
Donoghoe and Gebski BMCMedical ResearchMethodology  (2017) 17:52 
DOI 10.1186/s12874-017-0327-3

RESEARCH ARTICLE Open Access

The importance of censoring in
competing risks analysis of the
subdistribution hazard
Mark W. Donoghoe* and Val Gebski

Abstract

Background: The analysis of time-to-event data can be complicated by competing risks, which are events that alter
the probability of, or completely preclude the occurrence of an event of interest. This is distinct from censoring, which
merely prevents us from observing the time at which the event of interest occurs. However, the censoring distribution
plays a vital role in the proportional subdistribution hazards model, a commonly used method for regression analysis
of time-to-event data in the presence of competing risks.

Methods: We present the equations that underlie the proportional subdistribution hazards model to highlight the
way in which the censoring distribution is included in its estimation via risk set weights. By simulating competing risk
data under a proportional subdistribution hazards model with different patterns of censoring, we examine the
properties of the estimates from such a model when the censoring distribution is misspecified. We use an example
from stem cell transplantation in multiple myeloma to illustrate the issue in real data.

Results: Models that correctly specified the censoring distribution performed better than those that did not, giving
lower bias and variance in the estimate of the subdistribution hazard ratio. In particular, when the covariate of interest
does not affect the censoring distribution but is used in calculating risk set weights, estimates from the model based
on these weights may not reflect the correct likelihood structure and therefore may have suboptimal performance.

Conclusions: The estimation of the censoring distribution can affect the accuracy and conclusions of a competing
risks analysis, so it is important that this issue is considered carefully when analysing time-to-event data in the
presence of competing risks.
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Background
Competing risks are commonly observed in time-to-event
data, and there have recently been major methodologi-
cal advances in regression analysis of such data. In this
paper, we focus on one particular model for competing
risks data: proportional subdistribution hazards regres-
sion. Censoring plays an important role in the estimation
of such a model, and can thus have an impact on the sub-
sequent results and conclusions. This issue is often not
given sufficient attention in texts that introduce and dis-
cuss these methods (e.g. [1–3]), and as a result is not
usually considered when the proportional subdistribution
hazards model is implemented.
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Definitions
One of the key concepts in competing risks analysis is
the distinction between competing risk events and cen-
soring. We are interested in the duration T between the
time origin and the occurrence of an event. Censoring is
the process which prevents us from fully observing this T.
In particular, right-censoring occurs when we know that
an event has not occurred prior to some time C, but we
can no longer follow the individual to measure T exactly,
and hence only observe Z = min(T ,C).
Time-to-event analysis methods allow us to use the

information that, for censored individuals, T > C, but
often rely on the crucial assumption that the censoring
process is non-informative. Essentially, this means that
knowledge of the censoring time for an individual gives
us no additional information on their future risk of an
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event. This condition can be equivalently expressed in
terms of the hazard of censoring, meaning that the instan-
taneous probability of being censored does not depend on
the unknown future event time. Robins and Finkelstein [4]
have discussed the conditions under which the assump-
tion of non-informative censoring holds when there is
a set of covariates that affects the risk of events and/or
censoring.
Competing risks, conversely, are typically informative.

As defined by Gooley et al. [5], a competing event is
one which precludes the event of interest from occur-
ring, or fundamentally changes its probability. If compet-
ing events are treated as censored observations, standard
survival analysis methods can be used to estimate the
effect of covariates on cause-specific hazards, which has
some utility in helping to understand disease aetiology [6].
However, if there is dependence between the competing
events, the cause-specific hazard cannot be interpreted as
the marginal hazard and covariate effects do not directly
translate onto the cumulative scale. One of the difficulties
associated with competing events—and in fact, censoring
in general—is that, without making restrictive assump-
tions about the exact nature of the dependency between
the different event types, it is impossible to distinguish
between dependent and independent event processes [7].
An alternative approach is to focus on analysing both

the time T until the first event and the type of that event,
denoted by δ. Without loss of generality, we will use δ = 1
to denote the event of interest and δ = 2 for any other
event type.
In the following sections, we use the ‘traditional’ time-

to-event notation rather than counting process notation
for the sake of readability for readers without a rigorous
statistical background. We also assume that the data con-
tain no tied event times, because methods for handling
ties can differ slightly between software packages, and
discussion of these issues is beyond the scope of this paper.

The subdistribution function
One quantity of interest in a competing risks analysis is the
cumulative incidence function, or subdistribution: F(t) =
Pr(T ≤ t, δ = 1), which is the probability of experienc-
ing the event of interest as the first event prior to time t.
It is called the subdistribution because, if Pr(δ �= 1) > 0,
limt→∞ F(t) < 1, and may be viewed as the distribu-
tion function of an improper random variable τ that takes
value T if δ = 1 or value ∞ if δ �= 1.
In a sample, where t1 < · · · < tJ denote the observed

event times of the J subjects who experience the event
of interest, the subdistribution can be estimated by the
Aalen–Johansen estimator [8]:

F̂AJ(t) =
∑

j:tj≤t

(
1 − Ŝ(t−j )

) d(tj)
r(t−j )

,

where Ŝ is the Kaplan–Meier estimate of the all-cause sur-
vival function S(t) = Pr(T > t), d(tj) is the number
of events of interest occurring at time tj and r(t−j ) is the
number at risk (event-free and uncensored) just prior to tj.
Geskus [9] has shown that this estimator has two

alternative representations, one as an inverse probability
weighted (IPW) empirical distribution function, and one
as a product-limit (PL) estimator: F̂AJ = F̂IPW = F̂PL. The
representation of F̂ as a product-limit estimator has the
form:

F̂PL(t) = 1 −
∏

j:tj≤t

(
1 − d(tj)

r∗(t−j )

)
, (1)

where r∗(t−j ) is a modified number at risk, which includes
weighted contributions from individuals who experienced
the competing event prior to time tj.
Specifically, if we consider a sample of n independent

subjects with event times T1, . . . ,Tn and censoring times
C1, . . . ,Cn, where we observe Zi = min(Ti,Ci) and δi,
which is the type of event, or 0 if the subject was censored,
then

r∗(t) =
n∑

i=1
wi(t),

where the time-dependent weight for each individual is
defined as

wi(t) =
{
1(Zi ≥ t) if δi ∈ {0, 1}

Gi(t−)

Gi(min(Z−
i ,t−))

if δi = 2, (2)

and Gi(t) = Pr(Ci > t | x∗
i ) is the censoring survival

distribution, which may depend on covariate vector x∗
i .

For individuals who experience the event of interest or
are censored, this weight is simply an indicator function
representing their inclusion in the risk set over time. Indi-
viduals who experience a competing event also contribute
with full weight up until their event (as the numerator
and denominator are equal when t ≤ Zi). Afterwards,
however, they continue to contribute to the modified
number at risk, weighted by their conditional probability
of remaining in the risk set (that is, avoiding censoring) at
future event times.
If the only reason for censoring is a fixed end-of-study

time point, then the potential censoring time, and hence
censoring distribution, is known for every individual. In
such a ‘censoring-complete’ case, each individual’s weight
will be either zero or one, based on the known Ci: wi(t) =
1(Ci > t), so that individuals who did not experience the
event of interest are removed from the risk set at their cen-
soring time. In the far more common scenario in which
the censoring times are unknown, the censoring distribu-
tion used for the weights must be based on an estimate.
The equivalence F̂AJ = F̂PL holds if we use the overall
Kaplan–Meier estimate of censoring survival in place of
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Gi. In this paper we investigate the impact on the sub-
distribution estimate of using different estimates of Gi in
calculating the weights.

Proportional subdistribution hazards modelling
The hazard of the subdistribution takes the usual form of
a hazard function, based on the improper τ :

γ (t) = lim
�→0

1
�

Pr(t < τ ≤ t + � | τ > t)

= lim
�→0

1
�

Pr(t < T ≤ t + �, δ = 1 |
T > t or [T ≤ t, δ �= 1] ).

This differs from the cause-specific hazard in that the
conditional part not only includes the possibility of being
event-free at time t, but also the possibility that a com-
peting event has occurred prior to t. Its major advantage
in a competing risks setting is that, unlike the cause-
specific hazard, it has a one-to-one correspondence to the
cumulative incidence of the event of interest.
Analogous to the cause-specific proportional hazards,

or Cox, regression model [10], Fine and Gray [11]
define a proportional subdistribution hazards model,
where γ (t; x) = γ0(t) exp(xβ) for some common base-
line subdistribution hazard function γ0(t). Under this
model, exp(βp) represents the time-invariant subdistri-
bution hazard ratio (SHR) associated with a one-unit
increase in the pth component of the covariate vector x,
keeping everything else constant. Maximum partial like-
lihood estimates of β can be obtained by solving score
equations, and the the null hypothesis βp = 0 can be
assessed using the associated score test or a Wald test.
For a proportional subdistribution hazards model with

a single covariate x, the score statistic has the form

U(β) =
J∑

j=1

(
x′
j −

∑n
i=1 wi(tj)xi exp(xiβ)

∑n
i=1 wi(tj) exp(xiβ)

)
, (3)

where x′
j is the covariate value for the individual with

an event of interest at tj, and wi(t) is the same time-
dependent weight function shown in (2). If there are no
competing events, or if competing events are treated as
censored observations, U(β) is simply the score statistic
for a cause-specific proportional hazards model.
This formulation makes it clear that the censoring dis-

tribution plays an important role in proportional subdis-
tribution hazards modelling. Fine and Gray [11] give no
prescription for how the censoring distribution should be
estimated, using a simple Kaplan–Meier estimate over the
entire sample in their example. In the case of a single
binary covariate, if the censoring distribution is estimated
using the Kaplan–Meier method separately in each group
defined by the covariate, the score test from a Fine and
Gray model is identical to Gray’s non-parametric test

for comparing subdistribution hazards [12]. The opti-
mal method for calculating censoring weights is an open
question ([13], Section 5.3.1).
If it is known that censoring is covariate-dependent,

it seems natural that this information should be used
when estimating the censoring distribution for calculat-
ing the weights in the score statistic for the Fine and Gray
model. Any implementation of a method that allows time-
dependent weights to be attached to observations in a
proportional hazards model can be used ([13], Section
5.7.2), but some software includes specialised functions
that will calculate the weights and fit the proportional
subdistribution hazards model at once. The finegray
function in the survival package in R produces the
weighted start-stop dataset that can be used directly in
the coxph function to estimate a proportional subdistri-
bution hazards model [14]. Alternatively, in the cmprsk
package, the cengroup argument to the crr function
allows the user to specify discrete groups of individuals
in which separate Kaplan–Meier estimates are used to
estimate the censoring distribution [15].
In the next section, we illustrate the potential efficiency

losses that can occur if such information is not used, but
also if the censoring distribution is misspecified due to
the inclusion of unassociated factors in its estimation.
Binder et al. [16] have investigated a similar issue in the
context of calculating pseudo-observations when there is
bias in the Aalen–Johansen estimator due to covariate-
dependent censoring. However, in illustrating methods
that correct for this bias, they relied on knowledge of the
true model for the censoring distribution, and did not
consider the case in which it is unknown.

Methods
Simulation study 1
Through simulations, we considered the situation in
which the censoring distribution is misspecified when cal-
culating the risk set weights for a proportional subdistri-
bution hazards model. The simulated datasets were based
on a hypothetical observational study of 300 subjects com-
paring two exposures labelled A and B. Reflecting the
population susceptible to the event of interest, around
two-thirds of subjects in the study were ‘young’ and
the remaining one-third were ‘old’. Young subjects were
equally likely to have either exposure A or B, while older
subjects were three times more likely to have exposure B,
relative to exposure A.
Events and their times were simulated under a propor-

tional subdistribution hazards model using the algorithm
described in Additional file 1, available online. The pro-
portion of subjects who would experience the competing
event was varied from 0 to 30%, as was the effect of
exposure B on the subdistribution hazard of interest, from
no effect to a SHR of 2.7. There was no independent
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effect of age on the subdistribution hazard of the event
of interest.
Two types of censoring were also present in the sim-

ulations. The first was designed to simulate censoring
due to a fixed end-of-study time point, with censoring
times drawn from a uniform distribution to reflect con-
stant accrual to the study. On average, approximately 10%
of subjects in our sample would be censored in this way.
The second type of censoring was loss to follow-up, the
hazard of which was influenced by the age group of the
subject. These censoring times were drawn from an expo-
nential distribution, with the rate parameter chosen such
that the proportion of young patients censored in this way
was approximately 10%. The risk of loss to follow-up for
older subjects was increased across our scenarios, from
a hazard ratio of 1 (no difference) to 2.7 times that of
younger subjects.
If either censoring time was prior to the event time for

a subject, they would be censored. It is important to note
that, because censoring times were simulated indepen-
dently of event times, they were non-informative condi-
tional on age group, but because exposure is associated
with age, censoring time is correlated with exposure. Also
under this model, censored subjects would still go on to
experience an event had they been followed longer, so cen-
soring should not be considered to be an additional type
of competing event.
For each scenario we simulated 1000 datasets in R [17].

The full set of simulated data is available online (see
“Availability of data and materials”). We fit four propor-
tional subdistribution hazard models to each dataset, with
exposure as the only covariate. The models differed only
in how the censoring distribution was estimated in calcu-
lating the risk set weights. Model 1 used a simple pooled
estimate over all subjects: Ĝi(t) = Ĝ(t); model 2 used
separate estimates in each age group: Ĝi(t) = Ĝ(t |
agei); model 3 used separate estimates for each expo-
sure group: Ĝi(t) = Ĝ(t | exposurei); and model 4
used a separate censoring distribution estimate for each
of the four exposure–age combinations: Ĝi(t) = Ĝ(t |
agei, exposurei).

Simulation study 2
As discussed in the introduction section, estimation in
the proportional subdistribution hazards model and esti-
mation of the subdistribution function both depend on a
weight function of the form (2), which requires an esti-
mate of the probability Gi that an individual remains
uncensored over time. Our first simulation study was
designed to examine the impact of our choice of estima-
tor for Gi on the subdistribution hazard ratio estimate.
In order to further investigate this issue, we undertook
a second simulation study, focused on estimation of the
subdistribution.

We used the same simulated data from the first study,
described in the previous section and in Additional file 1,
available online. For each dataset, we estimated the sub-
distribution in each exposure group using the product-
limit form of the estimator (1), but with four different
specifications of themodified number at risk r∗. As before,
these were based on estimating the censoring survival dis-
tribution separately for different groupings of exposure
and age, denoted models 1–4.
The models were fit with a modified version of the

cuminc function from the cmprsk package in R [15],
which usually implements the Aalen–Johansen form of
the estimator. The usual survfit function [14] could
also be used to calculate the product–limit estimate of
an appropriately weighted dataset, which could be cre-
ated using crprep from the mstate package [18, 19].
Note that model 3 produces the Aalen–Johansen estima-
tor, since the estimates and the censoring distribution are
calculated separately for each exposure group. We calcu-
lated the pointwise empirical (absolute) bias and standard
deviation of the estimates at 2000 time points, and took
the average of these across time to obtain a summary
statistic for each exposure group in each scenario.

Multiple myeloma example
As an example of competing events in real data, we con-
sidered a cohort of 35 patients being treated for multiple
myeloma at the Clinic for Stem Cell Transplantation, Uni-
versity Hospital Hamburg-Effendorf, Hamburg, Germany.
The outcome of interest in this study was relapse of mul-
tiple myeloma, with transplant-related mortality acting as
a competing risk. Of interest was a comparison of donor
killer immunoglobulin-like receptor (KIR) haplotype AA
versus haplotypes AB and BB together, to determine if
donors with group B KIR haplotypes are associated with
an improvement in time to relapse, measured as the time
from transplantation [20].
The raw data are provided in Additional file 2 for this

paper. The cohort comprised 11 patients receiving trans-
plants from donors with type AA haplotypes and 24
receiving transplants from donors with type AB or BB.
The pattern of events and censoring is illustrated in the
lower panel of Fig. 1, notably showing that all of the cen-
sored observations are from patients in the AB/BB group,
and all occurred after the last event in the AA group.
We fit proportional subdistribution hazards models to

this data using the cmprsk package in R [15], in order to
estimate the SHR associated with haplotype group. With-
out any additional recorded patient characteristics, we
considered two options for estimating the censoring dis-
tribution to be used in calculating the risk set weights:
pooled over all individuals, and separately in each haplo-
type group, corresponding to models 1 and 3 from our
simulation study.
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Fig. 1Multiple myeloma example: cumulative incidence estimates.
Cumulative incidence plots for relapse in the multiple myeloma
example, separated by donor KIR haplotype. The event and censoring
times are shown below the plot: filled circles denote relapse, empty
circles denote transplant-related death (the competing event), and
plus signs are censored observations

Results
Simulation study 1
The full results from the simulation study are pre-
sented in Additional file 3, available online. Figure 2
shows the empirical bias, standard deviation and relative
mean-squared error (MSE) versus model 1 of the (log-)
subdistribution hazard ratio estimator for two scenarios in
which there was no difference in loss to follow-up between
the age groups.
With no competing events, all four models produce

identical estimates, as expected, with differences between
the models appearing as the rate of competing events
increases. Bias in the treatment effect estimate in both
cases was minimal, not exceeding 0.015 on the log scale
for any of the four models. Differences in bias between
the models were more apparent with a large treatment
effect and high risk of competing events: models 1 and 2
maintained an absolute bias of less than 0.01, while mod-
els 3 and 4 produced estimates approximately 0.005 units
higher.
Models 1 and 2 were also similar in terms of variance of

the effect estimate and hence mean-squared error (MSE):
the difference did not exceed 0.6% for any scenario. In all
cases, model 3 had a smaller MSE than model 4, with the
largest differences in efficiency occurring as the risk of
competing events increased. In the most extreme scenario
we examined (exposure SHR = 2.7 with 30% competing
events), model 3 had an MSE approximately 2.6% higher
than model 1, while model 4 was approximately 4.7%
higher than model 1.
Figure 3 shows a similar set of results for a loss to follow-

up hazard ratio of 2.7. When there was a difference in

the hazard of censoring by age, model 1 tended to under-
estimate the exposure effect, with a small negative bias
around -0.005. Overall, models 3 and 4 also had some
apparent bias, although this did not exceed 0.007 in either
direction. Across all scenarios, model 2 tended to have the
least bias. In terms of mean-squared error, the efficiency
of models 1 and 2 were again quite similar, although with a
large exposure effect and a high proportion of competing
events occurring, model 2 displayed a very small efficiency
gain (less than 1%) over model 1. As in Fig. 2, models 3
and 4 had poorer efficiency than models 1 and 2: in one
case model 3 had 3.4% higher MSE and model 4 had 4.8%
higher MSE compared to model 1.

Simulation study 2
Figure 4 shows the average of the pointwise absolute bias,
standard error and relative MSE of the subdistribution
estimate in each exposure group for two scenarios in
which there was no difference in loss to follow-up between
the age groups. In both scenarios, the bias and standard
deviation differ between exposure groups, but the differ-
ent models are indistinguishable from one another: the
curves are completely overlapping. The minor differences
betweenmodels becomemore apparent whenwe consider
the MSE, but do not exceed a relative difference of 0.4%.
Figure 5 shows the same set of results for a loss to

follow-up hazard ratio of 2.7. Small differences between
the models in the bias are more apparent in this case, par-
ticularly model 1 versus the others. However, the standard
deviations are again almost identical. The differences in
MSE are larger than in the previous case, but still do not
exceed a relative difference of 0.9%.
These results were representative of the full set of

scenarios that we investigated: the differences in bias
and variance between models being much smaller than
any differences in these measures between exposure
groups.

Multiple myeloma example
The main panel of Fig. 1 shows the estimated subdistribu-
tion of relapse in each group. The Kaplan–Meier estimates
of the censoring distribution that are used in the calcu-
lation of the proportional subdistribution hazards model
are shown in Fig. 6: separately in each haplotype group (A,
B) and pooled over all subjects (C). Note that the pooled
curve (C) is identical to the curve for the AB/BB group,
because only AB/BB patients remain in the censoring risk
set at the time of the first censoring event.
Using the pooled censoring distribution, the estimated

SHR for AA haplotypes compared to AB/BB is 2.56, with
95% confidence interval 1.00–6.55 and associated p-value
0.051. Using separate censoring distribution estimates, we
obtain a SHR of 4.10 and 95% confidence interval 1.49–
11.29. The associated p-value in this case is 0.0063.
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Fig. 2 Simulations: no censoring difference. Empirical bias (top; with 95% confidence interval), standard deviation (middle) and relative
mean-squared error (bottom) of the estimated subdistribution hazard ratio (SHR) from Fine–Gray models with four different censoring estimates:
pooled (model 1), separated by age (model 2), separated by treatment (model 3) and separated by age and treatment (model 4). Simulated loss to
follow-up times were drawn from an exponential distribution such that all subjects had a 10% risk of being censored in this way. The true exposure
effect was zero in the left-hand column and a SHR of 2.7 in the right-hand column

Because the estimated censoring distribution is the
same whether calculated over all patients or in the AB/BB
group alone, the difference in the parameter estimates is
entirely driven by the three patients in the AA group who
experienced the competing event. In the analysis that uses
separate censoring distribution estimates, the AA censor-
ing distribution cannot be estimated beyond two years,
and the censoring survival estimate is set to zero after
that time (as shown in Fig. 6b). This means that these
three patients are removed from the risk set in the calcu-
lation of the score function at the four event times after
two years.

Discussion
Simulation study 1
With no difference in the true censoring distribution
between groups, models 1 and 2 showed very simi-
lar performance; although model 1 appeared to have a
slight advantage when the true effect of the exposure
was large, this could be ascribed to random variation.
The largest difference was in the performance of mod-
els 3 and 4, particularly in the variance of the effect
estimate, showing noticeably lower efficiency than mod-
els 1 and 2. This suggests that when there is no true
difference in the hazard of being censored, the best risk

set weights will, unsurprisingly, result from a pooled
censoring distribution estimate.
When there was a difference in the hazard of censor-

ing by age group, model 1—which does not take this
into account—appeared to have some bias. Although the
lower variance of its estimator meant that it generally
had the best efficiency in terms of MSE, model 2 outper-
formed it in some scenarios as the risk of competing risks
increased and estimation of the risk set weights would
have a greater impact. Model 3 again had better perfor-
mance than model 4, most likely because of the lower
variability in its estimates of the censoring distributions.
The reason for the apparently superior performance of

model 2 compared to model 3 in both scenarios is unclear,
but may suggest that the form of the score statistic (3)
is not correct when the time-to-censoring distribution
depends on covariates ([13], Section 5.3.1). Nonetheless,
our results suggest that better performance of this SHR
estimator may be attained if the risk set weights are not
made to depend on the covariate of interest, if possible.

Simulation study 2
The results from our second simulation study do not
seem to offer a clear explanation for the phenomena we
observed in the estimation of the subdistribution hazard
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Fig. 3 Simulations: differential censoring by age. Empirical bias (top; with 95% confidence interval), standard deviation (middle) and relative
mean-squared error (bottom) of the estimate subdistribution hazard ratio (SHR) from Fine–Gray models with four different censoring estimates:
pooled (model 1), separated by age (model 2), separated by treatment (model 3) and separated by age and treatment (model 4). Simulated data
had a 10% risk of censoring due to loss to follow-up in young patients, and a censoring hazard ratio of 2.7 for older patients. The true exposure effect
was zero in the left-hand column and a SHR of 2.7 in the right-hand column

Fig. 4 Simulations 2: no censoring difference. Empirical absolute bias (top), standard deviation (middle) and relative mean-squared error (bottom) of
the product-limit form of the subdistribution estimator in each exposure group (A: solid / B: dotted) with weights calculated using four different
censoring estimates: pooled (model 1), separated by age (model 2), separated by treatment (model 3) and separated by age and treatment (model
4). Simulated loss to follow-up times were drawn from an exponential distribution such that all subjects had a 10% risk of being censored in this
way. The true exposure effect was zero in the left-hand column and a SHR of 2.7 in the right-hand column



Donoghoe and Gebski BMCMedical ResearchMethodology  (2017) 17:52 Page 8 of 11

Fig. 5 Simulations 2: differential censoring by age. Empirical absolute bias (top), standard deviation (middle) and relative mean-squared error
(bottom) of the product-limit form of the subdistribution estimator in each exposure group (A: solid / B: dotted) with weights calculated using four
different censoring estimates: pooled (model 1), separated by age (model 2), separated by treatment (model 3) and separated by age and treatment
(model 4). Simulated loss to follow-up times were drawn from an exponential distribution such that all subjects had a 10% risk of being censored in
this way. The true exposure effect was zero in the left-hand column and a SHR of 2.7 in the right-hand column

ratio. When there was no difference in censoring between
age groups, the random differences between the four
models did not become more apparent as the rate of
competing events increased, and the models were almost
identical across all scenarios.
When the hazard of censoring differed between age

groups, differences in between the models—particularly

model 1 versus the non-pooled versions—were larger,
but the relative MSEs were substantially smaller than we
observed in the first simulations, and did not point to a
clearly superior approach.
The most apparent pattern from these simulations was

the difference in standard deviation between the expo-
sure groups, with exposure B having smaller variance.

Fig. 6Multiple myeloma example: censoring distribution estimates. Estimated censoring distributions for the multiple myeloma example: a in the
AB/BB group alone; b in the AA group alone (with extrapolation); c pooled over all individuals. Tick marks denote the times at which events occurred
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This was expected under the setup of the simulations,
because the sample size of individuals with exposure B
was consistently larger than that of exposure A.

Multiple myeloma example
The large discrepancy between the estimates from either
model is unsurprising, considering the potential differ-
ences seen in our simulations and the contrast between
the estimated (extrapolated) censoring distributions for
each group in this example. But without background
information, drawing a conclusion from this analysis
is troublesome: in one case, the 95% confidence inter-
val suggests that the null is a plausible value for the
SHR, whereas in the other, the lower confidence limit
is well above unity and the p-value suggests that we
have strong evidence against a null hypothesis of no
difference.
In this example, the only cause of censoring was end-of-

study, and there is no reason to suspect that the hazard
of this should differ between the two groups. Had the
three AA patients who experienced the competing event
remained alive, we expect that they would have been cen-
sored in a similar fashion to those in the AB/BB group.
This suggests that using the pooled censoring distribution
to calculate weights is the more logical option, and we
expect that the SHR estimate based on this will be more
reliable.
This is supported by the simulation results, where in

both scenarios, models 3 and 4 showed poorer perfor-
mance than models 1 and 2. That is, when the risk set
weights were allowed to differ by the covariate of inter-
est, the resulting estimates showed poorer efficiency than
those based on a pooled estimate.

Conclusions
In this paper, we have highlighted the crucial role that
censoring plays in a common method for regression anal-
ysis of survival data in the presence of competing risks.
The Fine and Gray proportional subdistribution haz-
ards model uses an estimate of the censoring distribu-
tion in calculating the weighted contribution to the risk
set made by individuals that experience the competing
event.
Using simulations, we examined the importance of cor-

rectly identifying the covariates that affect the censoring
distribution. Calculating risk set weights separately when
a pooled censoring distribution was more appropriate led
to some loss of efficiency. When censoring was covariate-
dependent, possible bias in the SHR estimate could be
reduced by ensuring that censoring weights were correctly
specified, but if the covariate of interest was used in this
calculation, the resulting estimates had higher variance.
This was apparent even when the rate of competing events
was as low as 5%.

However, our second set of simulations, examining dif-
ferent weighting options in the product-limit form of the
subdistribution estimator, did not display similarly large
differences. This suggests that future work could focus on
examining why the choice of weights appears to dispro-
portionately affect estimation of the SHR compared to the
subdistribution itself.
Although our examples were quite simple, using only

binary covariates, we expect the same idea to hold true
for more complex scenarios: more accurate estimation
of the censoring distribution will improve estimation
of the subdistribution hazard ratio. However, if a more
complicated model for censoring is estimated in calcu-
lating risk set weights, the asymptotic properties of the
SHR estimator may be difficult to identify. The approach
presented by Ruan and Gray [21] uses multiple impu-
tation to simulate censoring-complete data, which can
then be used in a standard analysis method, but this
still presents the problem of identifying the group of
covariates that should be included in the imputation
model.
It is important to consider the assumptions underly-

ing these methods, and determine if their application is
appropriate in each situation. In the multiple myeloma
example, even though the pattern of censoring in the two
groups appeared to be very different, this was a result
of the chance occurrence that all of the patients in one
group were observed to experience an event. Where it is
not clear whether some types of censoring are perhaps
informative and should be treated as a competing event,
Siannis et al. [22] have presented a method for a sensitiv-
ity analysis that can help assess the possible impact of an
incorrect assumption.
Estimation of the proportional subdistribution hazards

model has been adapted to allow for both left trunca-
tion and right censoring [9]. This approach also includes
weights that depend on an estimate of the entry time
distribution, for which similar issues would be relevant.
An estimate of the censoring distribution is also used
in competing risk analysis methods that are based on
the conditional (rather than marginal) probability of an
event. For example, Pepe and Mori [23] and Lunn [24]
include a weight function in their test statistics, but do
not prescribe its specific form. In their respective exam-
ples, Pepe and Mori [23] use separate censoring dis-
tribution estimates in the weight function, while Lunn
[24] uses the pooled estimate of the overall censor-
ing survival function. Beyond its use in specific models
for competing events, the concept of inverse probabil-
ity of censoring weights is widely employed to attempt
to account for potentially informative censoring or non-
compliance in medical studies (e.g. [4, 25, 26]). While
we expect that considerations similar to those discussed
here will also apply to these other approaches, detailed
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investigations that focus on specific models would provide
useful information.
We hope that this paper encourages increased consid-

eration of the potentially large impact of censoring on
competing risks methods when planning, performing and
reporting such analyses.
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