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Abstract

Background: When developing risk models for binary data with small or sparse data sets, the standard maximum
likelihood estimation (MLE) based logistic regression faces several problems including biased or infinite estimate of
the regression coefficient and frequent convergence failure of the likelihood due to separation. The problem of
separation occurs commonly even if sample size is large but there is sufficient number of strong predictors. In the
presence of separation, even if one develops the model, it produces overfitted model with poor predictive
performance. Firth-and log F-type penalized regression methods are popular alternative to MLE, particularly for solving
separation-problem. Despite the attractive advantages, their use in risk prediction is very limited. This paper evaluated
these methods in risk prediction in comparison with MLE and other commonly used penalized methods such as ridge.

Methods: The predictive performance of the methods was evaluated through assessing calibration, discrimination
and overall predictive performance using an extensive simulation study. Further an illustration of the methods were
provided using a real data example with low prevalence of outcome.

Results: The MLE showed poor performance in risk prediction in small or sparse data sets. All penalized methods
offered some improvements in calibration, discrimination and overall predictive performance. Although the Firth-and
log F-type methods showed almost equal amount of improvement, Firth-type penalization produces some bias in the
average predicted probability, and the amount of bias is even larger than that produced by MLE. Of the log F(1, 1) and
log F(2,2) penalization, log F(2, 2) provides slight bias in the estimate of regression coefficient of binary predictor and
log F(1,1) performed better in all aspects. Similarly, ridge performed well in discrimination and overall predictive
performance but it often produces underfitted model and has high rate of convergence failure (even the rate is higher
than that for MLE), probably due to the separation problem.

Conclusions: The log F-type penalized method, particularly log F(1, 1) could be used in practice when developing
risk model for small or sparse data sets.
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Background to both doctor and patient in making joint decision on

In many areas of clinical research, risk models for binary
data are usually developed in the maximum-likelihood
(ML) based logistic regression framework to predict the
risk of a patient’s future health status such as death or
illness [1, 2]. For example, in cardiology, models may
be developed to predict the risk of having cardiovascu-
lar disease. Predictions based on these models are useful
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future course of treatment. However, before using these
models in risk prediction it is essential to assess their pre-
dictive performance using data other than that used to
develop the models, which is termed as ‘validation’ [3, 4].
A good risk model is expected to demonstrate good cal-
ibration (accuracy of prediction) and discrimination (the
ability of model to distinguish between low-and-high risk
patients) in new dataset. A risk model that perform well
in development data (that used to fit the model called
‘training’ set) may not perform similar to the validation
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data (that used to validate the model called ‘test’” set). One
of the main reasons for not performing well in test data
is model overfitting which causes too high prediction for
high risk patients and too low for low risk patients. The
overfitting occurs frequently when the number of events
in training data is lower than the number of risk factors.
After employing expert knowledge even if one fits the
model with reduced the number of predictors, the ratio of
the number of event to the number of predictors (EPV)
often very low. However, as a rule of thumb, it has been
suggested in literature that the risk model performs well
when EPV is at least 10 [5]. Although the choice of this
cut-off has some criticisms [6] for not being based on sci-
entific reasoning except empirical evidence, it is found
useful for quantifying the amount of information in the
data relative to model complexity [7, 8]. However, the
requirement of minimum EPV is often difficult to achieve
when the risk models develop for low-dimensional data
with rare outcome or small-and moderate-size, and
for high-dimensional data where the number of pre-
dictors is usually higher than the number of sample
observations.

To overcome the problem related to overfitting, some
studies [9, 10] explored the use of penalized regression
methods in risk prediction. Of them Ambler et al. [9]
explored the use of two popular penalized regression
methods, such as ridge [11] and lasso [12], in risk pre-
diction for low-dimensional survival data with rare events
and found that both methods improve calibration and
discrimination compared with the ML based standard
Cox models. Pavlou et al. [10] reviewed and evaluated
ridge and lasso and their some extensions, such as elas-
tic net, adaptive lasso etc [13-15], in risk prediction for
low dimensional binary data with rare events and found
that these methods can offers improvement, particularly
for model overfitting, over the standard logistic regression
model. Although these studies showed some improve-
ment in risk prediction for rare-event data by using the
penalized methods, there is no specific guidelines how
risk prediction can be managed in the presence of separa-
tion, which frequently occur for such rare-event or sparse
data. More specifically, the problem of separation, first
reported by Albert and Anderson [16], is the case where
one or more predictors have strong effects on response
and hence (nearly ) perfectly predict the outcome of inter-
est. Table 1 presents an example of both complete (perfect
prediction) and quazi-complete separation (nearly perfect
prediction) caused by a dichotomous predictor X against
binary outcome Y.

Separation may occur even if the data is large but there
is sufficient number of strong predictors. The likelihood
of separation is higher for categorical predictors with
rare category compared to the continuous predictor [17].
When developing model in the presence of separation, ML
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Table 1 Example of separation due to a dichotomous predictor
X against outcome Y

Complete separation Quazi-complete separation

Y Y
1 0 1 0
A 10 0 A 10 0
X X
0 10 2 8

Number in each cell indicates number of observations

based logistic regression faces several problems [16, 18].
These includes lack of convergence of maximum likeli-
hood and even if it converges it produces biased (some-
times infinite) estimate of the regression coefficient [17].
An alternative to the ML approach in this situation is
Firth’s penalized method [19]. This approach removes the
first order term (O(#~1)) in the asymptotic bias expansion
of the MLEs of the regression parameters by modifying
the score equation with a penalty terms known as Jef-
freys invariant prior. Heinze and Schemper [17] provided
an application of Firth’s method to the solution of the
problem of separation in the logistic regression. Further
the applications of Firth’s method have been provided to
proportional and conditional logistic regressions for sit-
uations with small-sample bias reduction and solution to
problem of separation [20, 21].

However, one of the criticisms of Firth-type penalty in
recent studies [22, 23] is that it depends on observed
covariate data which can lead to artifacts such as esti-
mates lying outside the range of prior median and the
MLE (which is known as Bayesian non-collapsibility). An
alternative to this, Greenland and Mansournia [22, 23]
suggested log F(1, 1) and log F (2, 2) priors as default prior
for logistic regression. As argued by the authors, the
proposed log F priors are transparent, computationally
simple, and reasonable for logistic regression. However,
despite the attractive advantages of these penalized meth-
ods including Firth’s method for sparse or small data sets,
limited studies have been conducted to explore their use
in risk prediction. This paper evaluates the predictive per-
formance of these penalized methods for sparse data and
compares the results with the ML based method and the
other commonly used penalized method such as ridge.
Although lasso is a commonly used method, it is popular
for variable selection. Risk prediction and variable selec-
tion are different issues, and in this paper we have focused
on prediction and hence excluded lasso.

This paper is organized as follows. The next section
briefly describes all penalized methods under study. Then
the following sections describe the simulation study, an
illustration of the methodologies using stress ecocardiog-
raphy data, and finally discussion and conclusions.
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Methods

Maximum likelihood based logistic regression model

Let Y;, (i = 1,2,...,n), be a binary outcome (0/1) for the
ith subject which follows Bernoulli distribution with the
probability 7; = Pr(Y; = 1). The logistic regression model
can be defined as

logit[ 7;|x:)] = n; = B,

where BT is a vector of regression coefficients of length
(k+1), and «; is the ith row vector of the predictor matrix
x which has order #n x (k+1). The term n; = ﬁTxi is called
as risk score or ‘prognostic index’

In standard MLE, the model is fitted by maximizing the
log likelihood denoted by /().

Penalized methods for logistic regression model

Whereas in penalized methods, /() is maximized sub-
ject to constraints on the values of regression coefficients.
The constraints are fixed in such a way so that the regres-
sion coefficient shrinks towards zero in comparison with
MLE, which may help to alleviate overfitting. More specif-
ically, the penalized regression coefficient is obtained by
maximizing the penalized log likelihood denoted by 1(8) —
pen(B), where pen(f) is the ‘penalty term’ The penalty
term is the functional form of constraints. The penal-
ized methods differ from each others in the choice of
penalty term. The following subsection briefly discusses
some popular penalized methods.

Firth’s penalized method

In order to remove first order bias in MLEs of the regres-
sion coefficient, Firth [19] suggested to use penalty term
%trace[l(ﬁ)_lal(ﬂ)/aﬁj] in the ML based score equation
U(Bj) = 9l(B)/dB; = 0. The modified score equations are
then U(ﬂ,)* = U(B)) + 1/2trace[I(B)~1dI(B)/3pj]= O
G = 1,...,k), where I(8)~ L js the inverse of informa-
tion matrix evaluated at 8. The corresponding penalized
log-likelihood function for the above modified score func-
tion is /(B) + 1/2log|I(B)|. The penalty term used above
is known as Jeffreys invariant prior and its influence is
asymptotically negligible. The Firth type penalized MLE
of B is thus /} = argmax {l(ﬁ) +1/2log |I(,B)|}. This
approach is known as bias preventive rather than cor-
rective. However, Greenland and Mansournia [23] identi-
fied some problems in Jeffreys prior (equivalent to Firth’s
penalty term). These includes i)Jeffrey’s prior is data-
dependent and includes correlation between covariates ii)
the marginal prior for a given 8 can change in opaque ways
as model covariates are added or deleted, which may pro-
vide surprising results in sparse dataset, and iii) it is not
clear how the penalty translate into prior probabilities for
odds ratios.
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Penalized method based on log F prior

To overcome these problems, Greenland and Mansournia
[23] proposed a class of penalty functions pen(f) =
In(|I(B)|~") indexed by m > 0, which produce MLE for
m = 0. Then the penalized log-likelihood is equal to
I(B)+mpB/2—mIn(1+ eP). They showed that the antilog
of the penalty term mB/2 — mIn(1 + ef) is proportional
to alog F(m, m) density for 8, which is the conjugate fam-
ily for binomial logistic regression [24, 25]. It is noted that
the prior degrees of freedom m in log F prior is exactly
the number of observations added by the prior. Then the
corresponding penalized ML estimate can be obtained as
[3 = argmax {l(ﬂ) +mpB/2 —mln(1 + eﬂ)}. This shows
that [i has first order (O(n~1)) bias of zero for m = 1,
away from zero for m < 1, and shrinks toward zero for
m > 1. This showed that F(0, 0) is equivalent to MLE, and
F(1,1) includes Jefrreys prior in one parameter model,
for example, matched pair case-control. Greenland and
Mansournia strongly argued against imposing a prior on
the intercept to make sure that the mean predicted prob-
ability of binary condition is equal to the proportion of
events. In this study, we focused on F(1,1) and F(2,2)
prior for computational simplicity.

Ridge penalized method

Le Cessie and van Houwelingen [11] uses the penalty term
as Ay Zlle ﬁz , where A is a tuning parameter that mod-
ulates the trade-off between the likelihood term and the
penalty term and is usually selected as data-driven pro-
cedure such as cross validation. The ridge log-likelihood
is thus defined as [(B) — Ay Z]/'(:I ,sz and hence ﬁ

— A2 ZJI‘;I B
oped to solve the problems due to multicolinearity. How-
ever, it shrinks the regression coefficient towards nearly
zero and hence can be performed well to alleviate over-
fitting in risk prediction in the scenario with correlated
predictors.

argmax{l(ﬁ) } Ridge was initially devel-

Evaluating predictive performance

Three common approaches to evaluate the predictive per-
formance of a risk model [26]. These are i) calibration
(the agreement between the observed and predicted risk
in a group of subjects) ii) discrimination (the ability of
model to distinguish between low-and high-risk patients)
iii) overall prediction accuracy.

Calibration: We assessed calibration by calculating cali-
bration slope, which can be obtained by re-fitting a binary
logistic regression model with linear predictor or prog-
nostic index (PI) derived from the original model as the
only predictor. The estimated slope ,31)1 is the calibration
slope. If ﬁp] = 1, it suggests perfect calibration; ,ép] <1
suggests overfitting, and Bp; > 1 suggest underfitting.
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Discrimination: We assessed discriminating ability of
the model by quantifying the area under receiver oper-
ating characteristic curve (AUC), graph of sensitivity
(true-positive rate) versus one minus specificity (true-
negative rate) evaluated at consecutive threshold val-
ues of the predicted risk score or probability derived
from the model. Alternatively AUC can be obtained
by quantifying the probability that, for a randomly
selected pair of subjects, the subject who experienced
the event of interest had higher predicted risk derived
from the model than those without experiencing the
event. A value AUC = 0.5 indicates no discrimination and
1 suggest perfect discrimination.

Overall predictive performance: The overall prediction
accuracy is quantified using Brier score, which is the mean
of the squared difference between the observed and pre-
dicted risk for each patient derived from the model. The
lower the BS, the better the prediction of a model and
BS=0 indicates perfect prediction. For ease of interpre-
tation we reported root BS(rBS). In addition to the rBS,
we also reported average predictive probability (APP) of
the model to see how the predicted value differ from the
corresponding observed value.

Software

All the analyses and simulations were conducted in Stata
version 12. Several Stata packages and functions were
used to fit the models in different methods under study.
These includes ‘logit;, ‘firthlogit, ‘penlogit, and ‘plogit’
along with ‘plsearch’ for MLE, FIRTH, log F and RIDGE,
respectively. The calculation of calibration slope and Brier
score were performed using self written Stata code and
AUC using the package ‘roctab.

Results

Example data: stress echocardiography data

The dataset used for simulation and illustration is in
public domain and originally extracted from the study
conducted by Krivokapich et al. [27] where the aim was
to quantify the prognostic value of dobutamine stress
echocardiography (DSE) in predicting cardiac events in
558 patients (male 220 and female 338) with known or
suspected coronary artery disease. The responses of inter-
est whether or not a patient suffered from either of ‘death
due to cardiac arrest; or ‘ myocardial infarction (MI); or
revascularization by percutaneous transluminal coronary
angioplasty (PTCA)’ or ‘coronary artery bypass grafting
surgery (CABG)’ over the next year after having the test.
There were 24 patients with cardiac death, 28 with MI,
27 with PTCA, 33 with CABG and 89 with any cardiac
event (Cevent), which implies that the each of the events
was rare. The main predictor of interest are age, history
of hypertension (HT: yes/no) and diabetics mellitus (DM:
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yes/no), history of prior MI (yes/no) and PTCA (yes/no),
status of DSE test (positive DSE:positive/negative), wall
motion anamoly on echocardiogram (rest WMA:yes/no),
ejection fraction on dobutamine(Dobutamine EF), and
base ejection fraction (base EF).

Simulation study

The performance of the penalized methods in risk pre-
diction over standard ML based logistic regression were
investigated using a simulation study. We conducted sim-
ulation i) firstly to assess and compare the properties of
the regression coefficients of the different methods (MLE,
FIRTH, log F(1,1),log F(2,2), RIDGE) under study and
ii) secondly to assess and compare the predictive perfor-
mance between the methods.

Assessing the properties of the regression coefficients

To assess the properties of the regression coefficients such
as bias and mean squared error (MSE), we generated two
independent predictors of which one is continuous (X; )
generated from standard normal and the other is dichoto-
mous (X3) generated from Bernoulli distribution with 50%
events. We then generated binary response from Bernoulli
distribution with probability ; (i = 1,...,n) calculated
from true logistic model logit(wr) = Bo + B1X1 + B2X2,
where 81 = 0.30 and By = 0.9. With this combina-
tion, the binary covariate created separation for some
of the simulated datasets particularly with low preva-
lence. The value of By vary to generate data with varying
level of prevalence. The scenarios were created by vary-
ing the prevalence, on an average, (p) as 5.5, 11.5 20.4
and 39.6% for a fixed sample size n = 120. For each
scenario, 1000 datasets were generated and all regression
approaches under study were fitted to each dataset. When
fitting RIDGE the respective tuning parameters were
selected through 10-fold cross validation. The estimates of
the regression coefficients of the respective models were
obtained as the mean over the number of simulations
where convergence achieved. Noted that only MLE and
RIDGE were failed to converge (due to low prevalence
or separation or both) in some datasets, and the maxi-
mum failure rate for MLE and RIDGE were 13 and 51% ,
respectively for the lowest prevalence scenario. The fail-
ure rate decreases as the prevalence increases. Finally the
relative bias (%) and mean squared error (MSE) of the esti-
mates were reported and compared if the performance
vary across the scenarios.

The results in Table 2 showed that the RIDGE estima-
tor, in general, provides the highest amount of relative bias
(%), which is followed by the MLE and log F (2, 2) whereas
FIRTH and log F(2,2) provides negligible bias. For the
coefficient of the dichotomous predictor (82) log F(2,2)
provides more bias compared to those for continuous pre-
dictor (B1). The amount of bias, in general, is the highest
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for the low prevalence data and the lowest for the high
prevalence data. However, the RIDGE, in general, pro-
duces the lowest MSE, and the highest MSE is produced
by the MLE for 8; and by FIRTH for 8. The amount of
MSE, in general, decreases with the increasing prevalence.

Assessing the predictive performance

To assess the predictive performance of the methods, we
conducted two simulation series following the simula-
tion design in Pavlou et al. [10] used for similar type of
study. The first simulation series is based on the real stress
echocardiography data where only responses were gen-
erated and in the second simulation series we generated
both covariates and responses.

Stress echocardiography simulation

In the first simulation series based on real data, we sim-
ulated data and evaluated the predictive performance of
the models for different EPV scenarios using the following
steps:

(i) Fit the following logistic regression model for the
response “any cardiac event” with Firth’s penalized
method (to avoid bias in the estimate of the
regression coefficient) to obtain the true model:

logit(Pr(Cevent=1)) = Bo + Bidobef + Bawma + B3posse
+ Babsef + Bsht + Peage

(ii) To create a training data, choose the EPV and

prevalence (prev), and then calculate sample size for
the respective EPV given the number of predictors p
asn = El;‘rgip . Sample with replacement the n values
of the covariates in the true model from original data.
For each of the n values of the covariates, simulate
new responses from Bernoulli distribution with the
probability calculated from the fitted model.
However, replace the value of 8y by -0.65 to confirm
the prevalence of the response (prev), on an average,
15.5% for all EPV scenarios.

(iii) With this combination, check and record if separation
occurred due to any of the binary covariates (‘posse’
or ‘wma’, or ‘ht’ or combination of them). Otherwise
to create separation, enlarge the true value of the
respective coefficient of the binary covariate to some
extents. Note that the chances of separation is
expected to increase with decreasing EPV value.

(iv) To create a test dataset, sample with replacement
m x n (m times of the original data of size n = 558,
we considered m = 2) values of the covariates. Then
simulate the corresponding new responses from the
same true model used for simulating training data.

(v) Repeat the steps (ii)-(iii) to produce 1000 training and
1000 test datasets.
(vi) Fit the risk models ( using MLE and all types of
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penalized regression methods under study) to each of
the training data sets and check whether convergence
was achieved. Then evaluate their predictive
performance (if convergence achieved) by means of
calibration slope, AUC, root Brier score, and average
predictive probability (APP) using the corresponding
test dataset. Summarize the predictive performance
over the number of simulations for which
convergence is achieved.

The predictive performance of all regression methods
was investigated against EPV=2, 3, 5, 10 to see if the
performance vary across the scenarios. When the pre-
dictive performance against EPV was assessed by means
of calibration slope, the MLE showed poor performance
by producing overfitted model (calibration slope substan-
tially lower than 1) for EPV=2, 3, 5 (Fig. 1). All penalized
methods offered improvement to some extents except the
RIDGE which produced underfitted model ( the average
value of the calibration slope greater than 1 with high SD).
In addition, the RIDGE failed to converge for the maxi-
mum 8.4% of the simulations particularly when EPV=2.
Almost equal improvement was offered by the Firth-type
and both the log F(1,1) and log F(2,2) penalized meth-
ods. In general all methods including MLE showed almost
equal performance in terms of calibration for high EPV
(EPV=10). When the predictive performance (discrimi-
natory ability) was assessed through AUC, all penalized
methods showed better performance with greater AUC
than MLE for the low EPV scenarios (Fig. 2). Of them
the RIDGE provided highest AUC value. However, the
amount of improvement in the discrimination, in gen-
eral, was comparatively lower than that for calibration. All
methods perform almost equally for high EPV (EPV=10).
Similarly the penalized methods offered improvement in
the overall predictive performance for individual predic-
tion assessed through rBS to some extents for low EPV
(Fig. 3). Of them, the RIDGE offered greater improve-
ment. However, for low EPV while both the log F(1, 1) and
log F(2,2) penalized methods provided accurate estimate
of the true average predicted probability (APP) 15.2%,
the FIRTH-type penalized method overestimate the true
value. The amount of bias in FIRTH-type estimate is even
larger than that produced by MLE and RIDGE (Fig. 4).

Further simulation

In the second simulation series with the same EPV scenar-
ios, we simulated both covariates and response under two
predictive models, one with weak predictive ability and
the other with strong predictive ability, using the following
steps:

(i) For creating training data, choose the EPV and
prevalence (prev) and calculate sample size (n) for
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the binary covarites X5 in the model with weak
predictive ability and X4 in the model with strong
predictive ability create separation in some of the
simulations. Check and record if separation occurred.

(iv) Create test data with size 1000 (much larger than the
training data) for the similar level of EPV and
prevalence. For each observation in the test data,
simulate the same predictors as in the test data and
the corresponding response from the same true
model.

(v) Repeat the steps (ii)-(iv) to produce 1000 training and
1000 test datasets

(vi) Fit risk models (using all methods) using training
data, count if convergence was achieved for the
respective model, and evaluate their predictive
performance (if convergence was achieved in training
data) using test data as before. Finally summarize the
predictive performance over the number of
simulations for which convergence is achieved.

The results revealed that, for both predictive models
(weak and strong predictive abilities), all the penalized
methods offered improvement in calibration over MLE
for low EPV, except for the RIDGE which in turn pro-
vided underfitted model (calibration slope grater than 1
with high SD) (Table 3). The amount of improvement by
the other penalized methods was almost equal. However,
all the penalized methods except the RIDGE offered neg-
ligible improvement in the discrimination for low EPV.
Similarly all the penalized methods showed improvement
to some extents in the overall predictive performance by
lowering the rBS value compared to that for MLE. For
both predictive model, the average predicted probability
(APP) estimated by the both the log F(1, 1) and log F(2, 2)
were almost equal to the average observed probability,
however the Firth-type penalized method introduced pos-
itive bias in the estimate of the average probability. The
amount of bias was even larger than that for MLE and
RIDGE. In case of both models, the maximum failure of
convergence (due to separation or low EPV or both) was
reported for RIDGE.

lllustration using stress echocardiography data
The aim is to derive risk models using different penal-
ized methods discussed earlier and the standard MLE to
predict the risk of having a cardiac event and then to eval-
uate and compare their predictive performance. We fitted
separate models for predicting the risk of each of the four
cardiac events and a model for the risk of any of the events
using each regression approaches; that is, a total of five
models for each of the binary events were fitted using six
different regression methods under study and altogether
25 models for all five binary responses.

The models were fitted using training data (contains
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60% of total data randomly selected) and their predic-
tive performance were evaluated using test data (contains
rest of 40%). The associated predictors for each car-
diac event were selected based on the information from
literature and results of likelihood ratio test (LRT). Dif-
ferent combinations of predictors were tested using LRT
to come up with a final model for each cardiac event.
Then the same model was then fitted in training data
using six different methods. Note that quasi-complete
separation due to binary predictors in training data was
identified for the responses ‘PTCA’ and ‘ cardiac death,
and hence, in case of convergence failure for RIDGE
or MLE, the estimates reported are based on the last
iteration. The estimated coefficients of the respective
model are then summarized in Table 4. For all types of
response, the estimated regression coefficients for MLE is
larger than all penalized methods. Because all the meth-
ods shrink the coefficient towards zero. The amount of
shrinking was higher for the RIDGE in the most of the
cases. However, the main purpose here is to evaluate
the predictive performance of the methods rather than
comparing their estimated regression coefficients. The
predictive performance of all models were then evalu-
ated using test data, and the results were summarized in
Table 5.

It is observed from results in Table 5 that all models
faced the problem of overfitting (calibration slope <<
1) particularly for those response for which the EPV is
low (EPV<10). The amount of overfitting is lower for
all penalized methods compared to MLE. In terms of
discrimination all methods including MLE provided com-
parable results. For all types of response, the greater
improvement was observed in the calibration (calibration
slope) compared to those in both discrimination (AUC)
and overall performance (BS). Firth methods produced
higher value of the average predicted probability (APP) for
all type of responses.

The probable reason for producing overfitted models
(very low value of the calibration slope) even for the penal-
ized methods is that the size of the test data and particu-
larly the number of events for all types of response were
very small compared to the number of events (approx-
imately 100) required for correct estimation of the pre-
dictive accuracy measures [28]. Therefore, further the
predictive performance of all models were evaluated in
test data consisting of larger sample size and number of
events compared to the previous test data. This was cre-
ated by expanding 5 times the original (previous) test data
so that the required number of events is achieved. In
this procedure each subject replaced his/her information
for the other 4 subjects. The results showed that calibra-
tion slope was comparatively more closer to 1 (suggesting
improvement in calibration) for the penalized methods
for all types of responses, particularly for which EPV was
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Table 3 Performance measures for the model s with both weak and strong predictive ability. Results were summarized over the
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number of simulations for which convergence is achieved. The maximum failure rate of convergence for RIDGE with weak predictive
ability, out of 1000 simulations, is 40% for the lowest EPV

5(167)

10(334)

EPV (N)
2(67)

3(100)

5(167)

10(334)

Mean
SD
Mean
SD
Mean
SD
Mean

SD

Mean
SD
Mean
SD
Mean
SD
Mean

SD

Mean
SD
Mean
SD
Mean
SD
Mean
SD

Mean
)
Mean
SD
Mean
SD
Mean
SD

MLE

0.367
0.277
0472
0.305
0621
0317
0.797
0.286

MLE

0370
0.022
0.363
0.018
0.357
0.017
0.354
0016

MLE

0.659
0.296
0.774
0.236
0.868
0.218
0933
0.167

MLE

0.338
0.030
0.323
0.018
0.316
0.016
0310
0.016

Model with weak predictive ability
Calibration slope, Max MCE=0.0235
FIRTH log F(1,1) log F(2,2) RIDGE MLE

0414 0.383 0424 1.029 0.606
0.303 0.281 0.302 0.847 0.060
0512 0487 0517 1.027 0613
0.326 0311 0.324 0.757 0.054
0.658 0637 0.658 1.055 0.629
0.328 0317 0.323 0.667 0.046
0.814 0.801 0.812 1.076 0.645
0.289 0.282 0.286 0.504 0.037

root Brier Score, Max MCE=0.0007
FIRTH log F(1,1) log F(2,2) RIDGE MLE

0.369 0.367 0.365 0.360 0.159
0.019 0.019 0.018 0.017 0.045
0.362 0.361 0.360 0.358 0.156
0.017 0.017 0.017 0.016 0.035
0.357 0.357 0.356 0.355 0.153
0.016 0.017 0.016 0.016 0.028
0.354 0.354 0.354 0.354 0.151
0.015 0016 0.016 0.015 0.020

Model with strong predictive ability
Calibration slope, Max MCE=0.0344
FIRTH log F(1,1) log F(2,2) RIDGE MLE

0.825 0.784 0.890 1.252 0.831
0310 0.268 0.273 0.742 0.039
0.888 0.857 0.931 1.125 0.845
0.251 0.231 0.233 0.292 0.028
0.934 0.917 0.963 1.066 0.854
0.226 0.216 0.217 0.224 0.024
0.959 0.955 0.979 1.016 0.860
0.169 0.166 0.167 0.159 0.022

root Brier Score, Max MCE=0.0009
FIRTH log F(1,1) log F(2,2) RIDGE MLE

0.331 0.330 0.327 0.328 0.172
0.022 0.021 0.020 0.019 0.045
0.321 0.321 0.320 0.320 0.165
0.016 0.017 0.016 0.016 0.033
0.315 0.315 0.315 0.315 0.163
0.015 0.015 0.015 0.015 0.026
0310 0.310 0310 0.310 0.163
0.015 0.015 0.015 0.015 0.019

FIRTH
0.605
0.058
0613
0.054
0.630
0.046
0.645
0.037

AUC, Max MCE=0.0012

logF(1,1)
0.605
0.059
0613
0.054
0.630
0.046
0.645
0.037

log F(2,2)
0.607
0.059
0.614
0.054
0.630
0.046
0.646
0.037

APP (True 0.152), Max MCE=0.0015

FIRTH
0.178
0.041

0.171

0.033
0.163
0.027
0.157
0.019

FIRTH
0.831

0.039
0.845
0.028
0.854
0.023
0.860
0.022

log F(1,1)
0.154
0.044
0.154
0.035
0.153
0.027
0.151
0.020

log F(2,2)
0.153
0.044
0.154
0.035
0.153
0.027
0.151
0.020

AUC, Max MCE=0.0024

log F(1,1)
0.832
0.038
0.846
0.028
0.854
0.023
0.860
0.022

log F(2,2)
0.834
0.037
0.846
0.028
0.855
0.023
0.860
0.022

APP (True 0.162), Max MCE=0.0014

FIRTH
0.182
0.040
0.175
0.032
0.170
0.025
0.166
0.019

log F(1,1)
0.164
0.042
0.163
0.033
0.163
0.025
0.163
0.019

log F(2,2)
0.163
0.042
0.163
0.033
0.163
0.025
0.163
0.019

RIDGE
0.628
0.042
0.626
0.041
0.635
0.039
0.646
0.035

RIDGE
0.156
0.044
0.155
0.035
0.152
0.027
0.151
0.019

RIDGE
0.832
0.037
0.845
0.028
0.854
0.023
0.860
0.022

RIDGE
0.167
0.042
0.164
0.032
0.163
0.025
0.163
0.019

APP: Average Predicted Probability
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Table 4 Modeling the risk of cardiac events. Estimate of the regression coefficients with SE in the parenthesis
Modeling the risk of MI

MLE FIRTH log F(1,1) log F(2,2) RIDGE
Dobutamine EF -0.0503 -0.0492 -0.0508 -0.0513 -0.0413
(0.0183) (00178) (0.0183) (0.0182) (0.0161)
Positive DSE 1272 1.241 1.185 1.109 0994
(0.549) (0531) (0.533) (0518) (0.469)
Hist. of HT 1.115 0923 0973 0.866 0657
(0.789) 0.716) (0.716) (0.662) (0.542)
Intercept 1253 -1.028 -1.057 -0.901 -1.243
(1.351) (1.284) (1.307) (1.275) (1.132)

Modeling the risk of CABG

Dobutamine EF -0.0634 -0.0506 -0.0518 -0.0523 -0.0420
(0.0181) (0.0177) (0.0181) (0.0181) (0.0161)

Positive DSE 1.568 1.190 1.137 1.068 0.971
(0.551) (0.529) (0.531) (0.516) (0.468)

Intercept 0.272 -0.224 -0.206 -0.145 -0.683
(1.122) (1.120) (1.140) (1.131) (1.029)

Modeling the risk of PTCA

Positive DSE 0.825 0.820 0.770 0.722 0.579
(0.498) (0.481) (0.483) (0.470) (0.409)
Base EF -0.0381 -0.0375 -0.0389 -0.0396 -0.0306
(0.0204) (0.0198) (0.0202) (0.0201) (0.0168)
Hist. of MI 1.168 1.125 1.118 1.072 0.867
(0.533) (0.517) (0.515) (0.499) 0412)
Hist of PTCA 1.304 1.310 1211 1.127 1.087
(0.617) (0.591) (0.602) (0.588) (0.555)
Intercept -1.754 -1.661 -1.646 -1.548 -1.809
(1.184) (1.151) (1.167) (1.153) (0.968)

Modeling the risk of cardiac death

Positive DSE 1.084 1.061 1.026 0.974 0.873
(0.489) (0.474) (0.478) (0.467) (0.436)
Hist. of DM 1.083 1.047 1.025 0973 0.784
(0.495) (0.480) (0.487) (0.468) (0.419)
Age 0.0347 0.0328 0.0344 0.0342 0.0229
(0.0240) (0.0236) (0.0238) (0.0236) (0.0188)
Intercept -6.040 -5.783 -5.965 -5.899 -4.960
(1.787) (1.750) (1.769) (1.753) (1.379)
Positive DSE 1.064 1.045 1.047 0.989 0.940
(0.332) (0.327) (0.327) (0.264) (0.248)
Dobutamine EF -0.0381 -0.0372 -0.0384 -0.0364 -0.0333

(0.0131) (0.0128) (0.0130) (0.0103) (0.00941)
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Table 4 Modeling the risk of cardiac events. Estimate of the regression coefficients with SE in the parenthesis (Continued)

Modeling the risk of any cardiac event

Rest WMA -0.779 -0.758
(0.429) (0.427)

Hist. of HT 0.823 0.781
(0.393) (0.384)

Intercept 0.107 0.115
(0.833) (0.818)

-0.755 -0.839 -0.762
(0.419) (0.336) (0.293)
0.794 0.728 0.632
(0.384) (0.302) (0.276)
0.151 0.0102 -0.0980
(0.829) (0.655) (0.611)

high (results not showed). Similar results were obtained
for the AUC and Brier score for all types of models of all
responses.

Discussion

Penalized regression methods (such as RIDGE and
LASSO) has increasingly being used for developing mod-
els for high dimensional data where the number of predic-
tors is higher than the number of subjects. Furthermore
several studies [29, 30] have also been conducted to make
relative comparison between the methods for high dimen-
sional case and found that RIDGE performed well when
data have highly correlated predictors and LASSO per-
formed well when variable selection is required. Although
few studies [9, 10] evaluated RIDGE, LASSO and oth-
ers in risk prediction for low-dimensional survival and
binary data with few events, however, they often ignored
Firth-and log F-type (such as log F(1,1) and log F(2,2))
penalized methods, despite their attractive advantages
in reducing finite sample bias in the estimated regres-
sion coefficient and solving problem of separation that
commonly occurs in low-dimensional small or sparse
datasets. This paper explored the use of these methods in
risk prediction for small and sparse data and compared
their predictive performance with MLE and the other
penalized method (RIDGE). In particular we focused on
comparing the predictive performance of the methods
through assessing calibration, discrimination and over-
all predictive performance when EPV is less than 10 in
low-dimensional setting.

The results from simulation studies and illustration
with real data revealed that while the MLE produced
overfitted model with poor predictive performance (in
terms of calibration), all penalized methods offered some
improvements except for the RIDGE which in turn pro-
duced underfitted models (calibration slope greater than 1
with large variability). All other penalized methods (Firth-
type and both logF(1,1) and log F(2,2)) offered simi-
lar amount of improvement in calibration. However, the
improvement in the discrimination in general was lower
than that in calibration. The reason can be explained sim-
ilarly with Pavlou et al. [10] as that the penalized methods

tend to shrink the predicted probability towards the aver-
age compared with the MLE and hence the ordering of
the predicted probabilities with and without experiencing
the event in most patient pairs tends to remain unchanged
after shringkage, which resulted in small improvement
in AUC values of the penalized methods over MLE. All
the penalized methods offered some improvement in the
overall predictive performance (lower BS compared to
those with MLE). Although all penalized methods cor-
rectly estimate the average predicted probability, Firth-
type penalization introduced bias. The findings are similar
to what obtained in other studies [10] that explored the
use of some penalized methods such as ridge, lasso etc in
risk predictions for low-dimensional data.

Conclusions

Based on the findings of the study it can be recommended
to use log F-type penalized method instead of MLE in risk
prediction for low dimensional data small or sparse data.
Because firstly this approach showed minimum bias in
the estimate of regression coefficient and greater improve-
ment in predictive performance than MLE, particularly
in calibration by removing the amount of overfitting to
some extents. Secondly, this approach has some addi-
tional advantage particularly for solving the problems due
to separation. Of the two types of logF penalization,
log F(1,1) is preferable to log F(2,2) because log F(2,2)
though provides similar predictive performance but pro-
duces some bias in the regression coefficient particularly
for the dichotomous covariates. Although the Firth-type
penalized method have great advantage for solving the
problems related to separation and showed compara-
ble results with the log F-type penalized methods with
respect to calibration, discrimination and overall predic-
tive performance, it produced bias in the estimate of the
average predicted probability. The reason is that Firth’s
approach imposes prior on the intercept (which con-
trol the average predicted probability) and as a result it
shrink the average predicted probability towards 0.5 and
hence produced upward bias in the average predicted
probability. However, the log F make the intercept free
from the penalization and hence correctly estimates the
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Table 5 Performance of penalized methods in predicting cardiac events

Models for predicting the risk of Ml (EPV = 7)

Methods Calibration Slope AUC Brier Score APP

MLE 0.696(0.258) 0.768(0.051) 0.047 0.051
Firth 0.706(0.260) 0.766(0.052) 0.049 0.057
log F(1,1) 0.713(0.265) 0.769(0.051) 0.048 0.052
logF(2,2) 0.723 (0.271) 0.769(0.051) 0.048 0.052
RIDGE 0.772(0.309) 0.762(0.053) 0.047 0.050

Models for predicting the risk of CABG (EPV =~ 10)
MLE 0.912(0.219) 0.814(0.046) 0.057 0.056
Firth 0.909 (0.217) 0.814 (0.046) 0.056 0.059
log F(1,1) 0.921(0.221) 0.814(0.046) 0.056 0.055
log F(2,2) 0.926(0.223) 0.813(0.046) 0.057 0.055
RIDGE 0.886(0.217) 0.814(0.046) 0.057 0.055
Models for predicting the risk of PTCA (EPV & 5)
MLE 0.718(0.291) 0.730(0.108) 0.034 0.061
Firth 0.721(0.279) 0.729(0.108) 0.035 0.066
log F(1,1) 0.721(0.298) 0.728(0.107) 0.034 0.061
logF(2,2) 0.720(0.305) 0.728(0.107) 0.034 0.061
RIDGE 0.774(0.544) 0.727(0.107) 0.033 0.061
Models for predicting the risk of cardiac death (EPV = 6)
MLE 0.661(0.529) 0.688(0.121) 0.024 0.062
Firth 0.680(0.545) 0.688 (0.121) 0.024 0.067
log F(1,1) 0.645(0.535) 0.687(0.120) 0.024 0.062
log F(2,2) 0.623(0.538) 0.687 (0.120) 0.024 0.061
RIDGE 0.665 (0.608) 0.684 (0.121) 0.023 0.062
Models for predicting the risk of any cardiac event (EPV ~ 15)

MLE 0.942(0.206) 0.771(0.044) 0.059 0.164
Firth 0.946(0.207) 0.767 (0.044) 0.059 0.167
log F(1,1) 0.945(0.206) 0.770(0.044) 0.058 0.164
logF(2,2) 0.946(0.207) 0.770 (0.044) 0.058 0.164
RIDGE 1.004(0.222) 0.769(0.044) 0.056 0.165

Event Per Variable (EPV) was calculated based on the number of event in training data. Estimates of the performance measures with SE in the parenthesis

average predicted probability. Similarly although RIDGE
showed greater improvement in the discrimination and
the overall predictive performance, it often provides
under-fitted model. The striking disadvantages of RIDGE
is that it has frequent convergence failure for data with
low EPV or if there is separation. The rate was high (even
higher than MLE) if data have combination of both low
EPV and separation. This finding is similar to those [31]
which reported low EPV or separation or combination of
both as one of the reasons for the convergence-failure in
RIDGE, although other studies [32] reported it as wrong
choice (small value) of tuning parameter.

In the presence of separation, developing a risk model
using any other penalized methods, except for the Firth-
type and log F-type methods, under study is challeng-
ing. Because RIDGE and LASSO-type penalized methods
were originally developed particularly either for shrinking
the regression coefficient or variable selection in high
dimensional data rather than solving separation prob-
lem. However, the main limitation of log F type penalized
approach is that it cannot be used directly for variable
selection. If small-to moderate-level of variable selec-
tion is required in low-dimensional data with sufficient
number of predictors, logF method can also be used
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in risk prediction after selecting important predictors
using results from exploratory analysis of the data and
likelihood ratio test conducted in different combinations
of nested models.

This study did not focus on the use of Firth-type and
log F-type penalized method in risk prediction for low-
dimensional survival data with few events where standard
Cox regression is reported to be unreliable [33]. Further
research may be possible to evaluate the predictive perfor-
mance of these methods in comparison with the standard
Cox model and the other penalized methods.
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