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Abstract

Background: Dentine hypersensitivity (DH) affects people’s quality of life (QoL). However changes in the internal
meaning of Qol, known as Response shift (RS) may undermine longitudinal assessment of QoL. This study aimed
to describe patterns of RS in people with DH using Classification and Regression Trees (CRT) and to explore the
convergent validity of CRT with the then-test and ideals approaches.

Methods: Data from an 8-week clinical trial of mouthwashes for dentine hypersensitivity (n = 75) using the Dentine
Hypersensitivity Experience Questionnaire (DHEQ) as the outcome measure, were analysed. CRT was used to
examine 8-week changes in DHEQ total score as a dependent variable with clinical status for DH and each
DHEQ subscale score (restrictions, coping, social, emotional and identity) as independent variables. Recalibration was
inferred when the clinical change was not consistent with the DHEQ change score using a minimally important
difference for DHEQ of 22 points. Reprioritization was inferred by changes in the relative importance of each

subscale to the model over time.

Results: Overall, 50.7% of participants experienced a clinical improvement in their DH after treatment and 22.7%
experienced an important improvement in their quality of life. Thirty-six per cent shifted their internal standards
downward and 14.7% upwards, suggesting recalibration. Reprioritization occurred over time among the social

and emotional impacts of DH.

Conclusions: CRT was a useful method to reveal both, the types and nature of RS in people with a mild health
condition and demonstrated convergent validity with design based approaches to detect RS.

Background

Response Shift (RS) refers to changes in quality of life
(QoL) independent of health status. It has been defined
as a “change in the meaning of one’s self evaluation of
QoL as a result of change in the person’s internal stan-
dards (recalibration), change in the person’s values of
the components of QoL (reprioritization) or redefinition
of QoL (reconceptualization)” [1]. These changes may
mask or confound treatment effects when QoL is used
as an outcome.

Numerous methods have been proposed to assess RS.
A common approach to detect recalibration is the then-
test [2—-6], which adopts a retrospective pre test-post test
design. Participants make a retrospective assessment of
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their health state at baseline based on their current per-
spective at follow up (‘then’). This approach assumes
that the post-test and then-test ratings share the same
internal standards, allowing a better estimate of treat-
ment effect than the traditional comparison of baseline
and follow up scores. However, this method is prone to
bias and lacks standard interpretation [7]. Alternatively,
the ideal approach has been used to assess RS with inter-
esting results [8-10]. Participants answer questions
about both their actual and their ideal status (e.g. how
they would like their QoL ideally to be). Changes in ideal
scores at different time points indicate recalibration.
This approach is susceptible to ceiling effects if partici-
pants consistently regard their ideal as perfection. In
addition, ideals may not distinguish between recalibra-
tion and reconceptualization [11].
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Several statistical methods have successfully detected RS
in people with hypertension with coronary artery disease
[12], stroke [13], multiple sclerosis [14—16], cancer [17] ob-
structive pulmonary disease [18]. Structural Equation Mod-
elling (SEM) can measure recalibration, reprioritization and
reconceptualization through differences between inter-
cepts or residual variances, values and patterns of com-
mon factor loadings respectively [16, 17, 19]. Relative
importance measures have assessed response shift in
people with inflammatory bowel disease and epilepsy
[20, 21]. This method requires longitudinal data on two
occasions to detect changes in relative importance
weights or ranks of the domains to detect reprioritiza-
tion. The random forest method has been used as a
predictive approach to assess response shift in patients
with multiple sclerosis and schizophrenia [22, 23]; this
method is an ensemble CRT using bootstrapping of the
original dataset.

Classification and Regression Trees (CRT) is a statistical
method relative unused in RS detection. CRTs are hier-
archical and graphical representations of interactions
between variables. Described as flexible and easy to inter-
pret, CRT can supplement traditional analysis to analyse
patterns of RS at an individual level even for conditions
with a low prevalence [24]. CRT has successfully detected
RS among people with AIDS and Multiple Sclerosis. How-
ever, these findings have yet to be validated against other
methods [25, 26].

RS has not been extensively studied in people with mild
health conditions such as dentine hypersensitivity. Dentine
Hypersensitivity (DH) is a common condition [27, 28]
characterized by short sharp pain in response to an exter-
nal stimulus [29]. Despite its acute character, repeated epi-
sodes of pain over an extended period indicate that DH
should be considered a chronic condition [30]. A wide
range of prevalence (2.8-98%) of DH has been reported
[31-33], but a prevalence of 10% has been accepted as the
best estimate of DH around the world [34]. People with
DH report more impacts on QoL than the general popula-
tion, but the condition increases scores in a generic oral
health-related QoL measure by less than 10% [35]. Re-
cently, RS was detected in a study nested within a RCT of
mouthwashes for DH using the Dentine Hypersensitivity
Experience Questionnaire (DHEQ) as a patient reported
outcome [9]. Recalibration was detected with both the
then-test and the ideals approaches but in opposite direc-
tions. The then-test detected an average downward shift
in internal standards whereas the ideals indicated an aver-
age upward shift. Further investigation could triangulate
these results with a statistical approach. Thus, the aims of
this study were to describe patterns of response shift pat-
terns in people with DH through CRT and to explore the
convergent validity of this technique with the then-test
and the ideals approaches.
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Method

Background in CRT

Classification and Regression Trees (CRT) is found in
the literature with different abbreviations (CART, CRT,
C&RT, RPART, RTA) depending on the software or the
trademark used, but all are based on the method devel-
oped by Breiman and colleagues [36]. CRT involves a
recursive and iterative procedure widely used in medi-
cine [37, 38], biology [39] and psychology [40]. When
compared with other complex modelling techniques,
CRT requires the small sample sizes of a minimum of 10
events per variable to obtain a reasonable predictive
modelling with stable performance [41].

The technique creates a decision tree using automatic
stepwise variable selection to identify mutually exhaustive
and exclusive subgroups of a population [36, 42]. The tree
acts as a representation with terminal nodes (leaves)
representing a cell of the partition, each with a simple
model that applies to that cell only. Each node is split
through the best variable, maximizing the purity of the
resulting nodes; a node is considered ‘pure’ when all the
cases have the same value for the dependent variable.

If the primary splitting variable is missing for an individ-
ual observation, the data are not discarded but instead, a
surrogate variable that has the best similar pattern relative
to the outcome variable is used, thereby enabling utilization
of incomplete datasets [43]. As a result of the surrogates in
splitting the data, the contribution a variable can make to
the model is not only determined by primary splits, ie. a
variable can be considered as highly important even when
it does not appear as a node splitter. This allows identifica-
tion of variable masking and nonlinear correlation among
attributes [44].

A variable importance score is calculated within the
CRT method using the improvement measure attributable
to each variable in its role as either a primary or surrogate
splitter. The values of all these improvements are summed
over each node and totalled. Then, they are scaled relative
to the best performing variable; the variable with the high-
est sum of improvement is scored 100 and all the others
will have decreasingly lower scores [45].

To evaluate the reliability of the tree, CRT performs a
10-fold cross-validation. The dataset is divided into 10
randomly selected and roughly equal parts with each
part containing a similar distribution of data. The first
nine parts of the data (90%) are used to construct the
largest possible tree, and the remaining 10% are used to
obtain initial estimates of the error rate of the selected
sub-tree. The process is repeated 10 times using differ-
ent combinations of the remaining nine subsets of data
and a different 1/10 data subset to test the resulting tree.
The results of the 10 tests are then combined to calcu-
late error rates for trees of each possible size and are
applied to prune the full tree [46].



Machuca et al. BMC Medical Research Methodology (2017) 17:120

CRT is non-model based; it thus allows intuitive inter-
pretations without predefinition of possible interactions
among factors and provides a straightforward exploration
of non-linear relationships among variables due to its
graphical representation [47].

Using Recursive Partitioning and Regression Trees
(RPART), Li and Schwartz [26] propose that RS might
be inferred qualitatively (interpreting differences in the
thresholds, content and order of the independent vari-
ables) and operationalized quantitatively as unexpected
patterns of contrasting clinical status and self-reported
QoL [26]. Following these criteria, this study proposes a
definition of RS as changing patterns of DHEQ scores
non-coherent with DH clinical status.

Study design

The study sample was nested within a RCT of mouth-
washes for DH [9]. Participants were recruited from the
general population as having self-reported DH. The trial
was a parallel four-treatment arm: 3 active treatment
using desensitising mouthwashes to treat DH and one pla-
cebo arm conducted in Hamburg, Germany. All mouth-
washes contained sodium fluoride. Ethical approval was
obtained from a local independent ethical commission in
Freiburg, Germany.

The Dentine Hypersensitivity Experience Questionnaire
(DHEQ) was used as a validated outcome measure [48].
The DHEQ has good psychometric properties with high in-
ternal reliability (item-total correlations >0.4 and Cron-
bach’s «=0.86); has demonstrated to be highly responsive to
changes in functional and personal experiences of DH in
diverse populations [49, 50]. The instrument contains 34
items that record impacts on 5 subscales: functional restric-
tions, coping, emotions, identity and social impact; items
are responded on a 7 point Likert scale with a possible
range of 34 to 238. Higher scores represent worse QoL.

Participants were assessed during the trial on five
occasions (screening, baseline, week 4, week 6 and week
8) although the current analysis considers only the screen-
ing and week 8 assessments. There were two reasons why
screening rather than baseline was selected. First, at
screening participants underwent an oral examination,
completed the DHEQ and started following the study
protocol regarding oral hygiene routine. Thus, from the
participants’ and clinical perspective, screening is consid-
ered as the beginning of the study. Second, the then-test
and ideals analysis were conducted with the screening and
week-8 assessments to investigate recalibration [9], it is
therefore essential to select the same points to perform
the CRT analysis and compare the three methods.

The CRT method used the “Tree’ command in SPSS,
Version 22.0.0.1 (IBM Corp., Chicago, IL, USA) to gener-
ate the classification [51].
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CRT model specifications
The analysis was conducted in the active treatment
groups (n=75). The sample was first classified according
to their clinical DH status at week 8 using two mea-
sures to assess DH related pain. Positive Dentine
Hypersensitivity (DH+) was defined as at least two
non-adjacent sensitive teeth with positive tactile (Yea-
ple probe of < 20g) and evaporative stimuli (Schiff Sen-
sitivity score of = 2). Subsequently, changes in DHEQ
scores between screening and week 8 were analysed.
The CRT tree was fitted using and the DHEQ change
total score (DHEQ total score ,...is — DHEQ total score
screening) s the dependent variable; the clinical status
(DH+ or DH-) and the change of the 5 subscales were
used as independent variables. These variables were in-
cluded to reveal different patterns of change in the sub-
scale scores and their influence in the DHEQ total score
and additionally to detect changes in subscale order. The
analyses were conducted using the following criteria [52]:

— Minimum number of cases in the parent node: 10%
of the sample

— Stopping rule for a terminal node: 5% of the sample

— Tenfold cross-validation to validate the tree

— Tree pruning to avoid over fitting with a maximum
acceptable difference in risk between the pruned and
the sub-tree of 1 standard error

— Missing data handled by surrogate splits

As suggested by Li and Schwartz [26], this study
reports the full rather than the pruned tree because in
small samples, pruning may omit small groups or partic-
ipants with subtle changes. Moreover, most studies of
RS with CRT have investigated severe conditions. The
analysis of small clusters allowed exploration of the rela-
tive magnitude of RS in this mild condition.

The interpretation of changes was based on the minimal
important difference (MID) defined as the mean change
of the total scores in participant's who reported any im-
provement in their self-reported QoL. Baker and col-
leagues [50] reported an MID for the DHEQ of 22 points.
This threshold was used as a reference to identify clusters
of patients with potential response shift.

Operationalization of response shift in the CRT model

RS was inferred when the clinical status (Positive or Nega-
tive Dentine Hypersensitivity) was inconsistent with the
DHEQ score (Table 1). We anticipated that after treat-
ment, participants’ clinical status might improve and they
would report less impacts on their QoL, i.e lower DHEQ
scores. Recalibration might be inferred when, (i) at follow
up, people without clinical DH, reported more impacts on
their QoL, i.e they have changed their internal standards
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Table 1 Operationalization of response shift for DH in the CRT model

Response shift Operationalization

Qualitative indicator

Interpretation

Recalibration Changes in subscale scores over time

1 DHEQ scores with less DH

1 DHEQ scores with worse DH

Reprioritization

|DHEQ scores with worse DH

Downward shift
At follow up individuals experience clinical signs of DH
but DHEQ total score is lower than at screening

Upwards shift
At follow up individuals experience no clinical signs of
DH but DHEQ total score is higher than at screening

No recalibration
At follow up individuals experience clinical signs of DH
and DHEQ total score is higher than at screening

Changes in the relative importance of each subscale to the model over time

upwards or (ii) when at follow up people, with clinical
signs of DH, reported lower DHEQ scores indicating
downward internal standards. Likewise, reprioritization
might be inferred as changes in the relative importance of
each subscale to the model over time.

Results

Sample characteristics

Seventy-five participants completed the study at screen-
ing and week 8 (Table 2). Their mean age was 37.6 years
old (SD=9.8) and 81% were female.

Table 2 Sample characteristics active treatment

The mean evaporative sensitivity scores at screen-
ing and week 8 were 2.27 and 1.61 respectively; the
mean tactile sensitivity was 12.1 and 25.7 at screen-
ing and week 8 respectively. As expected, these
values indicated improved DH after treatment. None-
theless, overall clinical status for DH (i.e. Schiff
Sensitivity score of > 2 + Yeaple probe of < 20g) in-
dicates that 49.3% of participants had persistent DH
at follow up.

The DHEQ changes scores were compared across the
three active treatment groups. Graphic examination of
scores distribution was conducted (Fig. 1). The scores

Treatment A Treatment B Treatment C A+B+C
(N=32) (N=26) (N=17) (N=75)
Mean/% SD Mean/% SD Mean/% SD Mean/% SD
Age 386 96 349 86 39.8 14 376 9.8
Female 78.1 885 76.5 81.0
DHEQ Baseline
Restriction 182 6.3 172 5.1 184 44 18.1 55
Coping 494 155 484 13.7 529 133 503 14.3
Social 175 6.6 15.8 6.7 183 58 17.2 6.4
Emotional 323 6.9 318 89 314 99 324 6.6
Identity 13.7 6.0 1.1 6.0 13.8 8.1 139 70
Total 1312 39.8 1244 34.1 134.8 354 1299 36.5
DHEQ score change
(Post-Pre)
Restriction -19 44 -1.1 53 -1.8 57 -1.61 49
Coping 6.2 14.8 -6.5 13.7 -49 108 -6.0 134
Social -2.7 6.3 -09 58 -24 4.1 -1.0 57
Emotional -29 89 -56 80 -3.6 8.6 -4.0 85
Identity 11 6.0 02 59 -06 36 -0.5 55
Total -14.8 34.2 -13.8 334 -134 265 -14.1 319
Clinical status week 8
DH(+) 469 53.8 47.1 493
DH() 53.1 46.2 529 50.7
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Histogram

Normal Q-Q Plot of DHEQ Total Change
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were normally distributed (Shaphiro-Wilk’s test, p>0.05)
and were similar in all 3 groups (one-way ANOVA
F(2,72)= 0.14, p=0.986; Levene’s test p=0.728). In
view of this homogeneity the subsequent analyses
were performed with the data for the three groups
aggregated.

Overall, DHEQ scores decreased by 14.15 points (i.e.
less apparent impact at follow up than screening), indi-
cating improved QoL over time.

Classification tree in the active treatment group

The final tree was developed using 75 valid observed
DHEQ changes scores and included the 5 subscales
as independent variables ending in 9 terminal nodes
(Fig. 2).

Model performance

For scale dependent variables (as is the case in this
study), the risk estimate is a measure of within-node
variance and is used as a criterion of model fit. Lower
values indicate a better model. The following equation
was applied to calculate model fit [53]:

» _ Risk value
P st
s%y

Where,

S2 = Error variance or proportion of variance due to
error.

Risk value = Variance within node.

S; = Dependent variable or root node variance or
standard deviation of the root node squared.

The proportion of variance due to error is:

, 214268

e=————=021
1018.822

The variation in dependent variable explained by
the model (S2) or explained variance is S = 1 — SZ =
0.79. Thus, 79% of the variation in DHEQ total score
was explained by the subscales scores, which had a
significant effect in forming the tree, i.e. it is a fairly
good model [51].

Tree analysis

The first split was for clinical status with 49.3% (node 1)
and 50.7% (node 2) of the sample in DH(+) and DH(-)
respectively. Both groups reported less DHEQ impact at
follow up as reflected in the negative sign of the change
mean score. As expected from people with more clinic-
ally severe DH (DH(+)), ten participants in the node 4
(13.3%) rated their QoL as worse at follow up.

However, more difference is evident when moving to-
wards the individual level. The terminal nodes represent
the best classification for the model. The greatest change
was observed in terminal node 7 where the mean change
in DHEQ for the 7 participants was -42 points, indicat-
ing better QoL at follow up. At the other extreme, node
12 shows that 11 participants rated their QoL as much
worse at follow up, represented by 17.6 score points.

Possible evidence of response shift

Recalibration According to the operationalization in
Table 1, a downward recalibration of internal standards
might be manifest as improved QoL in participants with
unchanged clinical status. Parent node 3 shows that 36%
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DHEQ Total Score Change

Treatment group

Node 0
Mean -14.2
SD 319
n 75

% 100

|— DH(+) —————

Clinical Status

PHO

Subscal!»: Coping
[ 1

Node 13 Node 14

Mean -21.9 Mean  -5.5
SD 9.1 N 8.5
n 7 n 13

% 9.3 % 17.3

Node 1 Node 2
Mean -7.3 Mean -20.7
SD 26.6 SD 35.4
n 37 n 38
% 49.3 % 50.7
<3.0 I >3.0 <-6.0 | >-6.0
l— Subscale Coping —| I_ Subscale Emotional _|
Node 3 Node 4 Node 5 Node 6
Mean -19.2 Mean 24.6 Mean -50.8 Mean 3.6
SD 182 SD 18.0 SD 25.0 SD 20.0
n 27 n 10 nl 7 n 21
% 36.0 % 133 % 22.7 % 28
<85 [ >-85 <45 [ >45 <05 I 505
Ej Subscale Social
| _l l_ Subscale Restriction —l
Node 7 Node 8 Node 9 Node 10 Node 11 Node 12
Mean -42.0 Mean -11.3 Mean 12.0 Mean 43.5 Mean -11.8 Mean 176
SO 139 D 116 SD 48 SD 119 D 128 sp 161
n 7 n 20 n 6 n 4 n 10 n 1
% 93 % 26.7 % 8.0 % 53 % 133 % 147
<-7.5 >-7.5
<-8. 5

Risk estimate: 214.268  Standard Error: 55.066

Fig. 2 Classification Tree amongst 75 people receiving active treatment for DH

'Sl' Subscale Coping —i-s'

Node 15
Mean -22.2

Node 16
Mean -1.4

N 9.7 SD 2.6
n 5 n 5
% 6.7 % 6.7

of participants rated their QoL as better at follow up
even though they manifested clinical DH.

Nonetheless, the greatest DHEQ change score in this
branch representing downward recalibration might be
observed within terminal nodes 7 and 13. Both nodes
combined represent 18.6% of the sample with change
scores higher than the MID of 22 points.

Upward recalibration might be observed in terminal
node 12. Of 75 participants, 14.7% rated their QoL as
worse at follow up although their clinical status had
resolved, ie they had shifted their internal standard
upwards.

Nodes 5 and 15 represent clusters of participants for
whom treatment was effective. With change scores over
22 points these participants’ clinical status and QoL had
improved.

Reprioritization The contribution of each independent
variable to the model development is termed ‘variable
importance’. Reprioritization can be inferred as changes
in the order of importance of each subscale from screen-
ing to follow up. Figure 3 shows that at screening the
social subscale was the most important variable in model
development, whereas at follow up the coping subscale
was the most important and so on with all subscales.

Comparing methods Both the then-test and ideals rely
on questionnaire design to measure recalibration. The
then-test uses self-assessment of QoL at baseline (‘pre’)
and at follow-up(s) (‘post’), supplemented with a retro-
spective reassessment (‘then’) of the initial QoL at follow-
up(s). In the ideals design, individuals complete the ques-
tionnaire twice at both baseline and follow-up, first with
regards to how they are at the moment (‘actual’) and sec-
ond with regards to how they would want things to be
ideally (‘ideal’). Arguably, each method uses a different
construct of the same instrument. From 75 participants
included in the CRT analysis, 43 completed the then-test
and 31 the ideals questionnaire at screening and week 8.
For the then-test, there was no significant difference be-
tween the three active treatment groups as indicated by
the one-way ANOVA, F (2, 40)=0.04, p=0.96. Likewise for
the ideals, there was no significant difference between the
three groups (ANOVA, F (2, 28)=1.01, p=0.38). As the
three treatment groups were similar both for the then-test
and the ideals, the comparative analysis was performed for
the three treatment groups aggregated.

Table 3 summarizes the magnitude and direction of re-
calibration as detected by the then-test and ideals using
the clinical status as a referent for the three combined
treatment groups [9]. For the then-test, the negative sign
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Fig. 3 Independent Variable Importance at screening and follow up

DHEQ Subscales

suggests that people reassessed themselves retrospectively
as having better quality of life at baseline than they origin-
ally thought (i.e. lowering internal standards). Participants
who completed the then-test version of the DHEQ shifted
their standards of measurement downwards and were sig-
nificant for all impact subscales but ‘identity’. In contrast,
for the ideals assessment the negative sign for participants
indicates that at follow-up they had upward recalibration,
i.e on average participants increased their expectations on
oral health but this shift was statistically significant only
for the emotional aspects.

The results of the CRT are comparable with the
design-led data (Fig. 4). CRT detected both upward and
downward recalibration within the same data. The then-
test, detected downward recalibration. With the CRT,
downward recalibration can be inferred in participants
in terminal nodes 7, 13 and 14 (Fig. 2). The ideals as-
sessment detected overall upward recalibration on the
emotional subscale and the CRT detected upward recali-
bration influenced by emotional changes, as observed in
the first split of the tree. Apparently all participants in
terminal node 12 (14.7%) experienced recalibration

Table 3 Magnitude and direction of recalibration for the then-test and ideals

N Mean SD t-value Sig. (2-tailed)®
Ideals DHEQ recalibration 31 -6.19 20.26 -1.70 0.99
(Ideal follow-up’ - ‘Ideal baseline)
Ideals DHEQ subscales recalibration
Limitations -1.03 373 -1.59 0.12
Coping 241 7.90 -1.78 0.08
Social impacts -0.76 2.88 -1.55 0.13
Emotional impacts -2.16 5.15 -2.37 <005
Identity 0.09 3.65 0.14 0.89
Then-test DHEQ recalibration 43 -15.90 3232 -3.27 <0.05
(Then’ - ‘Pre’)
Then-test DHEQ subscales
Limitations -1.70 4.21 -2.69 < 0.05
Coping -6.47 13.55 -3.20 < 0.05
Social impacts -2.51 5.90 -2.86 < 0.05
Emotional impacts -4.18 8.82 -3.15 < 005
Identity -1.04 579 -1.21 0.23
Total DHEQ score change 75 -14.14 3191 -383 <0.05
(Post-Pre)

#One-sample test
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g. 4 Recalibration for the then-test, ideals and CRT methods

because they did not have clinical DH but showed more
impacts in the DHEQ at follow up.

Although the then-test, ideals and CRT show similar
patterns of recalibration, this is an exploratory analysis.
These methods use a different operationalization of re-
sponse shift and thus, future research comparing effect
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sizes using larger samples to evaluate the statistical
power of these methods is required.

Classification tree in the placebo group

A second tree was developed with the placebo group
but considering the small sample size this was con-
ducted for illustrative purposes only (Fig. 5). As ex-
pected, most participants had clinical sensitivity after
treatment (61.3%), but surprisingly, the reported QoL
of this group improved more than the treatment
group (mean score = -15.32). Furthermore, 48.8% re-
ported an improvement in QoL even though their
clinical sensitivity persisted or got worse (node 3).
This might be interpreted as participants in the placebo
group recalibrating their internal standards downwards
after treatment. Due to the small sample, further analysis
was not possible in this group.

Discussion
The first aim of this study was to describe patterns of
response shift in people with DH using CRT. The tree

DHEQ Total Score Change
Placebo group

Node 0
Mean -15.3
SD 289
n 31
% 100

DH(+) Clinical Status

Node 1
Mean -18.2
SD 30.7

% 61.3

Subscale Social j

Node 3 Node 4 Node 5
Mean -28.7 Mean 21.0 Mean -33.0
SD 22.8 SD 254 SD 3.0
n 15 n 4 n 6
% 48.4 % 129 % 19.4

l— Subscale Coping —l

,— Subscale Identity —|

DH ()

.

Node 2
Mean -10.8
SD 26.5
n 12
% 38.7

Node 6
Mean 11.5
sD 18.6
n 6
% 19.4

Subscale Social

—

Node 7 Node 8 Node 9 Node 10
Mean -34.2 Mean -30.5 Mean 0.7 Mean  33.0
SD 2.9 SD 0.7 SD 7.9 SD 12.7
n 4 n 2 n 4 n 2
% 12.9 % 6.5 % 12.9 % 6.5

l_ Subscale Restriction _I

I— Subscale Coping —|

Node 11 Node 12
Mean -36.5 Mean -32.0
SD 2.1 SD 1.4
n 2 n 2
% 6.5 % 6.5

Risk estimate: 303.962

Node 13 Node 14
Mean -6.0 Mean 7.5
SD 1.4 SD 2.1
n 2 n 2
% 6.5 % 6.5
Standard Error: 164.068  Se?: 64%

Fig. 5 Classification Tree amongst 31 people receiving placebo treatment for DH
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analysis suggests patterns of RS consistent with both
recalibration and reprioritization. These changes in sub-
jective assessments of QoL might mask treatment effects
if this RS is not taken into account when using QoL as
an outcome.

Discrepancies between clinical measures and patient-
reported outcomes are widely recognised and it may be
that RS masks important treatment effects in evaluative
research. In this study, 50.7% of participants experienced
improved clinical status at follow-up but only one third
of people (36%) experienced fewer impacts on their QoL
(Fig.1, node 3). Thus, it might be assumed that evaluat-
ing treatment effects using simple DHEQ change scores
is less responsive if RS is overlooked in this mild health
condition. Similar results have been reported previously
in dentistry where treatment effectiveness was higher
when data analysis considered RS [54]. Kimura et al [55]
reported that benefit of dental implants was four times
higher when RS was accounted for. Nonetheless, this
finding should be interpreted with some caution due to
social desirability (i.e., to please the dentist by reporting
better outcomes after treatment) and effort justification
bias (i.e., underestimation of DH impacts to justify their
decision to take part in the study).

Clinical causes and management of DH has been ex-
tensively reported [56, 57] but the impact of DH on indi-
viduals health cannot be measured by clinical measures
alone; incorporation of subjective assessments is essen-
tial to determine the effectiveness of treatment strategies
of DH [30]. Recalibration of internal standards has been
recognized as inherent when using patient-reported out-
comes, thus ignoring response shift could lead to invalid
conclusions. Response shift should be incorporated in
the design of any clinical research involving HRQoL to
help clinical investigators and research designers to
interpret clinical data effectively.

CRT provided a useful method to analyse patterns of
RS. On the left branch of the tree (Fig.1), the first split
of node 1 might indicate that people coping with DH
reports an improvement in QoL after treatment. But on
the right branch, changes in emotional aspects of DH
are the most relevant and due to those changes, people
rated their QoL as worse after treatment even in the
absence of clinical signs of DH (node 6). This might be
because after the trial participants were more aware of
the impacts of DH on their everyday life; and might rate
these emotional aspects as more prominent. However,
as the interpretation of changes to identify cluster of
patients with RS was based on the MID for the DHEQ
of 22 points, it might be that this threshold is not
reached due to downward recalibration in some partici-
pants. Likewise, in the centre of the tree, social aspects
are increasingly important in people, who despite cop-
ing with their DH, did not improve after treatment
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(nodes 9 and 10). According to Schwarz et al [24], CRT
allows for the same predictor to have different roles,
thus same predictors are repeated across the tree.

Social aspects of DH were the most important variable
at screening but at follow-up the coping aspects gained
more importance in building the model. Moreover, the
social subscale became less important to the model in
19% and the identity aspects were less important after
treatment. These findings might be interpreted as repri-
oritization where DH impacts on different aspects of life
over time. Again, this assumption should be interpreted
with care as the importance score is specific for each
tree. On the one hand, small variations in scores and
amounts of data can generate different trees and on the
other hand, variable rankings can change considerably
comparing trees of different sizes, thus, rankings are
strictly relative to a given tree structure [45].

The treatment and placebo trees had similar structure
as both showed patterns consistent with downward and
upward recalibration (Fig. 3, node 3 and 6 respectively).
These findings suggest that recalibration might be a part
of the trial placebo effect. Placebo effects found in
dentine hypersensitivity [58, 59] have been explained as
spontaneous healing or fluctuations of sensitivity [60] as
well as response shift. If any therapeutic effect that can-
not be explained by the natural course of a condition or
any of its pathological mechanisms is attributed to a
placebo effect, then response shift might be a type of
placebo effect in which patients’ self-assessed health
changes are caused by specific psychological mecha-
nisms in the absence of known biological and physio-
logical effects [61, 62].

The second aim of this study was to explore the con-
vergent validity of CRT with the then-test and ideals
approaches. The results of this analytic approach are
largely compatible with the design-based approaches.
Furthermore, CRT offers the additional advantage of ob-
serving and explaining complex patterns of RS rather
than simply the magnitude. In the original study, the
then-test and the ideals revealed recalibration in oppos-
ite directions. Importantly, the same results were found
in the trees; 36% of participants changed their internal
standard downward and 14.7% upward. However, one
limitation of this study is that the amount of participants
completing both tests was unbalanced (43 completed the
then-test and 31 the ideals). Nevertheless, this interpret-
ation is essentially qualitative and the replicability of this
model should be confirmed in a different sample.

Nonetheless, these convergent results suggest that the
then-test, ideals and CRT measure the same concept.
CRT offers the advantage that it is not susceptible to recall
bias because it does not require retrospective assessments.
In this way the CRT validates the then-test. In addition,
many participants shifted their internal standards in the
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expected direction, i.e. upwards coinciding with the ideals.
Another important advantage of CRT is that it does not
increase the burden on participants. Unfortunately, with
the then-test and the ideals the number of items is dou-
bled at each assessment.

Whilst the CRT method shows promise to detect RS
in longitudinal research of mild conditions, its nature is
both an advantage and limitation. On the one hand, the
graphical representation readily depicts the hierarchy of
splits within the sample, but on the other hand the trees
have high variance, and slight changes in data might
result in different trees.

Conclusion

CRT appeared to be an effective and efficient research
tool to study RS in a mild health condition. It revealed
patterns consistent with recalibration and reprioritiza-
tion in people with DH. To the authors’ knowledge, this
report is novel in comparing the convergent validity of
the then-test, ideals and CRT as valid methods to assess
RS. These findings suggest that response shift might
complicate the interpretation of dentine hypersensitivity
measures, both clinical and self-reported.
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