Table 2).

The measured data in the integrated global dataset fell
within the 95 % CI data published for sensitivity and
specificity for cytology and NMP22 [21] and was very
similar to the data in the single published study for
Cxbladder Detect [18] (Table 3). The FISH measured
dataset specificity was slightly higher than reported by
Hajdinjak [22], and was slightly lower than Dimashkieh
et al. [23] and Sullivan et al. [24]. In contrast, the FISH
measured data in the integrated dataset sensitivity was
lower than the range reported by Hajdinjak [22], but it
was within the overall range of published values.

First, a comparison of diagnostic tests using only mea-
sured data in the integrated global dataset was per-
formed in a univariate analysis mode. The measured
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sensitivity and specificity of each test are presented in
Table 3, along with their 95 % CIs and sensitivity and
specificity values based on published data. Cxbladder
Detect had a higher measured sensitivity of 79.5 % com-
pared with cytology, FISH and NMP22, with sensitivity
ranging from 40.0-45.5 %. However, urine cytology had
a higher measured specificity at 96.3 % compared with
specificities ranging from 82.2-89.0 % for Cxbladder De-
tect, FISH and NMP22. The 95 % ClIs for the sensitivity
of Cxbladder Detect (71.1-87.8 %) cover a higher range,
and do not overlap those of the other three tests.

The results of the Bayesian analysis of sensitivity and
specificity are presented in Table 4. Comparing these re-
sults with the measured sensitivities and specificities in
Table 3, we see that the largest differences occur for
FISH where sensitivity increases to 47.7 % (31.5-63.3 %)
from 40.0 % (22.7-52.3 %) in Table 3, and for Cxbladder
Detect where sensitivity decreases to 73.6 % (65.1—
81.7 %) from 79.5 % (71.1-82.8 %) in Table 3. Although
the Bayesian analysis imputation has raised the sensitivity
of FISH and lowered the sensitivity of Cxbladder Detect,
the Cxbladder Detect sensitivity remains significantly
higher than FISH.

When ranking the tests utilizing SNR using measured
data alone in the integrated dataset, Cxbladder Detect
offered the highest SNR of 0.48 compared with 0.21,
0.19 and 0.30 for FISH, urine cytology and NMP22, re-
spectively (see Fig. 1). By comparison, age and gender of-
fered a much lower SNR.

Supervised and unsupervised imputation was applied
to the integrated dataset from Table 1 and the diagnostic
tests were compared and ranked again. A step-wise sum-
mary of the 7-step process used to generate the global
imputed dataset is described in Table 2. In Step 1, two
values of the NMP22 test (output) were imputed in Data-
set 5 using complete samples that included known values
for age, gender, urine cytology, FISH and Cxbladder

SNR Value

0

Cxbladder Detect NMP22 FISH

0.2
) I

Fig. 1 Ranking of tests in a univariate mode using SNR on the integrated dataset before imputation

Cytology Age Gender

Test
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Table 5 Sensitivity and specificity of tests measured on the
integrated, imputed dataset using different imputation methods

Supervised imputation Unsupervised imputation

Sensitivity, %  Specificity, %  Sensitivity, %  Specificity, %

3NN

Cytology 4494 96.35 4494 96.35
NMP22 4157 88.82 4157 88.94
FISH 3258 85.24 3820 85.95
Cxbladder 80.90 82.12 7753 79.76
Detect

5NN

Cytology 4494 96.35 4494 96.35
NMP22 4382 90.26 3933 90.24
FISH 29.21 91.90 3146 91.55
Cxbladder 80.90 83.80 7753 8047
Detect

TONN

Cytology 4494 96.49 4494 96.35
NMP22 4382 90.59 3933 90.35
FISH 29.21 91.07 23.60 90.00
Cxbladder 80.90 85.53 78.65 82.59
Detect

MLR

Cytology 4494 96.35 4494 96.56
NMP22 42.70 90.82 3933 90.82
FISH 47.19 93.69 47.19 9333
Cxbladder 80.90 7729 7753 84.71
Detect

MLP

Cytology 4494 96.35 4494 96.35
NMP22 3933 90.82 3933 90.82
FISH 4944 93.81 47.19 9333
Cxbladder 78.65 85.18 7753 84.71
Detect

Detect as inputs. In the final, 7" imputation step, 474
missing values of FISH were imputed in Dataset 1, using
complete input samples for age, gender, urine cytology
and Cxbladder Detect from Datasets 1, 4 and 5.

After both supervised and unsupervised imputation
was performed using the three variations of the ANN
method (k=3, 5 and 10), and two global modelling
methods (MLR and MLP), the accuracy of the tests was
again calculated in terms of sensitivity and specificity
across the whole imputed data set (Table 5).

Each imputation method was cross-validated using the
leave-one-out method. Specifically, the accuracy of the
imputed values were compared with the measured
values from the dataset before it was used to impute the
unknown values for the same test. The cross-validation re-
sults along with the difference between the sensitivity and
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specificity values calculated before and after imputation,
are given in Table 6. Cross-validation accuracy was >81 %
for all of the imputed tests across all imputation methods.
The upper limits of the difference between sensitivity and
specificity of the integrated data before and after imput-
ation was <6 % for Cxbladder Detect, cytology and
NMP22 and <16 % for FISH for all imputation methods
(see Table 6). This demonstrated that the imputed data
was consistent with the measured data across all tests and
the missing values derived through imputation were valid.
Tables 5 and 6 can be used to derive some conclusions
about the imputation methods in relation to the type of
the imputed tests; for example, from Table 6 it can be said
that the most appropriate imputation method with a com-
bined objective function of both high cross-validation ac-
curacy and low average difference between the sensitivity/
specificity evaluated before and after the imputation was
the 3NN model in the supervised imputation mode. From
Table 5 it can be concluded that both supervised and un-
supervised imputation using MLP and MLR bring the
FISH sensitivity to the highest value of 49.44 % and
47.19 %, respectively. It should be noted that the ratio of
positive to negative patients is lowest in Dataset 4, and
overall confirmed positive patients with collected FISH
data from Dataset 4 and Dataset 5 total 15. Consequently,
relatively large numbers of imputed positive data points
and the cumulative nature of the imputation methodology
may have relatively large effects on the performance char-
acteristics of the FISH test.

In many cases of imputation the difference between
supervised and unsupervised imputation in terms of sen-
sitivity and specificity calculated on the whole integrated
and imputed datasets is small (see Tables 5 and 6). This
indicates that the input variables used for imputation
carry, in their integration and interaction, sufficient in-
formation about the clinical truth and adding the clinical
truth as an additional input variable does not materially
affect the imputation process.

After the validity of the imputed data was confirmed,
the tests were re-ranked using the global imputed data-
set (supervised and unsupervised) using the same SNR
method as for the measured data (Fig. 2). Cxbladder De-
tect consistently outperformed all other tests across all
methods of data imputation, followed by urine cytology,
FISH and NMP22. The relative performance of FISH
and NMP22 was lower than Cxbladder Detect and cy-
tology, but their rankings varied across data imputation
methodologies. In contrast, age and gender demon-
strated little usefulness in separating patients with or
without UC. Notably, SNR rankings derived from the
measured data were comparable with the rankings ob-
served following all forms of data imputation and the
global imputed dataset exhibited higher overall SNR
values. These rankings were consistent with other
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Table 6 Cross-validation of methods and difference between sensitivity and specificity obtained before and after imputation

Supervised imputation Unsupervised imputation
Imputation  Leave-one-out  Sensitivity Specificity Average Leave-one-out  Sensitivity Specificity Average
method cross-validation  difference difference absolute cross-validation  difference difference absolute
accuracy of the  before before and after  difference accuracy of the  before before difference
imputation, % and after imputation, % before imputation, % and after and after before
imputation, % and after imputation, %  imputation,% and after
imputation, % imputation, %
3NN
Cytology 96.70 268 0.02 1.35 96.70 268 0.02 1.35
NMP22 8344 3.30 041 1.86 83.19 3.30 0.29 1.80
FISH 83.17 742. 1.70 456 85.49 1.80 0.99 1.40
Cxbladder 8144 -1.38 067 1.03 80.44 1.99 303 2.51
Detect
Mean for 86.19 3.01 0.70 220 86.46 244 1.08 1.76
method
5NN
Cytology 96.69 268 0.02 1.35 96.69 268 0.02 1.35
NMP22 84.20 1.05 —1.03 1.04 84.07 554 -1.01 3.28
FISH 84.54 10.79 —4.96 7.88 85.80 854 -461 6.58
Cxbladder  81.94 -1.38 -1.01 1.20 81.10 1.99 232 2.16
Detect
Mean for 86.84 329 -1.75 287 86.92 469 -0.82 3.34
method
10NN
Cytology 96.69 268 0.02 1.35 96.69 268 0.02 1.35
NMP22 86.09 1.05 -1.36 1.21 85.84 554 -1.12 333
FISH 86.12 10.79 —4.13 746 85.80 1640 -3.06 9.73
Cxbladder 8244 -1.38 -2.74 2.06 81.77 087 0.20 0.53
Detect
Mean for 87.84 329 -2.05 3.02 87.53 6.37 -0.99 374
method
MLR
Cytology 96.69 268 0.02 1.35 96.69 268 0.02 1.35
NMP22 8559 217 -1.59 1.88 85.21 554 -159 3.56
FISH 89.58 -7.19 —6.75 6.97 89.58 -7.19 -6.39 6.79
Cxbladder  84.11 -1.38 550 344 84.20 1.99 -192 1.95
Detect
Mean for 88.99 -093 -0.70 341 88.92 0.75 —247 342
method
MLP
Cytology 95.87 1.55 0.02 0.79 95.87 268 0.02 1.35
NMP22 86.35 5.54 -1.59 356 83.19 554 -1.59 356
FISH 89.25 —944 —6.87 8.16 88.60 -7.19 -6.39 6.79
Cxbladder  82.78 087 -2.39 163 8247 1.99 -192 1.95
Detect
Mean for 88.56 -0.37 —2.71 353 87.53 —247 —247 342
method

Difference = measured - imputed
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Fig. 2 Rankings of tests for the integrated dataset after a supervised and b unsupervised imputation

methods that indicated that Cxbladder Detect was the
highest ranked UC diagnostic test.

The same relative global ranking of the tests is
achieved when ranking UC diagnostic tests using the
non-imputed integrated and imputed integrated data-
sets: Cxbladder Detect consistently outperformed urine
cytology, FISH and NMP22 in terms of overall discrim-
inative power to separate UC from healthy samples. This
is in agreement with Cxbladder Detect’s higher sensitiv-
ity to detect UC in both measured and imputed datasets.

Two dimensional contour plots of sensitivity and spe-
cificity using the whole imputed dataset, either super-
vised or wunsupervised, are shown in Fig. 3a, b,
respectively. Both plots show clear data clusters, with
Cxbladder Detect separated from the other tests, that
cluster together. The separation is largely due to the
higher sensitivity of the Cxbladder test compared with
the other tests.

As this comparison is between populations with a
known diagnosis, supervised imputation was a viable
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option and was investigated in an attempt to factor out
the imbalance between data from patients with and
without UC without the need to apply over- or under-
sampling techniques, thus preserving the nature of the
original data. When resampling techniques were initially
investigated to determine their viability in this study it
was found that the sensitivity values, in particular, were

noticeably reduced, as the number of clinically true UC
samples was comparatively small. Specificity was also re-
duced, but to a lesser extent. For example, using a re-
sampling rate of 300 % and the 3NN imputation
method, the results for FISH in particular, which was the
most susceptible to the influence of resampling on sensitiv-
ity, was only 84 % compared with the non-resampled
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imputation results of 38.2 % and 32.6 % for unsupervised
and supervised imputation, respectively. From these results
it was determined that resampling resulted in no positive
effect on imputation and the technique discarded. Super-
vised imputation is a liberal approach, where the tests with
the most missing values, or the worst ranking in the mea-
sured integrated dataset, are likely to demonstrate the
greatest relative improvement in accuracy after imputation,
offering higher accuracy than unsupervised imputation.
However, supervised imputation may not reflect the true
accuracy levels of each test because unsupervised imput-
ation allows the new values to be calculated independently
of the clinical outcome. In contrast, unsupervised imput-
ation constitutes a conservative approach that does not use
the whole available information and reflects the normal
error levels for each test better than supervised imputation,
whilst also acknowledging that the unsupervised version is
more volatile with respect to the true clinical outcome, but
not the variability of the tests.

The number k of nearest neighbour samples refer-
enced for imputation may affect the accuracy of the im-
puted values when ANN methods are used (see Tables 5
and 6). The number k may be optimized for each of the
tests. The more the integrated data is balanced, in terms
of having a similar number of samples from healthy sub-
jects and subjects with UC, the lower the influence of k.
In terms of imbalanced data, using the clinical truth
value as an input variable for imputation would be
appropriate.

The concept of holistic is fundamental to the method-
ology and interpretation presented in this study. Holistic
assumes that all contributing datasets are able to be ana-
lyzed and interpreted as one population both, in this
case, for imputation of missing values and interpretation
of the diagnostic data. However, in the this study the
contributing datasets were different in terms of patient
origin (Australasia and USA), primary detection or sec-
ondary monitoring of UC and the degree of imputation
of the various tests — FISH was most imputed and af-
fected, and in contrast, Cxbladder Detect and cytology
were least imputed and least affected by imputation.
Hence these assumptions require some justification and
any bias considered before imputation and interpretation
can take place. In this combined dataset, we assume that
all data were from either patients with UC or patients
presenting with hematuria and origin is of lower import-
ance than disease status, so no bias is likely to arise. Pri-
mary and secondary (recurrence) of UC share the same
stage and grade categories [25] and so we assume for
this study that tests are equally diagnostic at each part of
cancer progression and no bias exists. In contrast, im-
putation bias affects each diagnostic test differently:
FISH being most imputed and affected. However, the
cross-validation accuracy analysis (Table 6) reveals that
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imputation for FISH was as accurate as NMP22 and
more accurate than Cxbladder Detect. Moreover, imput-
ation using MLR and MLP actually improved sensitivity
and specificity estimated using the FISH data. This
means that the apparent imputation bias was unlikely to
have adversely affected the overall appraisal of the FISH
diagnostic data, particularly its relative ranking. Never-
theless these assumptions are critical to the overall rank-
ing comparisons after missing value imputation. If the
assumptions are accepted and missing values can be im-
puted, then datasets can be used to rank diagnostic tests
and hence permit comparisons of relative diagnostic
merit as calculated in this case by SNR analysis.

Conclusions

The proposed methodology, applied here on UC diag-
nostic tests comparative analysis and ranking, showed a
significant advantage of the Cxbladder Detect versus
other UC diagnostic tests. It can be applied in the future
for a comprehensive comparative analysis and global
ranking of other cancer diagnostic and prognostic tests
and multiple cancer diagnostics [26].
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