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Abstract

Background: Most meta-analyses in systematic reviews, including Cochrane ones, do not have sufficient statistical
power to detect or refute even large intervention effects. This is why a meta-analysis ought to be regarded as an
interim analysis on its way towards a required information size. The results of the meta-analyses should relate the
total number of randomised participants to the estimated required meta-analytic information size accounting for
statistical diversity. When the number of participants and the corresponding number of trials in a meta-analysis are
insufficient, the use of the traditional 95% confidence interval or the 5% statistical significance threshold will lead to
too many false positive conclusions (type I errors) and too many false negative conclusions (type II errors).

Methods: We developed a methodology for interpreting meta-analysis results, using generally accepted, valid
evidence on how to adjust thresholds for significance in randomised clinical trials when the required sample size
has not been reached.

Results: The Lan-DeMets trial sequential monitoring boundaries in Trial Sequential Analysis offer adjusted
confidence intervals and restricted thresholds for statistical significance when the diversity-adjusted required
information size and the corresponding number of required trials for the meta-analysis have not been reached. Trial
Sequential Analysis provides a frequentistic approach to control both type I and type II errors. We define the
required information size and the corresponding number of required trials in a meta-analysis and the diversity (D2)
measure of heterogeneity. We explain the reasons for using Trial Sequential Analysis of meta-analysis when the
actual information size fails to reach the required information size. We present examples drawn from traditional
meta-analyses using unadjusted naïve 95% confidence intervals and 5% thresholds for statistical significance.
Spurious conclusions in systematic reviews with traditional meta-analyses can be reduced using Trial Sequential
Analysis. Several empirical studies have demonstrated that the Trial Sequential Analysis provides better control of
type I errors and of type II errors than the traditional naïve meta-analysis.

Conclusions: Trial Sequential Analysis represents analysis of meta-analytic data, with transparent assumptions, and
better control of type I and type II errors than the traditional meta-analysis using naïve unadjusted confidence
intervals.
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Background
Most meta-analyses include too few randomised partici-
pants, to obtain sufficient statistical power that allow re-
liable assessment of even large anticipated intervention
effects [1]. The credibility of statistical significant meta-
analyses with too few participants is poor, and interven-
tion effects are often spuriously overestimated (type I
errors) or spuriously underestimated (type II errors) [2].
Meta-analyses of, e.g., cardiovascular, anaesthesiologic,
and neonatal interventions have many false positive and
false negative results, due to low statistical power in a
meta-analysis when the required number of randomised
participants or trials have not been reached [3–6]. Trial
Sequential Analysis (TSA) of a meta-analysis may amend
these problems [4, 7]. In this article, we aim to describe
the origin, history, adaptation, and criticism of TSA.
Using TSA, we can handle a meta-analysis of several

randomised clinical trials in an analogous manner to in-
terim analysis of a single randomised clinical trial. If the
accrued cumulative information fails to achieve the re-
quired number of randomised participants in order to
detect or reject a specific assumed effect, the uncertainty
of the estimate of the intervention effect will increase.
The uncertainty will decrease the higher the fraction of
the required information size the meta-analysis obtain.
To statistically solve the problem with uncertainty, we
expand the confidence interval, i.e., adjusting the thresh-
old for statistical significance when the required infor-
mation size has not been reached. The farther from the
required number of randomised participants, the wider
the confidence interval and the lower the statistical sig-
nificance level needs to be in order to reliably assess the
uncertainty of the point estimate.
In TSA of a meta-analysis, we include the trials in

chronological order and we handle the analysis of these
trials as an interim analysis relative to the required num-
ber of randomised participants. TSA calculates the re-
quired number of participants, based on our predefined
anticipated intervention effect, i.e., our alternative hy-
pothesis [7–9]. The result of a trial sequential meta-
analysis is displayed on a TSA diagram (e.g., Fig. 1a and
b) with a TSA-adjusted confidence interval and an ad-
justed level of statistical significance, i.e, a lower thresh-
old for statistical significance compared to the usual
nominal of 0.05, if the required information size has not
been reached [10].
In the above-mentioned adjustments, we take into

consideration if the required number of randomised par-
ticipants and corresponding trials, to show or reject a
specific intervention effect, were reached or not. The re-
quired information size is defined as the number of par-
ticipants and events necessary to detect or reject an a
priori assumed intervention effect in a meta-analysis
[11]. The required information size is not a single

sample size, but a summation of sample sizes from a
given number of included trials. Therefore, the calcula-
tion is performed considering the variability (heterogen-
eity variance) between the estimates of the intervention
effects of the included trials.
In TSA, the sample size, required for a single rando-

mised clinical trial to be conclusive for a specific inter-
vention effect, is adjusted upward by an appropriate
measure of the statistical heterogeneity in the meta-
analysis in order to become the required information
size. This is equivalent to using the variance in the
random-effects model to calculate the required informa-
tion size (the model variance based calculation of the re-
quired information size). In the TSA, we hereafter adjust
the confidence interval of the point estimate and the
threshold for statistical significance relative to the frac-
tion of the required information size which has been ac-
crued in the actual meta-analysis [11].
First, we will present a motivating example of a meta-

analysis on hypothermia versus no hypothermia in co-
matose patients having survived cardiac arrest. Second,
we present an updated meta-analysis with the results of
a new trial, and we describe how this update has chan-
ged the conclusion of the preceding traditional meta-
analysis. We also show how the use of TSA would
appropriately have reduced the risk of a wrong conclu-
sion in the first meta-analysis failing to achieve the re-
quired information size. Third, we shortly describe the
historical development of sequential analyses in a single
trial with interim analyses and in a cumulative meta-
analysis of several trials. We explain how sequential
meta-analysis can be performed with TSA [12]. Finally,
we discuss the criticism that has been raised about TSA
and we briefly describe the possibility for Bayesian meta-
analysis as an alternative to both traditional naïve meta-
analysis and TSA of a meta-analysis.

A motivating example: how the Target Temperature
Management-Trial changed the conclusion of the meta-
analysis of trials with cooling of patients after out of
hospital cardiac arrest
In TSA, we consider each interim-analysis result, pro-
duced after the addition of a new trial, a sequential meta-
analysis. The possibility to include groups of several new
trials at a time is, of course, also possible. This latter ap-
proach will decrease the number of interim-analyses in
the cumulative meta-analysis [10]. However, updating the
meta-analysis in a systematic review each time a new trial
is published is a rational decision, and to update a system-
atic review before a new trial is initiated ought to become
mandatory [13–15]. Previous trial results ought to be
considered whenever we evaluate the cons and pros
of designing new trials, as the evidence on a given
intervention may already be sufficient [13–15]. It is

Wetterslev et al. BMC Medical Research Methodology  (2017) 17:39 Page 2 of 18



Fig. 1 (See legend on next page.)
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surprising to see how little the TSA, conducted after
each new trial has been interim-analysed, differs from
the last TSA on groups of trials (e.g., TSA only up-
dated every second year).
Figure 1 shows the result of a TSA of meta-analysis of

four trials comparing a target temperature of 33°–34 °C
versus no cooling, conducted before the initiation of the
Target Temperature Management (TTM) Trial (Fig. 1a)
[16–18]. The TSA shows that the four trials did not even
reach half of the required information size to confirm or
reject a 17% relative risk reduction which was the inter-
vention effect indicated in a conventional meta-analysis
of the trials [16]. The conventional confidence interval
for the relative risk ratio of all-cause mortality in a trad-
itional meta-analysis is 0.70 to 1.00 (P = 0.05), suggesting
a reduction of mortality. The confidence interval and
the P-value would not have been sufficient to claim a
conclusive interim analysis stopping for benefit in a sin-
gle randomised trial if analysed with Lan-DeMets’ group
sequential monitoring boundaries [19]. For demonstrat-
ing a 17% relative risk reduction, the TSA-adjusted con-
fidence interval of the relative risk is 0.63 to 1.12. This
confidence interval shows that i) a target temperature of
33°–34 °C versus no cooling can either decrease or in-
crease mortality, and ii) that definitive evidence has not
yet been reached. The cumulative Z-curve in the figure
does not pass through the trial sequential monitoring
boundary for benefit; only the conventional and naïve P
= 0.05 (Z = 1.96) level for a beneficial effect has been
reached. Therefore, there is not sufficient information to
document the effect, or there may not be a beneficial ef-
fect at all. Nevertheless, based on this evidence, inter-
national guidelines had recommended for ten years that
the temperature of comatose cardiac arrest patients

should be targeted to 33°–34 °C, calling the intervention
»mild therapeutic hypothermia« [20]. No further rando-
mised clinical trials of induced hypothermia versus no
temperature control (or normothermia) in comatose car-
diac arrest patients after resuscitation and admittance to
intensive care units were conducted during this 10-year
period. This may indicate that a P-value of 0.05 in the
conventional meta-analysis was used as an unofficial
»stopping boundary« for further trials within this same
period.
In the TTM Trial, we compared the effect of cooling

to target temperature 33 °C versus 36 °C on mortality of
cardiac arrest patients [17, 18]. The updated TSA in-
cluding the TTM Trial showed no statistically significant
effect at the conventional level, as the Z-curve returned
to the area with P > 0.05 (|Z| < 1.96) (Fig. 1b). Figure 1b
shows that the cumulative Z-curve touches the futility-
boundaries in the TSA diagram (see section ‘False Nega-
tive Meta-analyses’ below). Therefore, the updated TSA
indicates that a 17% relative risk reduction, or an even
greater reduction, most likely can be rejected, although
the pre-estimated required information size of 2040 pa-
tients has not yet been reached. It is not likely that a
meta-analysis will ever show a 17% statistical significant
relative risk reduction of mortality, even though the con-
tinued conduct of trials until a cumulated number of pa-
tients, corresponding to the required meta-analytic
information size of 2040 patients, was reached (Fig. 1b).
The conclusion is that hypothermia to 33°–34 °C does
not seem to have a clinical important effect on mortality
compared with no cooling or targeted normothermia
(36 °C), as the 17% relative risk reduction only corre-
sponds to a median of 3 weeks’ longer survival [17, 18].
Moreover, the original conventional meta-analysis before

(See figure on previous page.)
Fig. 1 a Showing Trial Sequential Analysis of meta-analysis before the Target Temperature Management Trial. The Z-value is the test statistic and
|Z| = 1.96 corresponds to a P = 0.05; the higher the Z-value, the lower the P-value. Trial Sequential Analysis (TSA) of mortality after out of hospital
cardiac arrest patients, randomised to cooling to 33°–34 °C versus 36 °C or no temperature control in four trials performed before the Target
Temperature Management (TTM) trial [16, 20]. The required information size to detect or reject the 17% relative risk reduction found in the
random-effects model meta-analysis is calculated to 977 participants using the diversity found in the meta-analysis of 23%, mortality in the control
groups of 60%, with a double sided α of 0.05 and a β of 0.20 (power of 80.0%). The cumulative Z-curve (black full line with quadratic indicatons
of each trial) surpasses the traditional boundary for statistical significance during the third trial and touches the traditional boundary after the
fourth trial (95% confidence interval: 0.70 to 1.00; P = 0.05). However, none of the trial sequential monitoring boundaries (etched curves above
and below the traditional horizontal lines for statistical significance) have been surpassed in the TSA. Therefore, the result is inconclusive when
adjusted for sequential testing on an accumulating number of participants and the fact that the required information size has not yet been
achieved. The TSA-adjusted confidence interval is 0.63 to 1.12 after inclusion of the fourth trial [10, 12]. b showing Trial Sequential Analysis of
meta-analysis after the Target Temperature Management Trial. The Z-value is the test statistic and |Z| = 1.96 corresponds to a P = 0.05; the higher
the Z-value, the lower the P-value. Trial Sequential Analysis (TSA) of mortality after out of hospital cardiac arrest patients, randomised to cooling
to 33°–34 °C versus 36 °C or no temperature control in five trials after inclusion of the Target Temperature Management (TTM) Trial [17]. The re-
quired information size to detect or reject the 17% relative risk reduction found in the random-effects model meta-analysis prior to the TTM Trial
is calculated to 2040 participants using the diversity found in the meta-analysis of 65%, mortality in the control groups of 60%, with a double
sided α of 0.05 and a β of 0.20 (power of 80.0%). The cumulative Z-curve (black full line with quadratic indicatons of each trial) touches the
boundary for futility indicating that it will be unlikely to reach a statistical significant P < 0.05, even if we proceed to include trials randomising
patients until the required information size of 2040 is reached. The result indicates that a 17% relative risk reduction (or more) may be excluded,
even though the required information size has not been achieved, adjusting for sparse data and sequential testing on an accumulating number
of patients [10, 12]
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inclusion of the TTM Trial had a false positive result;
the null hypothesis was falsely rejected. Whether the
avoidance of fever is actually beneficial compared with
no cooling at all, remains to be tested, as the TTM trial
used cooling in both the intervention (target 33 °C) and
the control group (target 36 °C).

Interim-analyses during a randomised clinical trial with an
accumulating number of participants
If a trial is stopped after an interim-analysis because of a P
< 0.05 or the trial is continued if P ≥ 0.05, the real risk of
committing a type I error will increase to more than 0.05
with the number of interim-analyses. Introducing an
interim-analysis half-way in a randomised clinical trial,
using a stopping P-value equal to 0.05 in both the half-way
analysis and the final analysis, will increase the real max-
imal type I error risk to 8% [21, 22] (Table 1). If the proced-
ure of interim analysis is performed as four interim
analyses and one final analysis, with a constant level of stat-
istical significance of 5%, the real type I error risk will be
14% [21]. A simulation study using repetitive testing on an
accumulating number of participants in a single trial, has
shown that the P-value will inevitably become less than
0.05, despite the true intervention effect being zero [23].
A Bonferroni adjustment of the level of statistical signifi-

cance, being 5% divided with the number of tests on accu-
mulating data, assumes that all tests are conducted on
independent data. As the tests on the accumulating trial
population are not statistically independent, the
Bonferroni-adjusted levels of statistical significance are
most often too conservative [24]. The trial participants in
an early sequential analysis are also included in the subse-
quent later sequential analyses. Therefore, there is an in-
creasing overlap of trial participants included in the latest
sequential analysis compared to participants included in
the previous sequential analyses. The closer we come to the
a priori calculated sample size, the Bonferroni adjustment
becomes more and more unjustified (too conservative).

Historical development of sequential analyses in a single
trial with interim analyses
Methods to avoid an increased risk of a type I error due
to repetitive testing on an increasing number of observa-
tions was described by Abraham Wald in 1945 in Con-
tributions to the theory of statistical estimation and
testing hypotheses [25]. Wald proposed »the sequential
probability ratio test« in which the sequential testing
continues until a definitive wanted or unwanted effect
can be proved [26, 27]. According to this procedure, the
trial continues as long as the results of the sequential
tests fall within the so-called ‘zone of indifference’
amidst the two alternative hypotheses. This procedure,
used as a quality assurance measure of production dur-
ing the Second World War, has never achieved wide im-
plementation in randomised clinical trials; possibly
because the procedure is bound to continue infinitely as
long as the true intervention effect lies between the two
alternative hypotheses. Consequently, a decision to stop
the trial may never become possible [28].
After the Second World War, Peter Armitage sug-

gested more restrictive levels of statistical significance
than 5% to stop a trial before the a priori calculated
sample size was reached [21]. This procedure was ap-
plied in a number of interim analyses of large trials [29].
Furthermore, Stuart Pocock proposed a procedure in
which the overall risk of type I error is limited to 5% by
setting the statistical significance level to 0.05 divided by
k, using k-1 interim analyses and a final analysis [22].
This procedure is identical to the Bonferroni procedure
for interim analyses and a final analysis of a single trial
[30]. Researchers might find it peculiar to only declare
statistical significance if P < (0.05/k), despite the esti-
mated sample size has been reached and the required
criterion for statistical independence was not fulfilled.
In 1977, Richard Peto suggested the use of a maximal

type I error risk (α-spending) in each of four interim
analyses of 0.001 (1 promille) and 0.05 in the final ana-
lysis. As this would produce a summary additional type I
error risk of 0.004 to the final 0.05, the total type I error
risk would maximally be 5.4% [31] (Fig. 2). However, by
a modest increase of the a priori estimated sample size,
the summary maximal used type I error risk would re-
main within the usual 5%. As shown above, the rationale
of statistical independence required for this procedure
still lacks underlying reason as to why the trial partici-
pants in an early sequential analysis are also included in
the subsequent sequential analysis.
In 1979, Peter O’Brien and Thomas Fleming proposed

the group sequential design of trials with interim analyses,
using exponential decreasing levels of statistical
significance with the increasing number of patients in the
sequentially analysed groups (Fig. 2) [32]. The recommenda-
tions of the International Conference on Harmonization –

Table 1 Showing the level of cumulated type 1-error risk, if a
threshold of 5% is applied constantly at each sequential
significance testing, on an accumulating number of trial
participants

Number of statistical
significance tests

The cumulated type 1-error
risk in %

1 5%

2 8%

5 14%

20 25%

100 37%

Infinitely many 100%

The resulting type 1-error risk will be larger than the nominal 5%, if a
decisison is made to stop the inclusion of participants when P <0.05 and to
continue when P ≥0.05 [22, 24]
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Good Clinical Practice, the U.S.A. Food and Drug Admin-
istration, and the European Medicines Agency on the
design and analysis of randomised trials with interim ana-
lyses are mainly based on works from 1980s, primarily
prepared by Gordon Lan, Kuyung Man Kim, and David
DeMets (Fig. 2) [18, 33, 34]. Their works allow proper se-
quential testing at any time during the trial period, with-
out unduly increasing the overall risk of a preset nominal
type I error risk [34–36].

Methods
Avoiding the increased risk of random errors in
randomised clinical trials with interim analyses
It is and should be mandatory to perform interim ana-
lyses in large randomised clinical trials addressing
patient-centred outcomes. Even though the preplanned
sample size has not been reached, thousands of patients
might already have been randomised in a trial. Before we
allow the trial to continue, there is a need to secure that
no valid evidence showing superiority of one of the com-
pared interventions exists. If one of the interventions
(could also be placebo) with a sufficiently small uncer-
tainty is superior to the other one in an interim analysis,
it may be unethical to continue the trial. The explan-
ation for this is that the superiority can be so large that
it cannot be reversed even though we continue to

randomise patients until the total, originally preplanned
sample size is obtained. If the trial is continued despite
the superiority of the intervention in one of the inter-
vention groups, the patients in the other group will be
exposed to an inferior (harmful) intervention and the
trial must be stopped [37]. The use of interim analyses
in a single randomised trial has to be planned at the de-
sign stage of the trial and protocolised upfront as group
sequential analyses in the charter for interim analyses
[33]. For the conduct of group sequential analyses, a
sample size is calculated already at the design stage,
based on the anticipation of a minimal important and
realistic intervention effect of the primary outcome of
the trial [36, 38] (see Appendix).
The sample size calculation considers the level of statis-

tical significance at which we want to test a dichotomous
or a continuous outcome when the full sample size has
been reached. It is when the pre-calculated sample size
has been reached, and only then, a two-sided P-value of
less than 0.05, corresponding to a test-statistic Z-value of
±1.96, can be accepted as the statistical significance level
when α has been set to 5% in the sample size calculation.
Interim analyses, with the potential to stop a rando-

mised trial before the estimated (or fixed) sample size
has been reached due to a positive, negative, or lack of
the addressed effect, can be conducted for dichotomous
and continuous outcomes by calculating the cumulative
Zi-value at the i-th analysis (see Appendix). The calcu-
lated Zi-value is then related to the more restrictive level
of statistical significance, the critical Z-value being the
discrete group sequential boundary according to the ac-
tual accrued number of participants.
There is international consensus that the increase of

type I error risk with sequential testing, including the risk
of overestimating the intervention effect or underestimat-
ing the variance, at an interim analysis, should be out-
weighed by more restrictive levels of statistical
significance before the a priori estimated (fixed) sample
size has been reached [29, 31–37]. This is why ‘monitoring
boundaries’, with significance levels much smaller than a
nominal P-value of 0.05 (corresponding to much larger
|Z|-values than ±1.96) are applied as criteria to stop a trial
before achieving the estimated sample size [33].
Numerical integration is used to calculate the monitoring

boundaries, being the critical levels of statistical significance
for the Zi-values (and P-values) of the interim analyses [39].
Most often, the O’Brien-Fleming’s α-spending–function is
applied and converted to sequential boundaries (critical
values) for the Zi-values called Lan-DeMets’ sequential
monitoring boundaries (Fig. 2) [18, 19]. The α-spending
function allows only a small part of the total nominal type I
error risk to be used initially in the sequential analyses, and
with a modest increase of the estimated final (fixed) sample
size, there is a full 5% type I error risk available for the final

Fig. 2 Showing three different group sequential boundaries in a single
trial with interim analysis. The Z-value is the test statistic and a |Z| =
1.96 corresponds to P = 0.05; the higher the Z-value, the lower
the P-value. This is a historical overview of group sequential
boundaries for the cumulative Z-curve in relation to the number
of randomised participant in a single trial [19, 32, 33]
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analysis when the a priori estimated sample size is reached.
Lan-DeMets’ sequential boundaries allow testing whenever
you want during the trial [34, 35]. If we plan, e.g., a half-
way analysis in a randomised trial, we can monitor the P-
value at this time point according to Lan-DeMets’ moni-
toring boundaries and suggest that the trial is stopped if the
P-value is less than 0.003 which corresponds to a 99.7%
confidence interval excluding 1.00 for a relative risk or 0.00
for a mean difference [34–36]. Therefore, sequential ana-
lyses become a theoretical decision tool to decide whether
a trial should be stopped before the estimated (fixed)
sample size is achieved, considering the sparse data and the
repetitive testing during the trial [37].

Avoiding the increased risk of random errors in
cumulative meta-analyses with sparse data and multiple
meta-analytic up-dates
The majority of meta-analyses include less than the re-
quired number of randomised participants and trials in
order to become conclusive [1, 3, 5, 7]. There are two
reasons for this. First, most randomised trials are under-
powered [1, 3, 5, 7]. Second, the estimation of the
required information size in a random-effects meta-
analysis ought to incorporate the heterogeneity variance
(between trial variance) [1, 7, 11]. Only 22% of the meta-
analyses in The Cochrane Library have 80% power to
conclude whether there is an intervention effect of 30%
or not when the usual maximal risks of type I error (α)
of 5% and type II error (β) of 20% are applied [1]. This
lack of power is primarily caused by small trials and a
considerable heterogeneity variance between the esti-
mates of the intervention effect in the included trials [1].
Meta-analyses can be conducted with a fixed-effect

model or a random-effects-model [40, 41]. In the fixed-
effect model, we assume one true underlying effect in all
the included trials. In the random-effects model, we as-
sume that the true underlying effects vary from trial to
trial according to a normal or log normal distribution.
Often, the fixed-effect assumption is unrealistic as the
possible underlying effect may depend on, e.g., doses of
a pharmacological intervention, duration of the interven-
tions, timing of the outcome assessment, and differences
between the trial populations. These differences between
the included trials are called clinical heterogeneity. Due
to these factors and possibly random variation, the in-
cluded effect estimates often show considerable variation
defined as statistical heterogeneity and measured as large
inconsistency (I2) [42] and large diversity (D2) [11]. Con-
siderable statistical heterogeneity leads to increased
uncertainty, expressed as a wider confidence interval of
the intervention effect when the meta-analytic estimate is
calculated in a random-effects model. Early meta-analyses
conducted before the required information size and the
corresponding number of trials are achieved [43], often

wrongly show unrealistic large intervention effects as well
as statistical significance which cannot be reproduced
when the amount of required information is adequately
considered [44, 45]. The reliability in early meta-analyses
is lower compared to their updated counterparts years
later [2]; the estimated intervention effects, when further
trials are included in the meta-analysis update, become
considerably lower than previously estimated [2].
A large simulation study of random-effects meta-analyses

shows that there is a considerable risk of overestimating the
intervention effect when the required information size has
not been reached [6]. These results were based on the as-
sumption that the ‘true’ intervention effect was zero while
the frequencies of events in the control groups and the het-
erogeneity variance were assumed similar to those in large
cardiologic meta-analyses [6]. It has been shown empirically
that approximately 25% of cardiologic meta-analyses are in-
conclusive because of lack of power [3]. Turner and col-
leagues showed that the trials and the meta-analyses of
Cochrane systematic reviews have limited power [1]. In
Cochrane meta-analyses, each total number of analysed
participants provide only 22% of the meta-analyses with an
80% power to detect or refute a 30% relative risk reduction
(which is a large intervention effect) [1] (Fig. 3). Recently,
Imberger and colleaques confirmed these results in meta-
analyses of anaesthesiological interventions [46]. Accord-
ingly, four out of five meta-analyses did not have the statis-
tical power to address even substantial intervention effects.
The number of meta-analyses with sufficient power to
address smaller and clinically more plausible intervention
effects are, undoubtedly, even smaller.
If we test with a constant level of statistical signifi-

cance (e.g., 5%) on the way towards the required infor-
mation size, the risk of type I error is increased to more
than 5%. The problem for cumulative meta-analyses, due
to repeated updating and consecutive calculation of 95%
confidence intervals, with inclusion of results from new
randomised trials is, therefore, analogous to interim ana-
lyses of a single trial [8, 9]. Thus, we, as well as others,
recommend that the interpretation of meta-analyses in
systematic reviews is done alongside with a sequential
analysis, e.g., Trial Sequential Analysis (TSA) [46, 47].
The purpose of using TSA is to avoid the risk of type I
and type II errors due to sequential testing on a constant
statistical significance level and with inclusion of fewer
participants than the required number in order to detect or
reject specified effects [7, 10, 11]. It is possible to accommo-
date Gordon Lan and David DeMets’ group sequential ana-
lysis for interim analysis in a single randomised trial to the
updating of cumulative meta-analysis as it progresses with
the addition of trials. This is done with an appropriate con-
tinuous use of type I error risk and an α-spending function
of the allowed total nominal type I error risk, so that when
the required information size and the required number of
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trials have been reached and beyond, the risk is kept below
5%. The trial sequential monitoring boundaries generated
this way make it possible to test if significance is reached
and to adjust the confidence intervals every time new trials
are added to the meta-analysis. The latter is a prerequisite
for using sequential boundaries in cumulative meta-
analyses of trials with varying sample sizes [10, 12].
Besides applying the observed estimate of statistical

heterogeneity—the observed statistical diversity (D2)
[11, 41] in the most recently conducted meta-analysis—it
may be reasonable to apply an expected heterogeneity in

the calculation of the required information size, especially
when the observed heterogeneity is zero [48]. As it is un-
likely that diversity will stay zero when larger trials are
added, an expected heterogeneity may be used in a sensi-
tivity analysis (e.g., a diversity of 25% or the upper confi-
dence interval of the I2 (provided by the TSA program))
when the required information size is calculated [48, 49].
It may also be wise in a post hoc calculation of the re-
quired information size to apply the least likely interven-
tion effect, i.e., the confidence limit of the summary
estimate in the meta-analysis confidence interval closest
to the null effect. The latter is a conservative approach fa-
cilitating the evaluation of whether a meta-analysis may
show an effect of the least likely magnitude in a TSA. If a
TSA with such an approach shows a statistical significant
intervention effect, judged by the TSA-adjusted confi-
dence interval, there is a very high probability that the
intervention has an effect, provided that the included trials
are at low risk of bias. In contrast, there will only be very
low evidence of effect if the TSA-adjusted confidence
interval does not exclude the null effect for an interven-
tion effect of a magnitude indicated by the point estimate.

Results
False positive meta-analyses
It is necessary to assume or address a specific magnitude
of the intervention effect, different from zero, in order to
calculate the sample size in a single trial. Therefore, when
a sample size is estimated, we relate not only to the null
hypothesis but also to a specific alternative hypothesis.
The alternative hypothesis is the assumption or the antici-
pation of a specific magnitude of the intervention effect
different from zero. Most often random-effects meta-
analysis will be the preferred appropriate method to esti-
mate the precision weighted average effect as it does not
ignore the statistical heterogeneity variance. If statistical
heterogeneity is anticipated, the information size in the
conclusive meta-analysis ought to be an upward adjusted
sample size of a corresponding adequately powered single
trial. The upward adjustment is done with the variance ex-
pansion shifting from a ‘fixed-effect’ model to a ‘random-
effects’ model, see Appendix [11].
The described example from cooling of patients after

out of hospital cardiac arrest is far from being unique
(Fig. 1). Among meta-analyses of interventions for neo-
natal patients, there were approximately 25% to 30%
false positive results [5, 50]. In 2009, we showed empir-
ically that the use of Lan-DeMets’ trial sequential moni-
toring boundaries eliminated 25% of the false positive
traditional interim-meta-analyses. This analysis included
33 final meta-analyses with sufficient information size to
detect or reject a 15% relative risk reduction [44]. In
2013, we showed that 17% of cardiovascular meta-
analyses with P < 0.05 were most likely false positive [3].

Fig. 3 Showing trial sequential monitoring boundaries for benefit and
harm in a cumulative meta-analysis. The Z-value is the test statistic and
|Z| = 1.96 corresponds to P = 0.05; the higher Z-values, the lower the
P-values. a Shows how an early statistical significance no longer is
present in a cumulative meta-analysis when the required information
size has been reached. b Shows how an early lack of statistical signifi-
cance emerges later when the requiered information size is achieved.
c Shows how an early statistical significance can be avoided by adjust-
ing the level of statistical significance. The etched upper curve is the
group sequential boundary adjusting the level of statistical significance
for multiple testing and sparse data. Z-value is shown on the y-axis and
on the x-axis IS is the required information size [10]
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In 2015, we showed that less than 12% of meta-analyses
of anaesthesiological interventions had 80% power to
show a 20% relative risk reduction [46].
There may be other important reasons for a traditional

meta-analysis to yield a false positive result than only the
increased risk of random errors. A risk of systematic error
(bias) in the included trials is a frequent cause of overesti-
mation of benefit and underestimation of harm – sequen-
tial meta-analyses do not in any way solve problems with
bias [51–58]. Therefore, it is recommended that every sin-
gle trial included in a systematic review with meta-analysis
be evaluated for risks of bias. This evaluation should
encompass the following domains: generation of the allo-
cation sequence, allocation concealment, blinding of
patients and caregivers, blinding of outcome assessment,
report on attrition during the trial, report on outcomes,
and industry funding. Other types of bias may also need
to be considered [51–58].

False negative meta-analyses
Lack of a statistical significant intervention effect in a
traditional meta-analysis is not necessarily evidence of
no effect of the intervention. »Absence of evidence is
not evidence of absence of effect« [59]. Nevertheless, se-
quential meta-analyses with the TSA software may show
that the meta-analysis has sufficient statistical power to
reject an intervention effect of a specific magnitude even
though the estimated required information size has not
yet been reached (Fig. 4).
This can be done by calculating the non-superior and

non-inferior trial sequential monitoring boundaries, the
socalled ‘futility boundaries’. Futility boundaries indicate
when the assumed effect could be considered unachiev-
able. Futility-boundaries are calculated using a power
function analogous to the α-spending function for
constructing superiority- and inferiority-boundaries with
application of numerical integration [36]. The example
with cooling of comatose patients after cardiac arrest
shows a situation where the assumed intervention effect
of 17% relative risk reduction can be rejected because the
Z-curve crosses the futility-boundary (Fig. 1b). However,
this is not always what happens. We found that in 25 of
56 (45%) published cardiovascular systematic reviews in
The Cochrane Library, the actual accrued information size
failed to reach what was required to refute a 25% relative
risk reduction [3]. Only 12 of these reviews (48%) were
recognised as inconclusive by the authors. Of the 33
meta-analyses not showing statistical significance, only 12
(36%) were truly negative in the sense that they were able
to reject a 25% relative risk reduction [3]. This illustrates
that the statistical power is also low in many cardiovascu-
lar meta-analyses, and false conclusions are imminent.
Within other medical specialities, the problems are likely
to be even bigger as trials and meta-analyses usually

include less patients. Nevertheless, sequential meta-
analyses with calculated futility-boundaries may, in some
instances, contribute to adequately declare the a priori an-
ticipated intervention effect to be unachievable, though
the required information size was not reached [10].
Analogous to the false positive meta-analyses, a meta-

analysis may result in a false negative result due to bias.
Bias is a frequent cause for underestimation of harmful
intervention effects [51–57], and therefore, the prelimin-
ary defined bias risk domains should also be evaluated
for all included trials when it comes to serious and non-
serious adverse events [51–58].

Discussion
We have explained and shown how the use of TSA may
assist the meta-analyst in controlling risks of type I and
type II errors when conducting meta-analyses. The use
of TSA has now increasingly been advocated by authors,
both inside and outside The Cochrane Collaboration
[47, 60, 61]. However, the use of TSA is not easy, may
be misused, and has been critisised [62].

Fig. 4 Showing trial sequential monitoring boundaries for benefit and
futility in cumulative meta-analysis. The Z-value is the test statistic and
|Z| = 1.96 corresponds to P = 0.05; the higher Z-values, the lower
P-values. a Shows how trial sequential monitoring of a cumulative
meta-analysis, before the requiered information size (IS) is achieved,
makes it likely that the assumed effect is in fact absent when the
Z-curve surpasses the futility-boundary (etched curve). b Shows how
trial sequential monitoring of a cumulative meta-analysis, before the
required information size (RIS) is achieved, makes it likely that the
assumed effect is in fact true when the Z-curve surpasses the trial
sequential monitoring boundary for benefit (etched curve). Lan-
DeMets’ α-spending-function has been applied for the construction of
the trial sequential monitoring boundaries, the critical Z-values [10]
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If TSA is designed and conducted after data were col-
lected, there is a danger that the analysis becomes data
driven and that it may not be sufficiently stringent to ad-
dress a predefined alternative hypothesis [63–65]. How-
ever, using data-driven hypotheses and analyses is a
critique that could potentially be directed against all
meta-analyses. This is why, for each TSA, the anticipated
intervention effect, the anticipated between trial hetero-
geneity, and the proportion of the outcome in the con-
trol group, should be part of a peer reviewed protocol,
published prior to the conduct of the systematic review
and the TSA [49, 64, 65]. These considerations should
also impact the choice of the meta-analytic model, e.g.,
whether to give most credibility to the fixed-effect or the
random-effects model and how to calculate the required
information size [11, 65].
TSA has been criticised for transferring a method

from a decision theoretical universe in a single rando-
mised clinical trial into a universe where the result does
not directly impact the subsequent decisions [63–66].
The postulate seems to be that no matter that a TSA
shows benefit, harm, or lack of a relevant effect, it will
not impact any part of the already finalised trials, and
possibly, not decisions to stop or continue ongoing tri-
als, or to initiate trials. This point of view seems to un-
duly emphasise the difference between the consequences
of an interim-analysis in a single trial and the conse-
quences of a sequential meta-analysis of several trials.
First, the systematic review is placed at the top of the
generally recognised hierarchy of evidence, meaning that
the systematic review is considered the most likely reli-
able source of evidence, implicating whether an inter-
vention should be implemented in clinical practice or
further trials should be launched [52, 53]. Interventions
are often recommended in clinical guidelines and imple-
mented in clinical practice when a meta-analysis shows
statistical significance on the traditional naïve level (P <
0.05) [16, 18, 67–69]. Furthermore, the chance that a
meta-analysis is updated in The Cochrane Library is ap-
parently 57% higher when P ≥ 0.05 than when P < 0.05
[4, 45]. This indicates that meta-analyses with P < 0.05
contribute to the decision to stop doing further trials or
to decide if meta-analyses should be updated or not.
Critics of sequential meta-analysis have stressed that

the method emphasises too heavily the result of the stat-
istical significance test instead of the 95% confidence
interval [70]. However, the fundamental problem is not
whether the result is presented as a P-value or as a con-
fidence interval, but it is foremost because a (1-α)% con-
fidence interval is based upon the choice of the
maximally allowed type I error risk (α). If we use naïve
unadjusted confidence intervals when the required infor-
mation size is still not reached, we will be led to make
hasty and false declarations of statistical significant

effects, likely to be refuted if further trials are added.
With TSA we adjust the confidence interval for the in-
complete meta-analytic information size and for multiple
testing [4]. It has been claimed that a traditional 95%
confidence interval is sufficient to evaluate whether the
intervention works or not [70], but the traditional 95%
confidence interval exclusively relates to the null hy-
pothesis and not to a relevant alternative hypothesis [68,
71]. Thereby, the supporters of the traditional confi-
dence interval forget that the rejection of the null hy-
pothesis (the conventional 95% confidence interval
excluding the null effect), does not in itself lead to the
acceptance of a relevant alternative hypothesis [71]. Pre-
mature rejection of the null hypothesis, in the case of
sparse data, may be dismissed if these data become suffi-
cient to conclude on a specific alternative intervention
effect that is different from the null hypothesis.
A traditional unadjusted 95% confidence interval ex-

cluding the null effect and accepting an effect indicated
by, e.g., the point estimate, is sufficient as a criterion for
statistical significance only when the required informa-
tion size has been reached. If the number of randomised
participants in the meta-analysed trials is less than the
required, the confidence interval needs to be adjusted
[34, 36]. By exclusively applying a 95% confidence inter-
val in a meta-analysis, one does not automatically
account for the lack of required power in the meta-
analysis to conclude on an effect size indicated by, e.g.,
the point estimate [71]. Therefore, in relation to a rele-
vant and realistic alternative hypothesis, the traditional
unadjusted confidence interval will represent a too nar-
row confidence interval which by chance does not in-
clude the null effect, and accordingly, the observed
effect of the intervention may be misleading [71, 72].
The credibility of the traditional confidence interval re-
lies on the fact that the required information size for a
specific effect has been achieved, and thereby, the ability
to conclude on an alternative hypothesis [59, 63–65].
TSA has also been criticised for being a too conser-

vative approach as one may decide to use a too scep-
tical a priori intervention effect and use the total
variance in the random-effects meta-analysis to calcu-
late the required information size. The use of an a
priori intervention effect does not consider the inter-
vention effect estimated from the data already ac-
crued; however, applying such an approach may in
fact lead to even larger required information sizes
[73]. Moreover, to think of the total variance in the
random-effects model as a result of random variation
alone, could be seen as a ‘worst-case scenario’ of risk
of random error [73]. However, we may rarely know
when a variation is caused by systematic differences
or by random variations [52]. Therefore, it seems
mandatory to perform an analysis, assuming that all
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the variance encountered in the random-effects meta-
analysis is arising from ‘play of chance’ [46, 47].
Elena Kulinskaya and John Wood [43] argued, in their

important article from 2013, that when estimating the
information size in random-effects model meta-analyses,
it is too simplistic to just increase the required informa-
tion size with the variance increase, going from a fixed-
effect to a random-effects model. Kulinskaya and Wood
[43] persuasively showed that the necessary number of
future trials to be included should be given with a lower
limit (i.e., minimal number), regardless of the sample
sizes of the trials, before the power of the random-
effects model meta-analysis becomes sufficient to detect
or reject a prespecified clinically relevant intervention ef-
fect. Kulinskaya and Wood also showed that increasing
the number of future trials in a random-effects model
meta-analysis might decrease the required information
size estimated for additional future trials to render suffi-
cient power of the random-effects meta-analysis [43].
We welcome the proposals for modifying the plan on
number of subsequently included trials and their sample
size. These considerations are in line with the findings of
Joanna in’t Hout et al. [74], Alexander Sutton et al. [73],
Jeffrey Valentine et al. [75], and Michael Borenstein et al.
[76]. However, we would still argue that the difference
between the required information size and the accrued
information, may contribute importantly to the estima-
tion of the necessary sample size in future trials, espe-
cially if coupled with the considerations proposed by
Kulinskaya and Wood [43]. If we use the weighted esti-
mate of the variance in previous trials as being the best
estimate of the variance for the future trials, we may
need 50% (Appendix) more trials than the minimal
number required to cover the information gap of the re-
quired minus the acquired information size (RIS-AIS)
(Appendix). Following an example given by Kulinskaya
and Wood [43], we will be able to cover the information
gap suggested by RIS-AIS with 12 trials instead of the
minimal required number of eight trials. As outlined by
Kulinskaya and Wood, we would be able to further de-
crease the total number of future randomised patients
by increasing the number of future planned trials even
more. However, this will be at the expense of dramatic-
ally decreasing the power of each new trial to detect the
difference, indicated so far by the point estimate of the
meta-analysis (or even the minimal important differ-
ence). Certainly, we could choose to increase the num-
ber of future trials with only one or two. However, the
corresponding information size will still be huge. The
minimal required number of trials calculated as the first
integer greater than c ⋅ τ2 (where c is a figure relating to
the information already gained and τ2 is the between
trial variance, Appendix), and the corresponding meta-
analytic information size, may be optimal because it

provides each of the new, equally sized, trials with the
same power as the ‘planned’ random-effects meta-
analysis aimed to detect or reject a similar intervention
effect. However, for most interventions, these huge trials
will be unrealistically large to conduct. Alternatively, in-
creasing the number of trials corresponding to a re-
quired extra information size of RIS-AIS will still provide
such trials with a power of 80% to detect or reject an
intervention effect of 2.5 times the effect indicated in
the meta-analysis. Increasing the number of trials even
further than the number corresponding to RIS-AIS will
decrease the power of these trials with approximately
10% per additional trial (or increase the detectable alter-
native to three times or more the effect indicated in the
meta-analysis). Such trials will subsequently be substan-
tially underpowered to detect or reject even much larger
intervention effects than the realistic difference, or even
the minimal important difference. This will obviously
destroy the integrity of such small future trials and they
will generally, and rightfully so, be disregarded as heavily
influenced by random error (‘play of chance’). Therefore,
the RIS and thereby the RIS-AIS seem to be a fair trade-
off between the number of required additional rando-
mised participants and the number of required
additional trials. In two examples given by Kulinskaya
and Wood, the number of additional randomised partici-
pants is reduced from 4700 to 720 and from 11,200,000
to 300,000 when using RIS-AIS at the expense of four
more trials than the minimal number of trials required.
However, we agree, that a reasonable strategy for resolv-
ing the question of the presence or absence of a specific
intervention effect with an adequately powered random-
effects model may include a first trial with a sample size
equal to the sample size indicated by formula 1 in the
Appendix. This is a sample size corresponding to the
minimal number of required trials. Such a trial may very
well be substantially larger than the total acquired infor-
mation size in the meta-analysis conducted before the
trial. When the result from such a trial becomes avail-
able, the updated cumulative meta-analysis using the a
priori anticipated intervention effect and a new estimate
of the between trial variance may be used in a fixed-
effect or a random-effects model to evaluate how far we
will be from a conclusion of whether the intervention ef-
fect exists or not. The fixed-effect model may then turn
out to be the most appropriate model to evaluate the
pooled intervention effect when one or a few trials heav-
ily dominate the entire accumulated evidence [77].
Nevertheless, we must be aware that including new tri-

als in a cumulative meta-analysis may change the esti-
mate of the ‘between trials variance’ as well as the
proportion of events in the control group which are both
essential for estimating the required information size
and the corresponding number of required future trials.
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If diversity and the proportion of events in the control
group change substantially, the magnitude of the re-
quired information size and the corresponding number
of required future trials may change accordingly. This is
the phenomenon of the ‘moving target’ which critics
hold against TSA. However, a moving target seems bet-
ter than having no target at all. Recently, we docu-
mented that in prospective application of TSA in very
large cumulative meta-analyses, TSA prevented false
positive conclusions in 13 out of 14 meta-analyses when
RIS was not reached [45].

Trial Sequential Analysis: a position between frequentist
and Bayesian thinking
TSA of meta-analysis like the sequential analysis of a
single randomised trial, originates from frequentist sta-
tistics [29]. The frequentist way of thinking was initially
based on testing of the null hypothesis. This applies to
both the P-value and its relation to an a priori accepted
maximal type I error risk (α) and the possibility of in-
cluding a null effect in the corresponding (1-α)% confi-
dence interval [29]. The anticipation of an intervention
effect of a specific magnitude, the alternative hypothesis,
and subsequently the calculation of a required informa-
tion size enabling the conclusion whether such an effect
could be accepted or rejected, is, however, intimately re-
lated to the Bayesian prior.
TSA contains an element of Bayesian thinking by re-

lating the result of a meta-analysis to the a priori point
estimate of the intervention effect addressed in the ana-
lysis [77]. Bayes’ factor (BF) for a trial result is the ratio
between the probability that the trial data originates
under the null hypothesis, and the probability that the
trial data originates under the alternative hypothesis or
even several alternative hypotheses [72, 78, 79]. The pos-
terior odds ratio for the estimate of the intervention ef-
fect after a new trial is added is calculated given the
prior odds ratio for the intervention effect before the
trial as: posterior odds ratio = BF x prior odds ratio [79].
In a Bayesian analysis, the prior takes form of an antici-
pated probability distribution of one or more possible al-
ternative hypotheses or intervention effects which
multiplied with the likelihood of the trial, results in a
posterior distribution [79].
A methodological position between the frequentist

and the Bayesian thinking can be perceived both in se-
quential interim-analyses of a single trial and in TSA of
several trials [29]. Both have a decisive anticipation of a
realistic intervention effect, although a full Bayesian ana-
lysis should incorporate multiple prior distributions with
different anticipated distributions of intervention effects:
e.g., a sceptical, a realistic, and an optimistic prior [79].
The TSA prioritise one or a few specific alternative hy-
potheses, specified by point estimates of the anticipated

effect in the calculation of the required information size
just as in the sample size estimation of a single trial [11].
The incentive to use sequential analyses arise because

the true effect is not known and the observed interven-
tion effect may be larger than the effect addressed in the
sample size estimation of a single trial as well as in the
estimation of the required information size for a meta-
analysis of several trials. The need to discover an early,
but greater effect than the one anticipated in the sample
or information size calculation, or to discard it, thereby
originates. If the intervention effect, in relation to its
variance, happens to be much larger during the trial or
the cumulative meta-analysis, this will be discovered
through the breakthrough of the sequential boundary.
However, this may also be problematic as too small sam-
ple sizes (in relation to the true effect), as mentioned, in-
crease the risk of overestimation of the intervention
effect or the risk of underestimation of the variance. In
other words, due to a factitious too small sample size,
we may erroneously confirm an unrealistic large antici-
pated intervention effect due to the play of chance.
There seems to be an ancestry between the sceptical

prior in a Bayesian analysis and the use of a realistic
intervention effect in a sequential analysis when the
sample size in a single trial or the information size in a
meta-analysis should be calculated [77, 78]. The smaller
the effect, the greater the demand for quantity of infor-
mation, and the sequential statistical significance bound-
aries become more restrictive. In other words, it
becomes more difficult to declare an intervention effect-
ive or ineffective, in case the required information size is
not achieved.
Christopher Jennison and Bruce Turnbull, however,

have shown that on average, when a small, but realistic
and important intervention effect is anticipated, a group
sequential design requires fewer patients than an adap-
tive design, e.g., re-estimating the (fixed) sample size
after the first interim analysis [80]. The group sequential
design seems more efficient than the adaptive design. In
line with mathematical theory [72], simulation studies
[6], and empirical considerations [44, 45, 81, 82], there is
evidence that small trials and small meta-analyses by
chance tend to overestimate the intervention effect or
underestimate the variance. Early indicated large inter-
vention effects are often contradicted in later published
large trials or large meta-analyses [6, 45, 81, 82]. The
reason might be that statistical confidence intervals and
significance tests, relating exclusively to the null hypoth-
esis, ignore the necessity of a sufficiently large number
of observations to assess realistic or minimally important
intervention effects. The early statistical significance, at
the 5% level, may be a result of an early overestimation
of the intervention effect or an underestimation of the
variance, or both, when the required information size for
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a realistic effect is not achieved. In general, it is easier to
reject the null hypothesis than to reject a small, but realis-
tic and still important, alternative hypothesis [64]. The
null hypothesis can never be proven, and in practice, this
means that it can never be completely discarded, as this
would require an infinitely large number of observations.
The reason for early spurious significant findings

may be quite simple, although not self-evident. Even
adequate randomisation in a small trial lacks ability
to ensure the balance between all the involved, known
or unknown, prognostic factors in the intervention
groups [81]. When we find a statistically significant
intervention effect in a small trial or in a small meta-
analysis, it is often due to insufficient balance of im-
portant prognostic factors, known or unknown,
between the intervention groups. Therefore, it is not
necessarily intervention effects that we observe, but
rather an uneven distribution of important prognostic
factors between groups. In addition to the described
risks of random error, the overall risk of bias which
includes the risk of publication bias makes it under-
standable why published trials and meta-analyses
often result in unreliable estimates of intervention
effects [2, 83].
The power of frequentist inference in a single trial

and in a meta-analysis of several trials lies in two
basic assumptions. First, the only decisive difference
between the intervention groups during the trial is
the difference between the interventions. We con-
clude that ‘despite everything else’, the measured dif-
ference in the outcome is due to different properties
of the interventions because everything else seems
equal in the groups. In a small trial and a small
meta-analysis, the assumption, that all other risk fac-
tors are equally distributed in the two intervention
groups, may not be fulfilled as described above, even
though adequate bias control has been exercised. Sec-
ond, the power of frequentist inference depends on
the correctness of applying the ‘reverse law of impli-
cation’ from mathematical logic (see Appendix): that a
sufficiently small P-value, calculated as the probability
that we got a specific trial result when the null hy-
pothesis is in fact true, leads us to discard the null
hypothesis itself. This assumption, which never totally
excludes the possibility that the result of a trial may
agree with or be a result of the null hypothesis, de-
mands a specific a priori chosen threshold for statis-
tical significance. That is, a sufficiently small P-value
leads us to regard the trial result as virtually impos-
sible under the null hypothesis, and, therefore, we re-
gard the opposite to be true and discard the null
hypothesis. This automatically raises the question:
how small a P-value should be before we can apply
the ‘reverse law of implication’. Or alternatively

expressed, does a P-value less than an a priori chosen
threshold of statistical significance reject the null hypoth-
esis? Ronald A. Fisher, already in 1956, warned against
using a statistical significance level of 5% in all situations
[84]. Nevertheless, ever since, it seems to have broadly
been implemented as a criterion for conclusion in medical
research [83], and this is likely wrong [85].
Sequential interim-analyses in a single trial and TSA

of meta-analyses of several trials deal systematically and
rationally with the misunderstood application of a con-
stant level of statistical significance (P < 0.05), unrelated
to the accrued fraction of the pre-calculated required
(fixed) sample or information size and number of trials.

Conclusions
Most systematic reviews with meta-analyses, including
Cochrane systematic reviews, do not have sufficient stat-
istical power to detect or reject even large intervention
effects. Meta-analyses are updated continuously, and,
therefore, ought to be regarded as interim-analyses on
the way towards a required information size. The evalu-
ation of meta-analyses ought to relate the total number
of randomised participants to the required meta-analytic
information size and the corresponding number of re-
quired trials considering statistical diversity. When the
number of participants in a meta-analysis is less than
the required, based on a realistic and minimally import-
ant intervention effect, the constant application of a
traditional naïve 95% confidence interval or a naïve 5%
statistical significance threshold will lead to too many
false positive and false negative conclusions. The Lan-
DeMets’ sequential monitoring boundaries in TSA offer
adjusted, expanded confidence intervals and adjusted,
restrictive thresholds for statistical significance when the
diversity-adjusted required information size and the re-
quired number of trials for the meta-analysis has not
been reached. A Bayesian meta-analysis, using prior dis-
tributions for both the intervention effect and the statis-
tical heterogeneity, may even be more reliable for
deciding whether an intervention effect is present or
not. However, the Bayesian meta-analysis also poses dif-
ficulties with interpretation. Until easy-to-use software
programs for full Bayesian meta-analysis become access-
ible, TSA represents a better assumption-transparent
analysis than the use of traditional meta-analysis with
unadjusted confidence intervals and unadjusted thresh-
olds for statistical significance.

Appendix
Sample size in a single randomised trial
Dichotomous outcome
When the intervention and the control group are equal-
sized groups, the sample size (SS) is calculated as [38]:
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SS ¼ 4⋅ðZα=2 þ ZβÞ2⋅ v
θ2

; with v ¼ P⋅ð1−PÞ og P

¼ ðPE þ PCÞ=2

In this formula, PE and PC are the frequencies of the
outcome in the experimental group and the control group,
ϴ is the intervention effect that the trial wants to address
with μ = PC– PE, α and β are the maximally allowed type I
and type II error risks, and ν is the variance of the out-
come difference between the two groups.
The test statistic Zi at the i-th interim analysis for the

dichotomous outcome measure:

Zi
¼ PEi−PCiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var PEi−PCið Þp

with PEi − PCi being the estimate of the intervention ef-
fect at the i-th interim analysis, and Var(PEi − PCi) is the
variance of the estimate [36].

Continuous outcome
If the anticipated difference between the means in the
control group and the experimental group is assumed
to be X1–X2 with the standard deviation SD, α and β
being the type I and type II error risks, the SS is
calculated as [38]:

SS ¼ 4⋅ðZ1−α=2 þ ZβÞ2⋅ ðX1�X2Þ2
SD2

The cumulative Zi-value at the i-th interim analysis is
calculated as:

Zi ¼ X1�X2

SDðX1�X2Þ
X1i– X2i being the estimate of the intervention effect

at the i-th interim analysis, and SD(X1i –X2i) its standard
deviation [36].

The required information size in a meta-analysis
The required information size (RIS) in a meta-analysis of
a dichotomous outcome can be calculated as (see the
definition of μ and ν above) [11]:

RIS ¼ 1

1−D2 �4� Z1−α=2 þ Zβ

� �2 � v
θ2

Therefore, RIS emerges as the sample size estimated
for a single trial with corresponding power to detect
or reject an anticipated intervention effect μ, multi-
plied with a factor adjusting for the final expected or
the present diversity (D2) in the meta-analysis. PC
can be estimated as the pooled unweighted propor-
tion of outcomes in the control groups in the in-
cluded trials [11, 39–41].

Alternatively, but with equal result, the RIS for a
random-effects model can be calculated as:

RIS ¼ 4� Z1−α=2 þ Zβ

� �2 �Vrandom
θ2

Where νrandom is the variance in the random-effects
model. This is the model variance based calculation of
RIS.
When the required information size has been esti-

mated, the meta-analysis can be analysed in relation to
the trial sequential monitoring boundaries, constructed
as per Lan-DeMets’ critical monitoring boundaries,
analogous to the sequential analysis of a single rando-
mised trial [17, 42]. Similar to the Zi-value for the i-th
cumulative meta-analysis, we use here the ratio between
the logarithm of the Mantel-Haenszels weighted relative
risik (RRiMH) and its standard error SE[ln(RRiMH)] in a
random-effects model, e.g., as suggested by DerSimonian
and Laird [44, 45]:

Zi ¼ Ln RRiMHð Þ
SE Ln RRiMHð Þ½ �

The required information size and the number of
required extra trials in a meta-analysis
As per Elena Kulinskaya and John Wood [43], using the
same mathematical notation, the sample size of future K'

equally sized trials with equally sized (ni) intervention
and control groups is:

2�ni ¼ 4�σ2
K

0

c −τ
2
; ð1Þ

where σ2 is the variance in these future trials and τ2 the
between trial variance in the first K trials, and c is a con-
stant when the results from previous trials in the
random-effects meta-analysis are known being:

c ¼ Z1−α=2 þ Z1−β
� �

=θ
� �2− V −1

R Kð Þ;

VR(K)
− 1 is the reciprocal of the variance in the random-

effects model of the pooled estimate from the first K tri-
als which is equal to SDR(K)

− 2 in a meta-analysis of a con-
tinuous outcome. In the examples, given by Kulinskaya
and Wood, σ2 is determined by the simple unweighted
average of the within trial variances in the first K trials
[43]. However, as it may be more appropriate to use an
estimate of the variance in the future trials which is the
weighted average of the pooled squared standard devia-
tions from the fixed-effect model, SDF(K)

2 , of the first K
trials for continuous outcomes, we propose:

σ2 ¼ SD2
F Kð Þ ¼

N ⋅SE2
F Kð Þ
4

;
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where N is the total number of participants in the meta-
analysis of the first K trials and SEF(K)

2 is the squared
pooled standard error in the fixed-effect model. If N’ is
the sum of sample sizes from the equally sized K' future
trials, the formula (1) for the sample size in future trials
can be rewritten to:

N
0

�
K
0 ¼

4⋅σ2

K
0
c −τ2

¼ 4⋅σ2⋅c

K
0
−c⋅τ2

and thereby N
0 ¼ 4⋅σ2⋅c

1− c⋅τ2

K
0

;

from which it is evident that K’ has to be an integer
greater than c ⋅ τ2 (the minimum required number of
extra trials) and that N’ converges to 4 · σ2 ⋅ c when K’
approaches the infinite as:

Lim
K
0
→∞

4⋅σ2⋅c

1− c⋅τ2

K
0

0
@

1
A ¼ 4⋅σ2⋅c ¼ 4⋅SD2

FðKÞ⋅c;

meaning that N’ can never be less than 4 · σ2 · c, despite
the number of future trials being carried out. Because
the random-effects model variance of the first K trials is
always greater than the fixed-effect model variance of
the K first trials, we have:

SD2
R Kð Þ≥ SD2

F Kð Þ

4⋅SD2
R Kð Þ⋅c > 4⋅SD2

F Kð Þ ⋅c ;

and as: c = ([Z1 − α/2 + Z1 − β]/θ)
2 − SDR(K)

− 2 , we get

4⋅SDR Kð Þ2⋅ Z1−α=2 þ Z1−β
� �

=θ
� �2− SD−2

R Kð Þ
n o

> 4⋅SD2
F Kð Þ⋅c ¼ 4�σ2⋅c

ð2Þ
If RIS is defined as the required information size for a

meta-analysis to have as many participants as an equally
powered trial to address a hypothesis of the same inter-
vention effect. with the random-effects model variance
experienced [11] so far, we will have:

RIS ¼ 4⋅SD2
R Kð Þ⋅ Z1−α=2 þ Z1−β

� �
=θ

� �2
;

4⋅SD2
R Kð Þ⋅ Z1−α=2 þ Z1−β

� �
=θ

� �2−SD−2
R Kð Þ

n o

¼ 4⋅SD2
R Kð Þ⋅ Z1−α=2 þ Z1−β

� �
=θ

� �2−4 ¼ RIS‐4;

and thereby the equation (2) can be rewritten as:

RIS > RIS− 4 > 4⋅SD2
F Kð Þ⋅c ¼ 4�σ2⋅c ;

which shows that RIS is always greater than the mini-
mum required extra participants in the final meta-
analysis. If VR(K)

− 1 = SDR(K)
− 2 is small (close to zero when

abundant information has already been collected), the
statement that RIS > 4 · σ2 · c is merely the trivial that the

required information size will be greater than the sample
size in one future trial with an anticipated variance of σ2.
Two scenarios now cover all possible situations:

A) If: RIS −AIS > 4 SDF(K)
2 c, then we will be able

to calculate the corresponding required number
(K’RIS-AIS) of future trials to cover the information
gap indicated by the RIS-AIS participants according
to formula (1), having:

K ’RIS−AIS ¼ c⋅τ2

1− 4⋅σ2⋅c
RIS−AISð Þ

B) If RIS −AIS ≤ 4 SDF(K)
2 c, then the situation is

that the extra required information size is less than
what is required in one extra trial. The question of
whether there is an intervention effect greater or
equal to θ may be answered if RIS has been achieved
in the minimal number of required trials.

Moreover, if for example:

RIS−AIS > 3⋅4⋅σ2⋅c

with RIS −AIS = 3 ⋅ 4 ⋅ σ2 ⋅ c in the formula for K ’ RIS −AIS,
then this leads to:

K ’12⋅σ2⋅c ¼ c⋅τ2

1− 4⋅σ2⋅c
3⋅4⋅σ2⋅c

and we have:

K ’RIS−AIS ¼ 3⋅c⋅τ2

2
¼ 1:5⋅c⋅τ2

meaning that the extra number of required trials, K ’

RIS − AIS, for the random-effects meta-analysis to be
adequately powered using RIS-AIS, would be 50%
higher than the minimal required number of trials. In
contrast, the minimal required number of trials, c ⋅ τ2,
demands a very large total information size.

The law of reverse implication in mathematical logic
If A and B are statements that can be determined to be
true or false, it follows from mathematical logic that the
statement: (from A follows B), is equivalent to the state-
ment: (from non-B follows non-A). That is: the state-
ment (»from the null hypothesis being true follows that
the result of the trial is unlikely«), is equivalent with the
statement: (»from the trial result being likely follows that
the null hypothesis is false«). If the probability that the
trial result has emerged from a true null hypothesis is
regarded as »unlikely«, when the P-value is lower than a
certain level of significance, the null hypothesis can be
rejected.
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The statistical concepts used in this article
The null hypothesis (H0) is the hypothesis that the mean
or the occurence of a certain outcome is precisely the
same in the groups compared.
The alternative hypothesis (HA) is the assumed magni-

tude of the difference between the means or the occur-
ence of a certain outcome in the groups compared.
The P-value is the probability (P) that a specific data-

set (D), or something even more extreme, would appear
if the null hypothesis is true, that is: P = P(D|H0) which
shold be read as: the P-value is equal to the probability
of getting the dataset, given the null hypothesis is true.
The P-value is intuitively difficult to understand and is

often wrongly interpreted. In Bayesian statistic, one can
obtain results much easier to understand, and the clin-
ical significance of a result from a trial or a meta-
analysis may, therefore, be easier to achieve. One can
present, e.g., the »reverse« probability, being how large
is the probability that the null hypothesis is true given a
specific dataset (D) from a trial or a meta-analysis:
P(H0|D). Furthermore, how large is the probability that
an alternative hypothesis is true given a specific dataset
from a trial or a meta-analysis can be expressed as the
‘alternative’ P-value: P(HA|D).
Bayes factor (BF) is the ratio between the P-value and

the alternative P-value: BF = P(D|H0)/P(D|HA).
Due to Bayes theorem, we have:

PðH0

��DÞ ¼ PðD��H0Þ⋅PðH0Þ=PðDÞ:
A cumulative meta-analysis is a meta-analysis where

the result data from the last conducted trial are added to
the result data from all the previous trials and tested on
the accumulated number of participants.
The Z-value is the general name for the test statistics,

e.g., the t-value in a student’s t-test or a χ2-test statistic
in a χ2-test or the Mantel-Haenszels test statistic. When
the theoretical distribution of the test statistic is known,
the Z-value can be converted into a P-value.
A cumulative Zi-value is the test statistic calculated

after addition of the data from the i-th trial.

Abbreviations
ϴ: Intervention effect; α: Maximally allowed type 1 error; AIS: Acquired
information size in a meta-analysis; β: Maximally allowed type 2 error;
BF: Bayes factor; D2: Statistical diversity (D-square); H0: Null hypothesis;
HA: Alternative hypothesis; I2: Statistical inconsistency (I-square); Ln: Natural
logarithm; P(D|H0): Probability of getting dataset if the null hypothesis is true;
RIS: Required information size in a meta-analysis; RR: Relative risk;
SD: Standard deviation; SE: Standard error; SS: Sample size; TSA: Trial
sequential analysis; TTM Trial: Target Temperature Management Trial;
Zi: Cumulative zi-statistics

Acknowledgements
We thank Ema Erkocevic Petersen, M.Sci. Biomedical Engineering and
Informatics, Data Manager at Copenhagen Trial Unit for the excellent art
work on figures in this article. We thank Dimitrinka Nikolova, M.A. in English
Philology, Co-ordinating Editor of The Cochrane Hepato-Biliary Group, for
thorough reading and correcting the language of the article text.

Funding
The work on this article has exclusively been funded by the Copenhagen
Trial Unit with no other funding involved.

Availability of data and materials
TSA software and Manual are available at http://www.ctu.dk/tsa/for free.
Data for the motivating example are available from (16–18).

Authors’ contribution
JW, JCJ, and CG conceived the idea for this manuscript. JW wrote the first
draft of the manuscript. JCJ and CG critically revised the manuscript. All
authors read and approved the final version of the manuscript.

Competing interest
None of the authors have financial interests related to this article. JCJ does
not have any other known competing interests. JW and CG are members of
the task force to develop theory and software for Trial Sequential Analysis at
the Copenhagen Trial Unit.

Consent for publication
Not applicable since no individual patient data are presented.

Ethics approval and consent to participate
Not applicable.

Author details
1Copenhagen Trial Unit, Centre for Clinial Intervention Research, Dpt. 7812,
Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100
Copenhagen, Denmark. 2Centre for Research in Intensive Care, Rigshospitalet,
Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen,
Denmark. 3Department of Cardiology, Holbæk Hospital, DK-4300 Holbæk,
Denmark. 4The Cochrane Hepato-Biliary Group, Copenhagen Trial Unit,
Centre for Clinial Intervention Research, Dpt. 7812, Rigshospitalet,
Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen,
Denmark.

Received: 2 May 2016 Accepted: 22 February 2017

References
1. Turner RM, Bird SM, Higgins JP. The impact of study size on metaanalyses:

examination of underpowered studies in Cochrane reviews. PLoS One. 2013;
8:e59202.

2. Pereira TV, Ioannidis JP. Statistically significant metaanalyses of clinical
trials have modest credibility and inflated effects. J Clin Epidemiol.
2011;64:1060–9.

3. AlBalawi Z, McAlister FA, Thorlund K, Wong M, Wetterslev J. Random error
in cardiovascular meta-analyses: how common are false positive and false
negative results? Int J Cardiol. 2013;168:1102–7.

4. Imberger G. Multiplicity and sparse data in systematic reviews of
anaesthesiological interventions: a cause of increased risk of random error
and lack of reliability of conclusions? Ph.D. Thesis. Copenhagen:
Copenhagen University, Faculty of Health and Medical Sciences; 2014.

5. Brok J, Thorlund K, Wetterslev J, Gluud C. Apparently conclusive metaanalyses
may be inconclusive—trial sequential analysis adjustment of random error risk
due to repetitive testing of accumulating data in apparently conclusive
neonatal metaanalyses. Int J Epidemiol. 2009;38:287–98.

6. Thorlund K, Imberger G, Walsh M, Chu R, Gluud C, Wetterslev J, Guyatt G,
Devereaux PJ, Thabane L. The number of patients and events required to
limit the risk of overestimation of intervention effects in meta-analysis—a
simulation study. PLoS One. 2011;6:e25491.

7. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may
establish when firm evidence is reached in cumulative meta-analysis. J Clin
Epidemiol. 2008;61:64–75.

8. Pogue J, Yusuf S. Cumulating evidence from randomised trials: utilizing
sequential monitoring boundaries for cumulative meta-analysis. Control Clin
Trials. 1997;18:580–93.

9. Pogue J, Yusuf S. Overcoming the limitations of current meta-analysis of
randomised controlled trials. Lancet. 1998;351:47–52.

10. Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C. User
manual for trial sequential analysis (TSA). Copenhagen Trial Unit, Centre for

Wetterslev et al. BMC Medical Research Methodology  (2017) 17:39 Page 16 of 18

http://www.ctu.dk/tsa/for


Clinical Intervention research, Copenhagen, Denmark. 2011: 1–115 available
from www.ctu.dk/tsa.

11. Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information
size by quantifying diversity in a random-effects meta-analysis. BMC Med
Res Methodol. 2009;9:86.

12. Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C. Software
for trial sequential analysis (TSA) ver. 0.9.5.5 Beta. Copenhagen Trial Unit,
Centre for Clinical Intervention Research, Copenhagen, Denmark, free-ware
available at www.ctu.dk/tsa.

13. Young C, Horton R. Putting clinical trials into context. Lancet. 2005;366:
107–8.

14. Clarke M, Horton R. Bringing it all together: Lancet-Cochrane collaborate on
systematic reviews. Lancet. 2001;357:1728.

15. Clarke M, Hopewell S, Chalmers I. Clinical trials should begin and end with
systematic reviews of relevant evidence: 12 years and waiting. Lancet. 2010;
376:20–1.

16. Nielsen N, Friberg H, Gluud C, Wetterslev J. Hypothermia after cardiac arrest
should be further evaluated—a systematic review of randomised trials with
metaanalysis and trial sequential analysis. Int J Cardiol. 2011;151:333–41.

17. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J,
Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise
MP, Åneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge
JF, Hingston CD, Juffermans NP, Koopmans M, Køber L, Langørgen J, Lilja G,
Møller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H,
TTM Trial Investigators. Targeted temperature management at 33°C versus
36°C after cardiac arrest. N Engl J Med. 2013;369:2197–206.

18. Nielsen N, Wetterslev J, al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G,
Brunetti I, Cranshaw J, Cronberg T, Edqvist K, Erlinge D, Gasche Y, Glover G,
Hassager C, Horn J, Hovdenes J, Johnsson J, Kjaergaard J, Kuiper M,
Langørgen J, Macken L, Martinell L, Martner P, Pellis T, Pelosi P, Petersen P,
Persson S, Rundgren M, Saxena M, Svensson R, Stammet P, Thorén A,
Undén J, Walden A, Wallskog J, Wanscher M, Wise MP, Wyon N, Aneman A,
Friberg H. Target temperature management after out-of-hospital cardiac
arrest – a randomised, parallel-group, assessor-blinded clinical trial –
rationale and design. Am Heart J. 2012;163:541–8.

19. Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials.
Biometrika. 1983;70:659–63.

20. Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL,
Donnino M, Gabrielli A, Silvers SM, Zaritsky AL, Merchant R, Vanden Hoek TL,
Kronick SL, American Heart Association. Part 9: post-cardiac arrest care:
American Heart Association Guidelines for Cardiopulmonary Resuscitation
and Emergency Cardiovascular Care. Circulation. 2010;122 suppl 3:S768–86.

21. Armitage P, McPherson CK, Rowe BC. Repeated significance tests on
accumulating data. J Royal Stat Soc Series A (General). 1969;132:235–44.

22. Pocock SJ. Group sequential methods in the design and analysis of clinical
trials. Biometrika. 1977;64:191–9.

23. Berkey CS, Mosteller F, Lau J, Antman EM. Uncertainty of the time of first
significance in random effects cumulative meta-analysis. Control Clin Trials.
1996;17:357–71.

24. Imberger G, Vejlby AD, Hansen SB, Møller AM, Wetterslev J. Statistical
multiplicity in systematic reviews of anaesthesia interventions: a
quantification and comparison between Cochrane and non-Cochrane
reviews. PLoS One. 2011;6:e28422.

25. Wald A. Contributions to the theory of statistical estimation and testing
hypotheses. Ann Math Stat. 1939;10:299–326.

26. Wald A. Sequential tests of statistical hypotheses. Ann Math Stat. 1945;16:
117–86.

27. Wald A, Wolfowitz J. Bayes solutions of sequential decision problems. Proc
Natl Acad Sci U S A. 1949;35:99–102.

28. Winkel P, Zhang NF. Statistical development of quality in medicine.
Chichester, West Sussex: Wiley; 2007. p. 1–224.

29. Armitage P. The evolution of ways of deciding when clinical trials should
stop recruiting. James Lind Library Bulletin 2013. www.jameslindlibrary.org.

30. Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:
52–64.

31. Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N,
McPherson K, Peto J, Smith PG. Design and analysis of randomised clinical
trials requiring prolonged observation of each patient. I. Introduction and
design. Br J Cancer. 1976;34:585–612.

32. O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials.
Biometrics. 1979;35:549–56.

33. ICH Harmonised Tripartite Guideline. Statistical principles for clinical trials.
International Conference on Harmonisation E9 Expert Working Group. Stat
Med. 1999;18:1905–42.

34. Kim K, DeMets DL. Confidence intervals following group sequential tests in
clinical trials. Biometrics. 1987;43:857–64.

35. DeMets DL. Group sequential procedures: calendar versus information time.
Stat Med. 1989;8:1191–8.

36. Jennison C, Turnbull BW. Group sequential methods with applications to
clinical trials. Boca Raton: Chapman & Hall/CRC Press; 2000.

37. Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Darbyshire JH,
Elbourne DR, McLeer SK, Parmar MK, Pocock SJ, Spiegelhalter DJ, Sydes MR,
Walker AE, Wallace SA, DAMOCLES Study Group. Issues in data monitoring
and interim analysis of trials. Health Technol Assess. 2005;9:1–238. iii–iv.

38. Chow S, Shao J, Wang H. Sample size calculations in clinical research. Taylor
& Francis/CRC: Boca Raton; 2003.

39. Reboussin DM, DeMets DL, Kim KM, Lan KK. Computations for group
sequential boundaries using the Lan-DeMets spending function method.
Control Clin Trials. 2000;21:190–207.

40. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials.
1986;7:177–88.

41. Deeks JJ, Higgins JPT. Statistical algorithms in Review Manager ver. 5.3. On
behalf of the Statistical Methods Group of The Cochrane Collaboration.
2010.

42. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis.
Stat Med. 2002;21:1539–58.

43. Kulinskaya E, Wood J. Trial sequential methods for meta-analysis. Res Synth
Methods. 2014;5:212–20.

44. Thorlund K, Devereaux PJ, Wetterslev J, Guyatt G, Ioannidis JP, Thabane L,
Gluud LL, Als-Nielsen B, Gluud C. Can trial sequential monitoring boundaries
reduce spurious inferences from meta-analyses? Int J Epidemiol. 2009;38:
276–86.

45. Imberger G, Thorlund K, Gluud C, Wetterslev J. False positive findings in
cumulative meta-analysis with and without application of trial sequential
analysis: an empirical review. BMJ Open. 2016;6(8):e011890.

46. Imberger G, Gluud C, Boylan J, Wetterslev J. Systematic reviews of
anesthesiologic interventions reported as statistically significant: problems with
power, precision, and type 1 error protection. Anesth Analg. 2015;121:1611–22.

47. Mascha EJ. Alpha, beta, meta: guidelines for assessing power and type I
error in meta-analyses. Anesth Analg. 2015;121:1430–3.

48. Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting
the extent of heterogeneity in meta-analysis, using empirical data
from the Cochrane Database of Systematic Reviews. Int J Epidemiol.
2012;41:818–27.

49. Thorlund K, Imberger G, Johnston BC, Walsh M, Awad T, Thabane L, Gluud
C, Devereaux PJ, Wetterslev J. Evolution of heterogeneity (I2) estimates and
their 95% confidence intervals in large meta-analyses. PLoS One. 2012;7:
e39471.

50. Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals
insufficient information size and potentially false positive results in many
meta-analyses. J Clin Epidemiol. 2008;61:763–9.

51. Higgins JPT, Green S. red. Cochrane Handbook for Systematic Reviews of
Interventions Version 5.1.0. The Cochrane Collaboration, 2011. www.
cochrane-handbook.org.

52. Keus F, Wetterslev J, Gluud C, van Laarhoven CJ. Evidence at a glance: error
matrix approach for overviewing available evidence. BMC Med Res
Methodol. 2010;10:90.

53. Garattini S, Jakobsen JC, Wetterslev J, Berthele’ V, Banzi R, Rath A,
Neugebauer E, Laville M, Maisson Y, Hivert Y, Eickermann M, Aydin B,
Ngwabyt S, Martinho C, Giradi C, Szmigielski C, Demotes-Maynard J, Gluud
C. Evidence-based clinical practice: overview of threats to the validity of
evidence. Eur J Intern Med. 2016;32:13–21.

54. Kjaergard LL, Villumsen J, Gluud C. Reported methodological quality and
discrepancies between large and small randomised trials in meta-analyses.
Ann Intern Med. 2001;135:982–9. err 2008;149:219.

55. Savović J, Jones HE, Altman DG, Harris RJ, Jüni P, Pildal J, Als-Nielsen B, Balk
EM, Gluud C, Gluud LL, Ioannidis JP, Schulz KF, Beynon R, Welton NJ, Wood
L, Moher D, Deeks JJ, Sterne JA. Influence of reported study design
characteristics on intervention effect estimates from randomised, controlled
trials. Ann Intern Med. 2012;157:429–38.

56. Lundh A, Sismondo S, Lexchin J, Busuioc OA, Bero L. Industry sponsorship
and research outcome. Cochrane Database Syst Rev. 2012;12:MR000033.

Wetterslev et al. BMC Medical Research Methodology  (2017) 17:39 Page 17 of 18

http://www.ctu.dk/tsa
http://www.ctu.dk/tsa
http://www.jameslindlibrary.org/
http://www.cochrane-handbook.org/
http://www.cochrane-handbook.org/


57. Chan AW, Hróbjartsson A, Haahr MT, Gøtzsche PC, Altman DG. Empirical
evidence for selective reporting of outcomes in randomised trials:
comparison of protocols to published articles. JAMA. 2004;291:2457–65.

58. Andrews JC, Schünemann HJ, Oxman AD, Pottie K, Meerpohl JJ, Coello PA,
Rind D, Montori VM, Brito JP, Norris S, Elbarbary M, Post P, Nasser M, Shukla
V, Jaeschke R, Brozek J, Djulbegovic B, Guyatt G. GRADE guidelines: 15.
Going from evidence to recommendation-determinants of a
recommendation’s direction and strength. J Clin Epidemiol. 2013;66:726–35.

59. The Fermi paradox. http://en.wikipedia.org/wiki/Fermi_paradox. Accessed 27
Feb 2017.

60. Roberts I, Ker K, Edwards P, Beecher D, Manno D, Sydenham E. The
knowledge system underpinning healthcare is not fit for purpose and must
change. BMJ. 2015;350:h2463. doi:10.1136/bmj.h2463.

61. Bolland MJ, Grey A, Gamble GD, Reid IR. The effect of vitamin D
supplementation on skeletal, vascular, or cancer outcomes: a trial sequential
meta-analysis. Lancet Diabetes Endocrinol. 2014;2(4):307–20. doi:10.1016/
S2213-8587(13)70212-2.

62. Tovey DI, Bero L, Farquhar C, Lasserson T, MacLehose H, Macdonald G, et al.
A response to Ian Roberts and his colleagues. Rapid response. BMJ. 2015;
350:h2463.

63. Wetterslev J, Engstrøm J, Gluud C, Thorlund K. Trial sequential analysis:
methods and software for cumulative meta-analyses. Cochrane Methods
Cochrane Database Syst Rev. 2012;2 suppl 1:29–31.

64. Higgins JPT. Comment on “Trial sequential analysis: methods and software
for cumulative meta-analyses”. Cochrane Methods Cochrane Database Syst
Rev. 2012;2 suppl 1:32–3.

65. Wetterslev J, Engstrøm J, Gluud C, Thorlund K. Response to “Comment by
Higgins”. Cochrane Methods Cochrane Database Syst Rev. 2012;2 suppl 1:33–5.

66. Higgins JP, Whitehead A, Simmonds M. Sequential methods for random-
effects meta-analysis. Stat Med. 2011;30:903–21.

67. Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof EL, Fleischmann KE,
Freeman WK, Froehlich JB, Kasper EK, Kersten JR, Riegel B, Robb JF, Smith Jr
SC, Jacobs AK, Adams CD, Anderson JL, Antman EM, Buller CE, Creager MA,
Ettinger SM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW,
Nishimura R, Ornato JP, Page RL, Riegel B, Tarkington LG, Yancy CW. ACC/
AHA 2007 guidelines on perioperative cardiovascular evaluation and care
for noncardiac surgery: executive summary: a report of the American
College of Cardiology/American Heart Association Task Force on Practice
Guidelines (Writing Committee to Revise the 2002 Guidelines on
Perioperative Cardiovascular Evaluation for Noncardiac Surgery). J Am Coll
Cardiol. 2007;50:1707–32.

68. Popper KR. Logik der Forschung. Vienna: Springer; 1959.
69. Bangalore S, Wetterslev J, Pranesh S, Sawhney S, Gluud C, Messerli FH.

Perioperative beta blockers in patients having non-cardiac surgery: a meta-
analysis. Lancet. 2008;372:1962–76.

71. Jakobsen JC, Wetterslev J, Winkel P, Lange T, Gluud C. The threshold for
statistical and clinical significance in systematic reviews with metaanalytic
methods. Med Res Methodol. 2014;14:120.

70. Sterne JA. Teaching hypothesis tests – time for significant change? Stat
Med 2002;21: 985–94, 995–9, 1001.

72. Jakobsen JC, Gluud C, Winkel P, Lange T, Wetterslev J. The thresholds for
statistical and clinical significance – a five-step procedure for evaluation of
intervention effects in randomised clinical trials. BMC Med Res Methodol.
2014;14:34.

73. Roloff V, Higgins JP, Sutton AJ. Planning future studies based on the
conditional power of a meta-analysis. Stat Med. 2013;32:11–24.

74. IntHout J, Ioannidis JP, Borm GF. Obtaining evidence by a single well-
powered trial or several modestly powered trials. Stat Methods Med Res.
2016;25(2):538–52.

75. Valentine JC, Pigott TD, Rothstein HR. How many studies do you need? A
primer on statistical power for meta-analysis. J Educ Behav Stat. 2010;35(2):
215–47.

76. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-
analysis. Chichester: John Wiley & Sons Ltd.; 2009.

77. Higgins JP, Spiegelhalter DJ. Being sceptical about meta-analyses: a
Bayesian perspective on magnesium trials in myocardial infarction. Int J
Epidemiol. 2002;31:96–104.

78. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials
and health-care evaluation. Statistics in practice. Chichester: John Wiley &
Sons Ltd; 2004.

79. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-
effects meta-analysis. J R Stat Soc Ser A Stat Soc. 2009;172:137–59.

80. Jennison C, Turnbull BW. Efficient group sequential designs when there are
several effect sizes under consideration. Stat Med. 2006;25:917–32.

81. Pereira TV, Horwitz RI, Ioannidis JP. Empirical evaluation of very large
treatment effects of medical interventions. JAMA. 2012;308:1676–84.

82. Lindley DV. A statistical paradox. Biometrika. 1957;44:187–92.
83. Ioannidis JPA. Why most published research findings are false. PLoS Med.

2005;2:e124.
84. Fisher R. Statistical methods and scientific induction. J R Stat Soc Ser B.

1955;17:69–78.
85. Johnson EV. Revised standards for statistical evidence. PNAS. 2013, 110:48:

19313–19317. Accessed Dec 2016. www.pnas.org/cgi/doi/10.1073/pnas.
1313476110.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Wetterslev et al. BMC Medical Research Methodology  (2017) 17:39 Page 18 of 18

http://en.wikipedia.org/wiki/Fermi_paradox
http://dx.doi.org/10.1136/bmj.h2463
http://dx.doi.org/10.1016/S2213-8587(13)70212-2
http://dx.doi.org/10.1016/S2213-8587(13)70212-2
http://www.pnas.org/cgi/doi/10.1073/pnas.1313476110
http://www.pnas.org/cgi/doi/10.1073/pnas.1313476110

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	A motivating example: how the Target Temperature Management-Trial changed the conclusion of the meta-analysis of trials with cooling of patients after out of hospital cardiac arrest
	Interim-analyses during a randomised clinical trial with an accumulating number of participants
	Historical development of sequential analyses in a single trial with interim analyses

	Methods
	Avoiding the increased risk of random errors in randomised clinical trials with interim analyses
	Avoiding the increased risk of random errors in cumulative meta-analyses with sparse data and multiple meta-analytic up-dates

	Results
	False positive meta-analyses
	False negative meta-analyses

	Discussion
	Trial Sequential Analysis: a position between frequentist and Bayesian thinking

	Conclusions
	Appendix
	Sample size in a single randomised trial
	Dichotomous outcome
	Continuous outcome

	The required information size in a meta-analysis
	The required information size and the number of required extra trials in a meta-analysis
	The law of reverse implication in mathematical logic
	The statistical concepts used in this article
	Abbreviations

	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contribution
	Competing interest
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

