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standard deviation for meta-analysis via
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Abstract

Background: When conducting a meta-analysis of a continuous outcome, estimated means and standard
deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and
its confidence interval. If these quantities are not directly reported in the publications, they must be estimated
from other reported summary statistics, such as the median, the minimum, the maximum, and quartiles.

Methods: We propose a simulation-based estimation approach using the Approximate Bayesian
Computation (ABC) technique for estimating mean and standard deviation based on various sets of
summary statistics found in published studies. We conduct a simulation study to compare the proposed
ABC method with the existing methods of Hozo et al. (2005), Bland (2015), and Wan et al. (2014).

Results: In the estimation of the standard deviation, our ABC method performs better than the other
methods when data are generated from skewed or heavy-tailed distributions. The corresponding average
relative error (ARE) approaches zero as sample size increases. In data generated from the normal
distribution, our ABC performs well. However, the Wan et al. method is best for estimating standard
deviation under normal distribution. In the estimation of the mean, our ABC method is best regardless of
assumed distribution.

Conclusion: ABC is a flexible method for estimating the study-specific mean and standard deviation for
meta-analysis, especially with underlying skewed or heavy-tailed distributions. The ABC method can be
applied using other reported summary statistics such as the posterior mean and 95 % credible interval
when Bayesian analysis has been employed.

Keywords: Meta-analysis, Sample mean, Sample standard deviation, Approximate Bayesian Computation
(ABC)

Background
In medical research, it is common to conduct a systematic
review and meta-analysis to provide an overall estimate of a
clinical treatment outcome from a set of individual studies.
When the outcome is continuous, in order to conduct
meta-analysis, we need estimated means and the corre-
sponding standard deviations (or equivalently, variances)
from the selected studies. However, not all studies report
these quantities directly. Instead, studies may report mean

and confidence interval, p-value, median, minimum and
maximum, range or interquartile range (IQR). As another
example, when Bayesian methods were employed in the
data analysis, posterior means and 95 % credible intervals
are usually reported.
If the mean and standard deviation are not directly

reported in the publication, these need to be esti-
mated from the other reported summary statistics.
Wiebe et al. [1] describe several methods, including
algebraic and approximate algebraic recalculations,
to obtain standard deviation estimates from confi-
dence levels, t-test or F-test statistics, and p-values.
Based on descriptive statistics (such as the median,
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minimum and maximum, range, or the IQR), the
ad-hoc approach is a study-level imputation. For in-
stance, the sample median is often used as the estimate of
the sample mean assuming symmetric distribution, and
the sample standard deviation is commonly estimated by
either range

4 or IQR
1:35.

Hozo et al. [2] proposed a simple alternative
method for estimating the sample mean and the sam-
ple standard deviation from the median, minimum,
maximum, and the size of the sample. Another alter-
native method was proposed by Bland [3] estimating
these quantities based on the minimum, first quartile,
median, third quartile, maximum, and sample size.
Recently, Wan et al. [4] proposed a method that im-
proved estimation of the sample standard deviation
based on the median, minimum, maximum, and the
size of the sample. Wan et al. [4] also provided a
method for estimating the standard deviation based
on the median, the quartiles, and the size of the
sample.
In this paper, we propose an Approximate Bayesian

Computation (ABC) approach for estimating the
mean and standard deviation. This method produced
more precise estimates of true study-specific mean
and standard deviation as sample size increases and it
also accommodates various distributions.
In ‘Methods’ section we summarize the methods of

Hozo et al. [2], Bland [3] and Wan et al. [4] and describe
our proposed ABC method. In ‘Results’, we describe and
report the findings of the simulation studies comparing
the performance of these methods. We used the statistical
software R in performing all statistical programming re-
lated to the implementation of the various methods, ana-
lysis, and simulations.

Methods
We denote the sample summary statistics as follows:
minimum (xmin), first quartile (xQ1), median (xmed), third
quartile (xQ3), maximum (xmax), and sample size (n). We
also consider the following three scenarios of available
summary statistics. The first scenario (S1) assumes avail-
ability of only the minimum, median, maximum and
sample size (S1 = {xmin, xmed, xmax, n}). The second sce-
nario (S2) assumes additionally having estimates of the
first and third quartiles (S2 = {xmin, xQ1, xmed, xQ3, xmax,
n}). The third scenario (S3) assumes having the median,
first quartile, third quartile, and sample size (S3 = {xQ1,
xmed, xQ3, n}).

Method of Hozo et al.
The method by Hozo et al. [2] makes no assumption
on the distribution of the underlying data. Hozo et al.

proposed the following formulas for estimating the
mean and variance under S1 = {xmin, xmed, xmax, n}
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xmin þ 2xmed þ xmax
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The Hozo et al. approach utilizes different formulas

for estimating the mean and variance depending on the
sample size n. When sample size is between 26 and 70,
Hozo et al.’s formulas in Eqs. (1) and (2) are exactly the
same as mean and variance formulas by the ad-hoc ap-
proach mentioned above.

Method of Bland
Similar to Hozo et al., the method by Bland [3] also
makes no assumption on the distribution of the under-
lying data. Bland [3] extended the method of Hozo et al.
by adding first quartile (xQ1) and third quartile (xQ3) to
S1. Bland’s method provides formulas to estimate the mean
and variance under S2 = {xmin, xQ1, xmed, xQ3, xmax, n}.
While Hozo et al. used the sample size to decide the for-
mula to be employed in estimating the mean and variance,
the method by Bland incorporates the sample size in the
proposed formulas:

�x ¼ nþ 3ð Þxmin þ 2 n−1ð Þ xQ1 þ xmed þ xQ3
� �þ nþ 3ð Þxmax

8n

¼ xmin þ 2xQ1 þ 2xmed þ 2xQ3 þ xmax
� �

8

þ 3 xmin þ xmaxð Þ−2 xQ1 þ xmed þ xQ3
� �
8n

ð3Þ

≈
xmin þ 2xQ1 þ 2xmed þ 2xQ3 þ xmax
� �

8
ð4Þ

and

S2 ¼
nþ 3ð Þ x2min þ 2x2Q1 þ 2x2med þ 2x2Q3 þ x2max

� �
þ 8 x2min þ x2max

� �

16n

þ n−5ð Þ xQ1 xmin þ xmedð Þ þ xQ3 xmed þ xmaxð Þ� �
n (5)
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≈
x2min þ 2x2Q1 þ 2x2med þ 2x2Q3 þ x2max

� �

16

þ xQ1 xmin þ xmedð Þ þ xQ3 xmed þ xmaxð Þ
8

−�x2: ð6Þ

Note that in Eq. (6), the third term is the squared value
of mean estimate using Eq. (4). As pointed by Wan et al.,
the 2nd term in Eq. (3) can be ignored when sample size is
large. Thus, after dropping the second term in (3), the
estimators in (4) and (6) do not involve the sample size (n).
Wan et al. proposed alternative estimators under S2, as
described in next subsection.

Method of Wan et al.
The method by Wan et al. [4] is based on order statistics
and it assumes that the outcome is normally distributed.
They proposed estimation formulas for the mean and stand-
ard deviation under the three scenarios, S1, S2, and S3, of
available summary statistics, although their main focus was
on improvement of standard deviation estimation.
For estimation of mean, Wan et al. proposed in S1 the

same formula (1) by Hozo et al. [2], and in S2 the same
formula (3) by Bland [3]. In S3 = {xQ1, xmed, xQ3, n}, they
proposed the following new estimation formula for mean:

�x≈
xQ1 þ xmed þ xQ3
� �

3
: ð7Þ

For estimation of standard deviation, Wan et al. pro-
posed the following formulas:
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where Φ− 1 is the inverse of cumulative standard normal
distribution.
Note that the standard deviation estimator in S2, Eq.

(9), is simply the weighted average of those in S1 and S3,
per Eqs. (8) and (10), respectively. The Wan et al. esti-
mator of the standard deviation is based on normality
assumption and uses approximation of expected values
of the order statistics.

Simulation-based method via Approximate Bayesian
Computation (ABC)
We propose a simulation-based method using the Approxi-
mate Bayesian Computation (ABC) technique to estimate
the sample mean and standard deviation.
Bayesian inference needs likelihood functions as well as

priors for the parameters in the model. Given a likelihood
function, f(θ|D), where θ denotes parameter of interest and
D denotes observed data, and prior distribution, p(θ), on
the parameter space, Θ, our statistical inference is based on
posterior distribution of θ, p(θ|D)∝f(θ|D)p(θ). In some situ-
ations, the likelihood function is analytically or computa-
tionally intractable. In meta-analysis, we combine selected
studies with respect to a certain clinical outcome. However,
the datasets of these studies are usually not accessible. Al-
though we can construct a likelihood function based
on the probability model, we cannot evaluate the like-
lihood function due to unavailability of all data points.
Using the Approximate Bayesian Computation (ABC)
approach, the likelihood can be replaced by a compari-
son of summary statistics from the observed data and
those from simulated data using a distance measure.
The ABC methodology was introduced by Tavaré et al. [5]
in population genetics using a simple rejection algorithm in
order to avoid the computation of the likelihood function
via a simulation from a specific distribution. Marin et al. [6]
provided an extensive review of several ABC methods.
Table 1 describes how to use ABC method for estima-

tion of the mean and standard deviation using summary
statistics. The first step is to generate a set of candidate
values for parameters, θ*, from a specific prior distribu-
tion, p(θ). The second step is to generate pseudo data, D*,
from the likelihood function f(θ*). The third step is to de-
cide whether θ* is accepted or not. This decision depends
on the distance between summary statistics of the ob-
served data, S(D), and those of simulated data, S(D*) de-
noted by ρ(S(D),S(D*)), where ρ(•,•) is a distance measure.
In our application of ABC, we used the Euclidean distance
measure. If ρ(S(D),S(D*)) is smaller than a fixed tolerance
value ε (i.e., ρ(S(D),S(D*)) < ε), then θ* is accepted, other-
wise it is rejected. Steps 1–3 are repeated a large number
of times (e.g., N = 20,000) in order to obtain multiple sets
of θ* for the inference. Instead of setting a small tolerance
value ε, we can alternatively select a fixed number of sets
of θ* corresponding to an acceptance percentage. For ex-
ample, with acceptance percentage of 0.1 % and N =
50,000, we select 50 values of θ* corresponding to the top
0.1 % with smallest Euclidean distance. The fundamental
idea of ABC is that a good approximation of the pos-
terior distribution can be obtained using summary sta-
tistics, S(D), and a fixed small tolerance value ε (or a
pre-specified acceptance percentage).
In order to apply ABC algorithm to estimate mean and

standard deviation using reported summary statistics, the
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first step is to choose a distribution to be used for generat-
ing data. (Table 1, lower panel.) Given a set of summary
statistics and the nature of outcome variable, an educated
decision about the distribution can be made. For example,
if clinical outcome is some score of health-related quality of
life (e.g. The Expanded Prostate Cancer Index Composite
(EPIC) score ranging from 0 to 100), then such a variable is
bounded and in this case we can use beta distribution. For
unbounded variable we can choose either normal or log-
normal distribution. When variable is change between two
measurements, normal distribution is a good choice. When
variable is either percentage or strictly positive, then log-
normal, exponential, or Weibull are good choices. Next
step is to determine prior distributions to generate parame-
ters of a chosen distribution. For example, if normal or
log-normal distribution is chosen we need to specify prior
distributions for μ and σ. For Weibull distribution, prior
distributions for shape and scale parameters are
needed. For beta distribution, prior distributions for
two shape parameters are needed. Usual choice for
prior is uniform distribution with relative wide range.
When a chosen distribution belongs to location-scale
family, we can use an educated guess for location
parameter μ. Instead of uniform distribution with
huge range, we can use given summary statistics such
as minimum (xmin) and first quartile (xQ1) (maximum
(xmax) and third quartile (xQ3) for lower bound (upper
bound) of uniform distribution. Prior distributions for

shape and scale parameters are uniform between zero
and some large number.
The estimates of mean and standard deviation by ABC

are obtained based on accepted parameter values. For in-
stance, when we consider normal distribution, average of
accepted values for μ is the estimated mean; likewise, the
average of accepted values for σ is the estimated standard
deviation. For non-normal distributions, estimates of the
mean and standard deviation can be obtained from a ‘plug-
in method’ or ‘simulation’. Both approaches give compar-
able estimates. The plug-in method consists of replacing
means of accepted parameter values into the corresponding
formulas for the mean and standard deviation. For example,
the beta distribution has mean α/(α + β) and variance αβ/
[(α + β)2(α + β + 1)]. We obtain estimates of the mean and
standard deviation by replacing in these formulas α and β
with mean of accepted values for these parameters.
The simulation approach consists of obtaining the mean

and standard deviation from simulated samples using each
set of accepted parameter values. For example, in beta dis-
tribution, given a set of accepted values of α and β, we gen-
erate pseudo data of the same sample size and calculate the
mean and standard deviation from pseudo data. We repeat
this procedure for all sets of accepted parameter values.
The simulation estimates of the mean and standard devi-
ation are the average of means and average of standard
deviations, respectively.

Results
Designs of simulation studies
In order to facilitate comparison between our ABC
method and existing methods, the parameters of our
simulation studies were set to be similar to that by
Hozo et al. and Wan et al. for the three different sce-
narios of available descriptive statistics.
Under S1, we compare ABC to Hozo et al. and Wan et

al. Under S2, we compare ABC, Bland and Wan et al.
methods. And under S3, we compare ABC and Wan et al.
methods. In addition, we examine the effect of skewness
in estimation performance using log-normal and beta
distributions.
Under S1, we use the same five distributions which both

Hozo et al. and Wan et al. simulated: normal distribution
with mean 50 and standard deviation 17, N(50,17); log-
normal distribution with location parameter = 4 and scale
parameter = 0.3, LN(4,0.3); Weibull distribution with shape
parameter = 2 and scale parameter = 35, Weibull(2,35), beta
distribution with two shape parameters 9 and 4, Beta(9,4);
and exponential distribution with mean = 10, Exp(10).
Under S2, we use log-normal distribution with same

location parameter value of 5 and three different scale
parameter values (0.25, 0.5, and 1) in order to evaluate
effect of skewness. We also use three beta distributions,
Beta(5,2), Beta(1,3), and Beta(0.5,0.5), to examine effect

Table 1 Scheme of ABC and required settings for simulation-based
estimation

ABC steps

1 θ* ~ p(θ); generate θ* from prior distribution

2 D* ~ f(θ*); generate pseudo data

3 Compute summary statistics, S(D*), from D* and compare with
given summary statistics, S(D).

If ρ(S(D*),S(D)) < ε, then θ* is accepted

Repeat steps 1–3 many times to obtain enough number of
accepted θ* for statistical inference

Settings for simulation-based estimation of mean and standard
deviation

Specify Example

A Underlying data distribution.
(e.g.: normal, log-normal,
exponential)

Normal (μ, σ)

Given the nature of the outcome
variable, an educated decision
about the underlying distribution
can be made.

B Prior uniform distribution for
each underlying parameter.

For μ, use U(Xmin, Xmax) in S1, or

U(XQ1, XQ3) in S2 and S3.

For σ, use U(0, L) where L denotes
some large number beyond Xmax

in S1 or XQ3 in S2 and S3.

C Acceptance percentage and
number of iterations

Acceptance of 0.1 % and 50,000
or 100, 000 iterations.
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of skewness and bimodality in estimation for bounded
data distribution.
Under S3, we use four distributions in S1 (lognormal,

beta, exponential and Weibull) to investigate further the
effect the choice of descriptive statistics for the standard
deviation estimation.
In each scenario we consider 10 sample sizes (n = 10, 40,

80, 100, 150, 200, 300, 400, 500, 600). We obtain a sample
of n observations from a particular distribution, and com-
pute the sample mean (true �xÞ and sample standard devi-
ation true S). Using the different methods (Hozo et al.
Bland, Wan et al. and ABC) we obtain the various estimates
of the mean and standard deviation from the corresponding
sample descriptive statistics. The relative errors (REs) are
calculated as follows:

RE of mean ¼ estimated �x− true �xð Þ
true �x

; ð11Þ

and

RE of standard deviation

¼ estimated S− true Sð Þ
true S

: ð12Þ

For each sample size n, we repeat this procedure 200
times to obtain average relative errors (AREs).
In the simulations, we set acceptance percentage 0.1 %

and 20,000 total number of iterations for ABC method.
Hence, we obtain 20 accepted parameter values for a
specific distribution. Prior distributions for each distri-
bution in the ABC model for the simulation are de-
scribed in Table 2.

Results of simulation studies
In the simulation studies we compare estimation perform-
ance of the various methods in terms of average relative
error (ARE) for estimating mean and standard deviation.
In the next three subsections we present comparison of
methods for standard deviation estimation. In the last

subsection, we present comparison among methods for
mean estimation.

Comparison of Hozo et al., Wan et al., and ABC in S1 for
standard deviation estimation
In Fig. 1 we show AREs in estimating standard deviation
for the three methods as a function of sample size under
simulated data from the selected five distributions. The
corresponding densities are displayed in Fig. 1a (normal,
log-normal, and Weibull), 1e (beta) and 1g (exponential).
Under the normal distribution (Fig. 1b) in S1 (that is,
when xmin, xmed, xmax, n are available), while the Hozo et
al. method (solid square linked with dotted line) shows
large average relative errors for sample size less than
300, the Wan et al. method (solid diamond linked with
dashed line) shows quite good performance over all sam-
ple sizes. The ABC method (solid circle linked with solid
line) shows decreasing error as sample size increases,
with AREs close to that for the Wan et al. method for n
≥80.
Under the log-normal distribution (Fig. 1c), the

Hozo et al. method shows better performance be-
tween sample sizes of 200 and 400. The Wan et al.
method still shows good performance, though there is
a tendency of AREs moving away from zero as sam-
ple size increases. The ABC method has slightly
worse performance than does the Wan et al. method
when sample size is less than 300. It is the best when
sample size is greater than 300, and it is the worst
for small sample size around n = 10.
For Weibull data (Fig. 1d), the ABC method is the

best, showing very small AREs close to zero over all
sample sizes. The Wan et al. method clearly shows that
ARE moves away from zero as sample size increases.
For data from beta or exponential distributions

(Fig. 1f and h), the ABC method performed best, show-
ing AREs approaching zero as sample size increases. The
Wan et al. method shows an opposite tendency of increas-
ing ARE as sample size increases.

Table 2 Prior distributions for ABC in the simulation studies

Distribution Parameter 1 Prior for parameter 1 Parameter 2 Prior for parameter 2

Normal (S1) μ Uniform (Xmin, Xmax) σ Uniform(0,50)

Normal (S2) μ Uniform (XQ1, XQ3) σ Uniform(0,50)

Normal (S3) μ Uniform (XQ1, XQ3) σ Uniform(0,50)

Log-normal (S1) μ Uniform (log(Xmin), log(Xmax)) σ Uniform(0,10)

Log-normal (S2) μ Uniform (log(XQ1), log(XQ3)) σ Uniform(0,10)

Log-normal (S3) μ Uniform (log(XQ1), log(XQ3)) σ Uniform(0,10)

Exponential λ Uniform(0,40) - -

Beta α Uniform(0,40) β Uniform(0,40)

Weibull λ Uniform(0,50) κ Uniform(0,50)
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Fig. 1 (See legend on next page.)
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Comparison of Bland, Wan et al., and ABC in S2 for
standard deviation estimation
In this simulation we compare estimation of standard devi-
ation under these methods in S2 (that is, when xmin, xQ1,
xmed, xQ3, xmax, and n are available) and examine the effect

of violation of normality using the log-normal distribution.
We consider three log-normal distributions with the same
location parameter value but three different scale parame-
ters (Fig. 2a). For LN(5,0.25), the Wan et al. and ABC
methods have a similar small ARE. Bland’s method shows

Fig. 2 Average relative error (ARE) comparison in estimating sample standard deviation under S2 using simulated data from log-normal
distributions. a: Density plots for 3 log-normal distributions. b, c, d: AREs for 3 methods using simulated data from the same 3 log-normal
distributions. Bland (solid square with dotted line), Wan et al. (solid diamond with dashed line), and ABC (solid circle with solid line) methods

(See figure on previous page.)
Fig. 1 Average relative error (ARE) comparison in estimating sample standard deviation under S1 using simulated data from five
parametric distributions. a, e, g: Density plots for normal, log-normal, Weibull, beta, and exponential distributions. b, c, d, f, h: AREs for 3
methods using simulated data from normal, log-normal, Weibull, beta, and exponential distributions. Hozo et al. (solid square with dotted line), Wan et
al. (solid diamond with dashed line), and ABC (solid circle with solid line) methods

Kwon and Reis BMC Medical Research Methodology  (2015) 15:61 Page 7 of 12



argely underestimates for small sample size, and the ARE
keeps increasing as sample size increase. Note that AREs
increase when sample size is over 200. As data are simu-
lated from more skew to the right distributions (Fig. 2c
and d), we see large estimation errors in Bland and Wan
et al. methods. Wan et al. method shows increasing ARE
as sample size increases. Using the Bland method the
true study-specific standard deviation is underestimated
(large negative ARE) in small sample size n and overes-
timated (large positive ARE) in large n. The AREs of
the ABC method are large with small sample size when

skewness increases; however, AREs of the ABC method
become smaller and approaches zero as sample size
increases.
We also examine the performance of these methods

when data are simulated from three beta distributions.
(Fig. 3) In this simulation study, we investigate the effect of
bimodality as well as skewness for bounded data. For all
methods underestimation of study-specific true standard
deviation is depicted, with ABC performing best for n >40.
Under skewed distributions (Fig. 3b and c) the Bland and
ABC methods show the same pattern, however ABC shows

Fig. 3 Average relative error (ARE) comparison in estimating sample standard deviation under S2 using simulated data from beta distributions. a:
Density plots for 3 beta distributions. b, c, d: AREs for 3 methods using simulated data from the same 3 beta distributions. Bland (solid square
with dotted line), Wan et al. (solid diamond with dashed line), and ABC (solid circle with solid line) methods
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much better performance since ARE approaches zero with
increasing sample size. When the underlying distribution
is bimodal (Fig. 3d), all three methods show large under-
estimation, although ABC continues performing best for
n >40, showing smaller AREs.

Comparison of Wan et al. and ABC in estimating standard
deviation under S1, S2, and S3
Here we simulate data in S1, S2, and S3 under four distri-
butions: log-normal, beta, exponential, and Weibull. In

Fig. 4, crossed symbols denote S1, open symbols S2, and
solid symbols S3. Circle and diamond denotes the ABC
method and the Wan et al., respectively. Under the several
distributions, AREs for the ABC method converge toward
zero as sample size increases for the three scenarios, while
Wan et al. fail to show this pattern.

Comparison of methods for mean estimation
We compare AREs for mean estimation between the
Wan et al. and ABC methods. Note that the mean

Fig. 4 Average relative error (ARE) comparison in estimating sample standard deviation under S1, S2 and S3 using simulated data from four
parametric distributions. a, b, c, d: AREs for 3 methods using simulated data from log-normal, beta, exponential, and Weibull distributions. Wan et
al. (dashed line and crossed diamond for S1, diamond for S2, and solid diamond for S3); and ABC (solid line and crossed circle for S1, circle for S2,
and solid circle for S3) methods
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formula is the same between Wan et al. [4] and Hozo et
al. [2] under S1, and between Wan et al. and Bland
[3] under S2. Figure 5 indicates that our ABC method
is superior in estimating the mean when sample size
is greater than 40 for all scenarios. Under the log-
normal in S1 the pattern of AREs of mean estimates
for ABC in S1 is similar to that of standard deviation
estimate for ABC (see Fig. 1c). However, as sample
size increases the ARE approaches zero.

Discussion
The main factor that has a huge influence in the perform-
ance of the three methods is the assumed parametric dis-
tribution, especially when the samples are drawn from a
skewed heavy-tailed distribution. Since inputs for the
estimation of the standard deviation in S1 are minimum
value (xmin), median (xmed), and maximum value (xmax),
the two extreme values vary a lot from data set to data set.
The inferior performance of the ABC method under

Fig. 5 Average relative error (ARE) comparison in estimating sample mean under S1, S2 and S3 using simulated data from four parametric
distributions. a, b, c, d: AREs for 3 methods using simulated data from log-normal, beta, exponential, and Weibull distributions. Wan et al. (dashed
line and crossed diamond for S1, diamond for S2, and solid diamond for S3); and ABC (solid line and crossed circle for S1, circle for S2, and solid circle
for S3) methods
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normal, log-normal, and exponential distributions with
small sample size can be explained by erratic behavior of
two extreme values as an input. However, as sample size
increases, the ARE of ABC method becomes small and
ABC is better than the other methods. The Wan et al.
method is based on a normal distribution assumption.
Thus, it performs well under the normal distribution or
any distribution close to symmetric in shape (e.g.,
beta(4,4) is symmetric at 0.5). When the underlying distri-
bution is skewed or heavy-tailed, although Wan et al.
method incorporates sample size into the estimation for-
mulas, the AREs keep deviating from zero as sample size
increases.
In order to perform ABC we need to choose an under-

lying distribution model. This choice can be based on an
educated guess. For instance, when outcome is related
to distribution with positive support, there are several
distributions to be considered, such as log-normal, Wei-
bull, or exponential. In this situation we rely on model
selection (i.e. distribution selection in our context) while
we apply the ABC method. Bayesian model selection is
usually based on either the Bayes factor or marginal pos-
terior probability of model. Let M1 and M2 be two
models according to two different distributions (e.g.,
normal and beta distributions). The Bayes factor is de-
fined as

B12 ¼ P M1jDð Þ=P M2jDð Þ
P M1ð Þ=P M2ð Þ ; ð13Þ

where P(Mi) is the prior and P(Mi|D) is the marginal
posterior distribution of model Mi, i = 1,2, and D de-
notes data. When we assume that P(M1) = P(M2) = 0.5
then the Bayes factor is a ratio of two marginal posterior
distributions of the model, P(M1|D)/P(M2|D). In the
ABC approach, data are not available so we replace sum-
mary statistics, S, for D. The Bayes factor and marginal
posterior probability of the model can be approximated
by the acceptance frequency for each model (i.e., distri-
bution) in the ABC. It can be extended when we con-
sider more than two distributions for comparison. When
we have K distributions (K >2) to be considered as can-
didate distribution, we perform model selection within
ABC and calculate corresponding marginal posterior
model probabilities (P(Mk|S), k = 1,…K). Then we choose
the distribution with the highest marginal posterior
model probability among K candidate distributions. We
performed a small simulation to see whether this approach
is reliable for selecting appropriate distributions for ABC.
We generated samples of size 400 from beta(9,4). We com-
puted marginal posterior model probabilities for beta,
P(M1|S), and for normal, P(M2|S). Note that P(M2|S) = 1-
P(M1|S), when only two distributions are considered. We
repeated 200 times to tabulate how many times beta

distribution is chosen, as well as to get the estimates of the
average of marginal posterior model probabilities. The beta
distribution was chosen 157 times among 200 repeats
(78.5 %), average of P(M1|S) was 0.63 and average P(M2|S)
was 0.37. The AREs of estimated standard deviation using
beta and normal distributions were −0.0216 and 0.0415, re-
spectively. The ARE of estimated mean using the beta dis-
tribution was 0.00068 and it was quite smaller than that of
the normal distribution (0.0118). These results indicate that
the distribution selection procedure works well. In real ap-
plication, we would test candidate distributions using the
summary data available, and select the distribution with lar-
gest posterior model probability, P(M|S). For example, we
generated a sample of size n = 400 from beta(9,4). Summary
sample statistics were 0.6184 (Q1), 0.6989 (median), 0.7904
(Q3), 0.6961(mean), and 0.1231(standard deviation). As-
suming available Q1, median, Q3, and n, and desire to test
between beta and normal distributions as the underlying
distribution, we ran ABC for model selection. P(M|S) for
beta distribution was 65 and 35 % for normal. Thus, we
would select the beta distribution.
In our simulation for the ABC method, we set an ac-

ceptance percentage of 0.1 % and N = 20,000 iterations,
given the large number of settings. In real application
we suggest using N = 50,000 or more iterations and
acceptance percentage 0.1 % to get enough accepted
parameter values for reliably estimating the mean and
standard deviation. We conducted sensitivity analysis for
examining impact of value of acceptance percentage and
the number of iterations on AREs (Additional file 1). We
used normal distribution with mean 50 and standard devi-
ation 17 in S1, S2, and S3. We considered three numbers
of iterations (20,000, 50,000, and 100,000) and two accept-
ance percentages (0.1 and 0.01 %). All combinations of
these settings show comparable performance in estimating
standard deviation and mean with ARE approaching zero
as sample size increases. In the standard deviation estima-
tion, all combinations show comparable performance ex-
cept in S2. In S2, 0.01 % acceptance percentage has lower
AREs compared to those of 0.1 % acceptance percentage.
In order to examine impact of prior distribution setting

on AREs we also conducted sensitivity analysis (Additional
file 2). We used normal distribution with mean 50 and
standard deviation 17 under S3, and considered three prior
distributions, U(0,20), U(0,50), and U(0,100), for σ. Similar
to the previous sensitivity analysis we used three numbers
of iterations, 20,000, 50,000, and 100,000. We also reported
AREs in estimating mean using these settings. In estimating
SD, prior U(0,20) for σ gives negative AREs when sample
size is <200 while other prior distributions (U(0,50) and
U(0,100)) give positive AREs, regardless of the number of
iterations. The opposite direction of AREs between U(0,20)
and other prior distributions is related to distance between
σ and upper bound of uniform distribution. Since true
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σ = 17 is close to upper bound 20, most accepted values
for estimated SDs are lower than 17 and AREs are
negative. For U(0,50) and U(0,100), majority of ac-
cepted values for estimated SDs are larger than 17 and
AREs are positive. However, as sample size increases,
AREs of all three prior distributions converge to zero.
Note that estimation of means is not affected by prior
distribution for σ.
In this paper we implement the ABC method using a

simple rejection algorithm. We provide an example R code
to help readers implement our simulation-based estimation
method (Additional file 3). Other algorithms available in-
clude Markov chain Monte Carlo (ABC-MCMC; Marjoram
et al. [7]) and sequential Monte Carlo (ABC-SMC; Toni et
al. [8]). In future research, we plan to explore these
methods for improving estimation of the mean and
standard deviation. We also plan to conduct more thor-
ough simulation study for evaluating performance of
our simulation-based estimation method in compli-
cated model selection and model averaging situation.

Conclusion
We propose a more flexible approach than existing
methods to estimate the mean and standard deviation
for meta-analysis when only descriptive statistics are
available. Our ABC method shows comparable per-
formance to other methods as sample size increases in
symmetric shape of the underlying distribution. How-
ever, our method performs much better than other
methods when underlying distribution becomes skewed
and/or heavy-tailed. The ARE of our method moves
towards zero as sample size increases. Some studies
applied Bayesian inference to conduct statistical ana-
lysis and reported a posterior mean and corresponding
95 % credible interval. In particular, a posterior mean
typically does not locate at the center of the 95 % cred-
ible interval. In other situations, the maximum a pos-
teriori probability (MAP) estimate is reported instead
of a posterior mean. While other existing methods can-
not be used for this situation, our ABC method is easily
able to obtain estimates of the mean and standard devi-
ation from these Bayesian summaries. In addition if we
only have range or interquartile range and not the cor-
responding xmin, xmed, xQ1, xQ3, we can use ABC easily
to get estimates for means and standard deviations.

Additional files

Additional file 1: Sensitivity analysis for the number of iterations
and acceptance percentage using Normal distribution with mean = 50
and SD= 17. The plots in the top row display AREs for standard
deviation estimate and mean estimate under S1. The plots in the middle
row display AREs for standard deviation estimate and mean estimate
under S2. The plots in the bottom row display AREs for standard
deviation estimate and mean estimate under S3. In each plot six lines

and symbols are displayed for the combination of the number of
iterations and acceptance percentage. (JPEG 531 kb)

Additional file 2: Sensitivity analysis for the number of iterations
and prior distribution for σ using Normal distribution with mean = 50
and SD= 17. The plots in the top row display AREs for standard
deviation estimate and mean estimate under S3 with three different prior
distributions for σ and 20,000 iterations. The plots in the middle row
display AREs for standard deviation estimate and mean estimate under
S3 with three different prior distributions for σ and 50,000 iterations. The
plots in the bottom row display AREs for standard deviation estimate and
mean estimate under S3 with three different prior distributions for σ and
100,000 iterations. (JPEG 377 kb)

Additional file 3: R code example of ABC-based estimation. This R
code example generates a sample of n= 400 from a normal distribution with
mean 50 and standard deviation 17, and uses sample estimates of Xmin, Xmed,
Xmax (that is, scenario S1) to illustrate how our simulation-based estimation
method can be employed to obtain estimated sample mean and standard
deviation. (DOCX 14 kb)
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