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Abstract

Background: Despite its popularity, issues concerning the estimation of power in multilevel logistic regression
models are prevalent because of the complexity involved in its calculation (i.e., computer-simulation-based approaches).
These issues are further compounded by the fact that the distribution of the predictors can play a role in the power to
estimate these effects. To address both matters, we present a sample of cases documenting the influence that predictor
distribution have on statistical power as well as a user-friendly, web-based application to conduct power analysis for
multilevel logistic regression.

Method: Computer simulations are implemented to estimate statistical power in multilevel logistic regression
with varying numbers of clusters, varying cluster sample sizes, and non-normal and non-symmetrical distributions
of the Level 1/2 predictors. Power curves were simulated to see in what ways non-normal/unbalanced distributions of
a binary predictor and a continuous predictor affect the detection of population effect sizes for main effects, a cross-
level interaction and the variance of the random effects.

Results: Skewed continuous predictors and unbalanced binary ones require larger sample sizes at both levels
than balanced binary predictors and normally-distributed continuous ones. In the most extreme case of
imbalance (10% incidence) and skewness of a chi-square distribution with 1 degree of freedom, even 110 Level 2
units and 100 Level 1 units were not sufficient for all predictors to reach power of 80%, mostly hovering at
around 50% with the exception of the skewed, continuous Level 2 predictor.

Conclusions: Given the complex interactive influence among sample sizes, effect sizes and predictor distribution
characteristics, it seems unwarranted to make generic rule-of-thumb sample size recommendations for multilevel
logistic regression, aside from the fact that larger sample sizes are required when the distributions of the predictors are
not symmetric or balanced. The more skewed or imbalanced the predictor is, the larger the sample size requirements.
To assist researchers in planning research studies, a user-friendly web application that conducts power analysis via
computer simulations in the R programming language is provided. With this web application, users can conduct
simulations, tailored to their study design, to estimate statistical power for multilevel logistic regression models.
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Background
Data with dependencies due to clustering or repeated
measurements are commonplace within the behavioural
and health sciences [1–3]. Acknowledging these depend-
encies increases the complexity of research hypotheses
and places new demands on the analytical methods
needed to test said hypotheses [4]. From the array of
statistical techniques that can handle these types of de-
pendencies, multilevel modelling or linear mixed effects
models have become commonplace, with a wide variety
of applications within epidemiological, social, educa-
tional and psychological fields [5].
In spite of the popularity of these statistical approaches,

the added complexity implied by them places a demand
for a more sophisticated technical knowledge on the user,
whether it relates to issues of estimation, interpretation or
distributional assumptions of the data [6, 7]. Sample size
determination falls within this spectrum of added com-
plexity since it cannot be calculated exactly and needs to
be approximated via computer simulation [8]. Maas and
Hox’s [9] and Pacagnella’s [10] simulation studies provide
one of the most often-cited guidelines regarding sample
sizes in multilevel models where they claim that, if fixed
effects are of interest, a minimum of 30 Level 1 units and
10 Level 2 units are required and, if the inferences pertain
to random effects, the number of Level 2 units should in-
crease to 50. This is sometimes referred to in the literature
as the “50–30 rule” of multilevel modelling and has been
used before as sample size justification for using this type
of statistical method [11–13]. It is important to highlight,
however, that the recommendations based on these stud-
ies pertain exclusively to issues of estimate bias. When
these same sample size recommendations are used to esti-
mate power, they generally fall short of the commonly rec-
ommended 80% [14, 15].
Not much research has been published regarding sam-

ple size recommendations for multilevel logistic regression
models or other types of generalized linear models [16,
17]. Zhang and Yuan [18] looked at issues of power ana-
lysis and predictor distributions, but their recommenda-
tions are presented within the context of single-level
logistic regression. Only two studies seem to directly ad-
dress the issue of power within the context of mixed ef-
fects logistic regression. Moineddin, Matheson and
Glazier [19] concluded that, although multilevel logistic
regression shares similar characteristics to regular multi-
level linear regression, there are some important differ-
ences, such as the need for much larger samples to obtain
unbiased estimates when testing for cross-level interac-
tions. They also found that, although Wald-type confi-
dence intervals showed a more consistent 95% coverage
for fixed effects, the confidence interval coverage for ran-
dom effects was biased downwards resulting in an infla-
tion of Type I error rates. Schoeneberger [20] offers a

comprehensive simulation study aimed at informing re-
searchers of issues related to sample size and power when
working with multilevel logistic regression, highlighting
the fact that the sample size requirements for the appro-
priate use of these models is much larger than what is rec-
ommended for continuous multilevel linear models [11].
In some of their studies, particularly those with
medium-sized, fixed effects regression coefficients, up to
80 Level 2 clusters, each with 100 Level 1 units, were
needed to yield the 80% power recommended in the litera-
ture. He also offers one of the few examples where a
dummy-coded binary predictor variable is included as
both a Level 1 and Level 2 predictor; showing that if a bin-
ary variable is placed in the model, it tends to require lar-
ger sample sizes than that of a continuous predictor at
both levels to make sure that its power and Type I error
rate fall within their nominal values of .8 and .05
respectively.
In spite of the work that has been done to document the

impact that sample characteristics have on the power of
multilevel logistic regression, there still remain several ave-
nues of research. For instance, it is not uncommon to work
with continuous predictors that are not normally-distributed
(e.g., income) or categorical predictors with an uneven num-
ber of participants within each group (e.g., minority status).
Yet most of the simulation studies published to date assume
both symmetrically-distributed predictors and equal number
of participants across categories [14, 21–23]. There is virtu-
ally no information regarding the power to detect either
continuous by categorical or categorical by categorical inter-
actions [24]. Commonly, power analyses are conducted by
using ready-made statistical software that assumes ideal con-
ditions (i.e., normally distributed continuous variables and
balanced categorical discrete variables) for the type of the
data the researchers may encounter. The nature of the pre-
dictors can, however, have a considerable impact on the
power to detect an effect and the influence that the pre-
dictor distribution has on power tends to be overlooked by
researchers or cannot be accommodated by current software
with pre-made routines [25–27].

The present study
In order to address these issues and following up on
the recommendations for future studies suggested by
Schoeneberger [20], the purpose of this article is two-
fold: (i) To investigate the power of multilevel logistic
regression models under commonly found conditions
that may violate the assumptions made in power ana-
lysis regarding the type of predictors used (e.g.,
non-normally distributed continuous predictors and
unbalanced categorical predictors); and (ii) to provide
applied researchers who may be unfamiliar with the
methodology of computer simulations with a
user-friendly web application so that power can be
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approximated at the sample and effect sizes deter-
mined by them. We hope that a point-and-click,
easily-accessible web application will help promote
the practice of more ‘realistic’ power analyses where
the distribution of the predictors is taken into
account.
With regards to the first objective, we will exemplify

the influence that the distribution of the predictors has
on approximated power by presenting several represen-
tative scenarios where the predictors at each Level may
be skewed or unbalanced using medium and large popu-
lation effect sizes. The power curves of the different
types of predictors (continuous, categorical and inter-
action) will be compared among themselves (primarily)
as well as across simulation conditions to understand
the interplay between distributional assumptions, effect
sizes and sample sizes.
With regards to the second objective a tutorial will be

presented towards the end of the article on how to use

the newly-developed web application so that simulations
similar to the ones presented here can be conducted or
adapted to the individual needs of each researcher.

Method
The following two-level multilevel model was used
throughout the simulations, both in its two-level equa-
tion notation and single-equation notation. Notice that
this model is the same one used in Moineddin, Mathe-
son and Glazier [19]:

logit πij
� � ¼ β0 j þ β1 jXij

β0 j ¼ γ00 þ γ01Z j þ u0 j

β1 j ¼ γ10 þ γ11Z j þ u1 j ð1Þ

As a single-equation model, Equation (1) can be
expressed as logit(πij) = γ00 + γ10Xij + γ01Zj + γ11(ZjXij) +

Fig. 1 Power curves for the continuous, Level 2 predictor. Conditions of normality (‘Normal’ in the figure legend), moderate (‘Mod. skew’ in the

figure legend or
ffiffiffiffiffiffiffi
8=5

p Þ and extreme (‘Extr. Skew in the figure legend or
ffiffiffi
8

p Þ skewness are presented. The population ICC is 0.3 and the regression coefficients
use a medium effect size of 0.3. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows
power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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u1jXij + u0j with
u0 j
u1 j

� �
� Nð 0

0

� �
σ2
0 σ01

σ01 σ2
1

� �
Þ by assumption,

where i denotes Level 1 units and j indexes Level 2 clus-
ters. In (1), β denotes Level 1 regression coefficients, γ is
used for Level 2 regression coefficients and u stands for a
random effect. The coefficient γ11 refers to a cross-level
interaction. This type of interaction effects is common-
place in contextual effects modelling where the level 1
predictor is an individual-level variable, such as minority
status or disease exposure, and the level 2 predictor may
stand for a cluster-level variable, such as neighbourhood
socioeconomic status or area-level pollution [28]. For in-
stance, consider the hypothetical scenario in which one
wishes to model the odds of a person’s infection as a func-
tion of disease exposure of the patient (a Level 1 pre-
dictor) and area-level measures of pollution (a Level 2
predictor). A cross-level interaction between exposure and
pollution (e.g., assuming that higher levels of pollution

among those exposed to the disease raise the odds of be-
coming infected if the same pattern does not occur for in-
dividuals not exposed to the disease) would be an example
of a contextual effects model where interaction among
Level 2 predictors with Level 1 ones are needed to further
understand the phenomenon being studied.
The degree of between-cluster relatedness was set

through the intraclass correlation coefficient (ICC) cal-
culated as an intercept-only model, logit(πij) = γ00 + u0j,

using the formula ICC ¼ σ20
σ20þσ2e

where σ2e ¼ π2

3 denotes

the variance of a standard logistic distribution. Medium
and large effect sizes, as defined in Cohen [29], were
used to populate Equation (1). The effect sizes for the
binary predictor are expressed in standardized mean dif-
ference units whereas the continuous predictor ones use
the correlational metric, matching the recommendations
presented in Cohen [29].

Fig. 2 Power curves for the binary categorical, Level 1 predictor. Conditions of balance (‘Balance’ in the figure legend or 50/50), moderate (‘Mod.
Imblanace’ in the figure legend or 70/30 ) and extreme (‘Extr. Imbalance in the figure legend or 90/10) imbalance are presented. The population
ICC is 0.3 and the regression coefficients use a medium effect size of 0.5. Power of 80% is marked with a horizontal line. The horizontal axis
denotes Level 1 sample size and the vertical axis shows power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for
Level 1 and LV2 stands for Level 2
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� σ20 ¼ π2

7 (medium effect size) as the variance of the

random intercept, which results in an ICC of
π2
7

π2
7 þπ2

3

¼ 0:3 and σ2
0 ¼ π2

7 (large effect size) for an ICC of 0.5
� σ21 ¼ 0:3 (medium effect size) and σ21 ¼ 0:5 (large

effect size) for the variance of the random intercept.
� γ10 = 0.5 (medium effect size) and γ10 = 0.8 (large

effect size) for the regression coefficient of the
binary predictor .

� γ01 = 0.3 (medium effect size) and γ01 = 0.5 (large
effect size) for the regression coefficient of the
continuous predictor .

� γ11 = 0.3 (medium effect size) and γ11 = 0.5 (large
effect size) for the cross-level interaction effect.

For the continuous predictor distribution, three levels
of skewness were used: normally-distributed predictors

(i.e., skewness of 0), a chi-square distribution with 5 de-

grees of freedom (i.e., moderate skewenss of
ffiffi
8

p
5 ) and a

chi-square distribution with 1 degree of freedom (i.e., ex-
treme skewness of

ffiffiffi
8

p
). The levels of skewness are simi-

lar to those encountered in real datasets as reported by
Micceri [30], Blanca et al. [31] and Cain, Zhang and
Yuan [24].For the binary categorical predictor three con-
ditions were studied: balanced (i.e., a 50/50 split between
the incidence group marked as 1 and the no-incidence
group marked as 0), a moderate imbalance (i.e., a 30/70
split with 30% of the sample showing incidence) and an
extreme imbalance condition (i.e., a 10/90 split with only
10% of the sample showing incidence). Three cases were
studied with some representative scenarios in an attempt
to better understand the relationship between power
and distributional assumptions: Case (1): A “benchmark
scenario” with a standard, normally-distributed Level

Fig. 3 Power curves for the continuous (Level 2) by categorical (Level 1) cross-level interaction. Benchmark conditions (normally-distributed Level

2 and balanced Level 1 predictors or ‘Benchmark’ in the figure legend) as well as moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30 imbalance) and extreme

(skewness of
ffiffiffi
8

p
and 90/10 imbalance) conditions are presented. The population ICC is 0.3 and the regression coefficients use a medium effect size of

0.3. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows power. Level 2 sample
sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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2 predictor (Z) and an evenly-balanced, dummy-coded
Level 1 predictor (X). A second scenario with a
normally-distributed Level 1 predictor (X) and an ex-
tremely unbalanced Level 2 binary predictor (Z) and
a third scenario with an extremely skewed Level 1
predictor (X) and a perfectly-balanced Level 2 pre-
dictor (Z). Medium effect sizes were used throughout.
Case (2): Moderate and extremely unbalanced Level 1
predictor (X) with moderately and extremely skewed
Level 2 predictor (Z). Medium and large effect sizes
were used. Case (3): Moderately and extremely
skewed Level 1 predictor (X) with moderately and ex-
tremely unbalanced Level 2 predictor (Z). Medium ef-
fect sizes were used. For sample sizes, the Level 1
sample sizes were set to N1 = 10, 11, 12,… , 99, 100
and Level 2 sample sizes to N2 = 10, 30, 50, 70, 90,
110.

1 Please notice that the Level 1 sample sizes are
clustered within the Level 2 sample sizes so that, for

instance, in the first simulation condition there are 10
clusters, each cluster having 10, 11, 12,…,99, 100
Level 1 sample units for a total sample size of 10
clusters × 100 sample units per cluster = 1000 col-
lected sample units. For the second condition there
are 30 clusters where each of the thirty clusters has
10, 11, 12,…,99,100 units and so on for all possible
combinations of Level 1 and Level 2 sample sizes.
The simulations were all conducted in the R pro-

gramming language using the simglm, paramtest and
lme4 packages. Gaussian quadrature integration was
used for estimation and Wald-type standard errors
and p-values were employed to calculate the power of
the fixed effects. Statistical significance for the ran-
dom effects was evaluated via the recommended
one-degree-of-freedom, likelihood-ratio test where a
chi-square difference test is conducted between the
reduced model and the extended model with the

Fig. 4 Power curves for the variance component of the random intercept are presented. Benchmark conditions (normally-distributed Level 2 and

balanced Level 1 predictors or ‘Benchmark’ in the figure legend) as well as moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30 imbalance) and extreme

(skewness of
ffiffiffi
8

p
and 90/10 imbalance) conditions are shown. Variance for the random intercept is σ20 ¼ π2

7 for an ICC of 0.3. Power of 80% is
marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are shown on top
of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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added random effects [9–11, 20]. For each combin-
ation of simulation conditions, 1000 replications were
run and the proportion of statistically significant par-
ameter estimates from the total number of simula-
tions was calculated as the empirical power of each
model. The nominal alpha of 5% was used to test the
significance of the coefficients.

Results
The results are presented in two parts. First, we present
the findings (power curves) from our simulation study.
Second, we describe our newly developed web applica-
tion that integrates the findings from our simulation
study. The R-based web application allows researchers
to conduct a priori power analyses for multilevel logistic
regression with binary, skewed and normally-distributed
predictors.

Fixed effects, binary level 1 predictor and continuous
level 2 predictor (medium effect sizes)
Figures 1, 2 and 3 present the power curves obtained
from the benchmark model (balanced Level 1 categorical
predictor and normally-distributed Level 2 predictor),
moderate skewness/imbalance and extreme skewness/
imbalance for the continuous, categorical and cross-level
interaction. The ‘benchmark model’ reflects the ‘stand-
ard assumptions’ found in previous literature [19, 20]
and what one would expect most typical power analyses
for multilevel logistic regression may look like. For the
case of benchmark model, the power to detect an effect
for the Level 2 predictor was sensitive to the number of
clusters and, by the time the Level 2 sample size reached
50 or more, the detection of a medium effect
approached the probability of 1. The power for the ef-
fects of the Level 1 predictor and the interaction do re-
quire interplay between Level 1 and Level 2 sample

Fig. 5 Power curves for the variance component of the random slope are presented. Benchmark conditions (normally-distributed Level 2 and

balanced Level 1 predictors or ‘Benchmark’ in the figure legend) as well as moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30 imbalance) and extreme

(skewness of
ffiffiffi
8

p
and 90/10 imbalance) conditions are shown. Variance for the random slope is σ21 ¼ 0:3 with an ICC of 0.3. Power of 80% is

marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are shown on top
of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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sizes. In general, larger number of Level 2 units also
carry larger number of Level 1 units (given this simula-
tion design) so that the power of Level 1 effects in-
creases as a function of both, with the increase being
more pronounced at the highest Level 2 sample size
when compared to the lowest Level 2 sample size.
With the exception of the lower end of the sample size

at Level 1, (around N1 = 30) by the time the simulation
reaches 90 clusters, the power for the three types of
effects was above the recommended minimum reported
in Hox et al. [11].
For the moderate skewness/imbalance conditions, the

degree of imbalance of the Level 1 predictor moved from
50%/50 to 70% of the sample belonging to the group
coded as ‘0’ and 30% belonging to the group coded as ‘1’.
For the continuous predictor, the Level 2, continuous
predictor was sampled from a chi-squared distribution
with 5 degrees of freedom. For the fixed effect of both
types of predictors, the power was adversely affected by

the increased skewness or imbalance of the predictor
distribution, where larger samples both at the cluster
and individual level were required in order to detect the
desired effect. When the Level 2 sample size was 90 or
larger, categorical and continuous main effects were de-
tected in the vast majority of cases, but the interaction
term lagged behind (N1 needed to be larger than
approximately 30 to reach acceptable levels of power).
Even at the largest Level 2 sample size of 110, the num-
ber of Level 1 units needed to be larger than 30 to en-
sure all three types of regression effects had a good
probability of detection.
Finally, the extreme imbalance/skewness conditions

(i.e., the “worst case” scenario), presents a severely
skewed predictor at Level 2 (a chi-square distribution
with 1 degree of freedom) and an extremely unbalanced
categorical predictor at Level 1 (with 90% of the sample
marked as belonging to the ‘0’ group and only 10% of
the sample in the ‘1’ group). In this specific case, only

Fig. 6 Power curves for the continuous, Level 2 predictor. Conditions of moderate (‘Mod. skew’ in the figure legend or
ffiffiffiffiffiffiffi
8=5

p Þ and extreme (‘Extr.

Skew in the figure legend or
ffiffiffi
8

p Þ skewness are presented. The population ICC is 0.5 and the regression coefficients use a large effect size of 0.5.
Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows power. Level 2 sample
sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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the continuous Level 2 predictor has a slightly better
than 50/50 chance of detecting an effect at the larger
cluster sizes. Neither the Level 1 categorical predictor
nor the cross-level interaction come close, only reaching
power of 50% at the largest cluster size of 110 and Level
1 units close to 100.

Random effects, binary level 1 predictor and continuous
level 2 predictor (medium effect sizes)
Figures 4 and 5 present the power curves for the vari-
ance of the intercept and the random effects in all three
simulation conditions, both evaluated via the likelihood
ratio test. For the benchmark case, in both cases, the
power to detect these variances depends on the interplay
between Level 1 and Level 2 sample sizes. In general, the
power to detect an effect for the intercept variance is
higher than that of the slope variance, with the excep-
tion of lower Level 1 and Level 2 sample size conditions.

For the moderately skewed Level 2 predictor and the
moderately unbalanced Level 1 binary predictor (30% of
the sample labelled as “1”) the overall pattern of power
curves exhibits few differences from the benchmark
model condition, preserving the pattern of higher power
to detect the variance of the intercept and, in compari-
son, lower power to detect the variance of the slope.
Level 1 units also play a slightly bigger role in increasing
the power to detect both effects, showing that, albeit
small, the type of the distribution of the fixed effects can
influence the ability to detect random effects.
Finally, the power curves for the random effects under

the most severe predictor conditions of a chi-square dis-
tribution with 1 degree of freedom for the Level 2 pre-
dictor and only 10% of the sample belonging to the
group labelled as ‘1’ for the categorical predictor. It ap-
pears that the increased skewness and imbalance of the
predictors exert a detrimental influence on the probabil-
ity of detection of the variance components, with the

Fig. 7 Power curves for the binary categorical, Level 1 predictor. Conditions of moderate (‘Mod. Imblanace’ in the figure legend or 70/30 ) and
extreme (‘Extr. Imbalance in the figure legend or 90/10) imbalance are presented. The population ICC is 0.5 and the regression coefficients use a
large effect size of 0.8. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows
power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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variance of the slope experiencing the largest shrinkage
of power compared to the variance of the intercept.

Fixed effects, binary level 1 predictor and continuous
level 2 predictor (large effect sizes)
Figures 6, 7 and 8 show the same levels of skewness of the
continuous predictor and imbalance of the categorical
predictor with one important exception: the population ef-
fect sizes are now large instead of medium. This helps ex-
plore how distributional characteristics interact with
larger effect sizes and if they help enhance the probability
of detecting an effect when compared to medium effect
sizes. In general, large population effect sizes resulted in
power curves with steeper slopes which also converged to
the upper limit of 1 faster. They also preserve the same
pattern where the continuous predictor exhibits higher
probability of effect detection compared to the categorical
predictor and the interaction effect. The interaction effect
always showed the lowest power, although, in the large

effect size condition, it does reach acceptable levels of
power towards the largest Level 2 sample size conditions.
The condition of extreme skewness and extreme imbal-
ance also reveals a wider range of estimated power across
Level 1 and Level 2 sample sizes. Whereas for moderate
effect sizes the probability of detection was constricted
and increasing slowly, for large effect sizes the slopes of
the power curves were much steeper so that increases in
sample sizes (at Level 1 or Level 2) were met with consid-
erable gains in power.

Random effects, binary level 1 predictor and continuous
level 2 predictor (large effect sizes)
Similarly to what was shown in the previous section for
the fixed effects, defining large population effect sizes
for the random effects also resulted in larger prob-
abilities of detection when compared to medium ef-
fect sizes, diminishing the negative influence that
increases in skewness and imbalance had on

Fig. 8 Power curves for the continuous (Level 2) by categorical (Level 1) cross-level interaction. Moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30

imbalance) and extreme (skewness of
ffiffiffi
8

p
and 90/10 imbalance) simulation conditions are presented. The population ICC is 0.5 and the regression

coefficients use a large effect size of 0.5. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the
vertical axis shows power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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estimated power. The overall pattern in the power
curves shown in Figs. 9 and 10 remained the same
for both cases, even though the power to detect the
variance of the intercept was consistently greater than
the power to detect the variance of the slope. It is
important to point out that for the case of moderate
skewness and moderate imbalance, a wider range of
estimated power was observed than for the cases of
extreme skewness and imbalance. This wider range,
however, was only observed for the case of lower
Level 2 sample sizes (i.e., N2 = 10, 30) and disap-
peared for larger Level 2 samples, where the random
effects of both intercept and slope showed larger
levels of power.

Fixed effects, continuous level 1 predictor and binary
level 2 predictor (medium effect sizes)
This section begins by showing the scenario where the
Level 2 predictor is now binary categorical and the Level

1 predictor is continuously-distributed. Several import-
ant differences arose in Figs. 11, 12 and 13 when com-
pared to Figs. 1, 2 and 3, where the distribution of the
predictors switches levels. Power overall appears to be
better in this present scenario, with the estimated power
of both predictors and their respective interaction con-
verging faster to their theoretical upper limit of 1 than
in the scenarios presented in Figs. 1, 2 and 3. It appears
that, although the continuous predictor is skewed, more
sample units at the Level 1 helped it capture the rela-
tionship more efficiently. In a similar manner, although
the effective sample size for the Level 2 predictor was
smaller (i.e., it only depended on the number of Level 2
units as opposed to Level 1 sample size which is a prod-
uct of both Level 1 times Level 2 units), with no random
effect for the binary predictor, the variability of the esti-
mates is reduced so that power to detect an effect im-
proves. Although the power to detect the categorical by
continuous interaction in both scenarios is low, it shows a

Fig. 9 Power curves for the variance component of the random intercept are presented. Moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30 imbalance)

and extreme (skewness of
ffiffiffi
8

p
and 90/10 imbalance) simulation conditions are shown. Variance for the random intercept is σ20 ¼ π2

3 for an ICC of
0.5 (large effect size). Power of 80% is marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power.
Level 2 sample sizes are shown on top of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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moderate improvement when a continuous Level 1 pre-
dictor interacts with a binary Level 2 predictor.

Random effects, continuous level 1 predictor and binary
level 2 predictor (medium effect sizes)
This section also considers the condition where the
Level 2 predictor is binary categorical and the Level 1
predictor is continuously-distributed to mimic the same
process described above. The same levels of moderate
and extreme skewness/imbalance were used. The trend
of estimated power curves found for the fixed effects
case is emphasized even more strongly when analyzing
the random effects associated with the variance of the
intercept and slope of the Level 1, continuous predictor.
When comparing Figs. 4 and 5 with Figs. 14 and 15, it
becomes apparent that, although the increase in skew-
ness and imbalance still affects the probability of detec-
tion, this probability was higher for the case of random
effects of continuous predictors than binary categorical

predictors. This could very well be the case that the ran-
dom effects are Level 1 properties, i.e., they depend on
whether the low-level sample sizes change from cluster
to cluster.

Normally-distributed, level 1 predictor and extremely
unbalanced level 2 predictor (medium effect sizes)
In order to attempt to isolate the different influences that
predictor distributions can have on estimated power and
understand if the type of random variable simulated (con-
tinuous VS categorical) plays a role on estimated power,
Fig. 16 present the case of a normally-distributed Level 1
predictor and an extremely unbalanced (i.e., 10% inci-
dence) Level 2 predictor for medium effect sizes. The
normally-distributed Level 1 predictor shows large esti-
mated power across all conditions of Level 1 and Level 2
sample sizes. The usual patterns were also observed with
the categorical predictor and the interaction with one im-
portant twist. As Level 2 sample sizes reached 70 clusters

Fig. 10 Power curves for the variance component of the random slope are presented. Moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30 imbalance) and

extreme (skewness of
ffiffiffi
8

p
and 90/10 imbalance) simulation conditions are shown. Variance for the random slope is σ21 ¼ 0:5 with an ICC of 0.5

(large effect size). Power of 80% is marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level
2 sample sizes are shown on top of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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or more, the power to detect an interaction is higher than
that of its corresponding categorical main effect. The
interaction with the normally-distributed predictor (which
enhances the detection of an effect) may be exerting an at-
tenuating influence on the reduced incidence, making the
power estimates higher than those of the binary predictor.

Extremely skewed level 1 continuous predictor and
balanced level 2 predictor (medium effect sizes)
Finally, Fig. 17 shows the case for a Level 1,
chi-square-distributed continuous predictor with 1 degree
of freedom (i.e., population skewness of

ffiffiffi
8

p
) and a balanced

Level 2 categorical predictor, following on the same trend to
try and understand whether the type of random variable in-
vestigated (continuous VS categorical) plays a role in power
or not. This is the only case where the power of the categor-
ical predictor is consistently greater than the continuous
predictor and its interaction, although at larger Level 1

sample sizes the power of both types of predictors are very
close to each other. It is also important to point out that for
the skewed, continuous predictor there is a wider range of
estimated power values whereas for the categorical pre-
dictor the range of power tends to shrink towards its upper
bound as the number of Level 2 units increases. For in-
stance, after 50 Level 2 units the power is consistently over
50% and at the largest Level 2 sample size of 110 it is almost
always 1. The interaction still shows lower power than its
corresponding main effects, albeit it gets closer and closer
in power as the sample sizes at Levels 1 and 2 increase. It
appears that having a skewed Level 1 predictor combined
with a balanced categorical predictor results in lower power
estimates than a normally-distributed Level 1 predictor with
an extremely unbalanced Level 2 predictor. This echoes the
previous explanations of the difficulties associated with cat-
egorical predictors where the ability to detect an effect is
negatively impacted by the number of sample units that ex-
hibit the effect.

Fig. 11 Power curves for the continuous, Level 1 predictor. Conditions of moderate (‘Mod. skew’ in the figure legend or
ffiffiffiffiffiffiffi
8=5

p Þ and extreme

(‘Extr. Skew in the figure legend or
ffiffiffi
8

p Þ skewness are presented. The population ICC is 0.3 and the regression coefficients use a medium effect
size of 0.3. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows power.
Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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Implications of results: a new web application to conduct
power analysis for multilevel logistic regression
Currently, researchers must conduct computer simula-
tions to estimate power for multilevel logistic regression
models. This creates a technical barrier between applied
researchers and best practices in data analysis. Yet, re-
searchers must implement best practices when planning
research studies (including sample size determination)
and when applying for research grants. The current lack
of availability of a user-friendly computer simulation
software that can estimate power for predictors with
(commonly encountered) non-normal/unbalanced distri-
bution characteristics and cross-level interactions may
push researchers to rely on questionable rules of thumb
to justify/plan their sample sizes.
In order to address this issue, we have created a freely

available web application developed in the R package
shiny that provides a user-friendly, point-and-click inter-
face to run the simulations in the present article.

Researchers can try their own combinations of Level 1
and Level 2 sample sizes, effect sizes for regression coef-
ficients and variance components in order to calculate
statistical power for the specified fixed and random ef-
fects. In line with the approach in the present simulation
study, users can also change the distribution of the pre-
dictors under study. For continuous predictors there are
two options: normally-distributed or skewed (i.e.,
chi-square distributed with 1 degree of freedom). For
the binary categorical predictor, the user has the option
of selecting the proportion (from 0 to 1) of Level 1 units
coded as ‘1’. If researchers are well-versed in the R pro-
gramming language, the source code running the simu-
lations is also provided so that it can be downloaded and
modified at will.
The computations involved in approximating the power

for these types of models can place an undue burden on
the server where the web application is hosted. This is es-
pecially true if a large number of people are accessing it

Fig. 12 Power curves for the binary categorical, Level 2 predictor. Conditions of moderate (‘Mod. Imblanace’ in the figure legend or 70/30 ) and
extreme (‘Extr. Imbalance in the figure legend or 90/10) imbalance are presented. The population ICC is 0.3 and the regression coefficients use a
medium effect size of 0.5. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis
shows power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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simultaneously. An alternative solution would be to run
small number of replications (perhaps 100 or 500) mul-
tiple times and take the average of these power estimates.
Running 10 simulations with 100 replications and taking
the average of those 10 simulations is equivalent to run-
ning 1 simulation with 1000 replications. The benefit of
taking the small-number-of-replications approach is that
the demands placed on the server are lower, preventing
potential crashes. In general, one requires a large number
of replications to ensure the reliability of simulation find-
ings. Although the default is set at 10 replications, this is
merely as an example and not sufficient for research
purposes.
The shiny web application with instructions and full

tutorial can be found in:
https://psychometroscar.com/2018/07/31/power-ana-

lysis-for-multilevel-logistic-regression/
Although not currently available within the web applica-

tion, the personal github account of the first author hosts

R code capable of running uneven Level 1 sample sizes
within Level 2 clusters to extend the applicability of this
simulation-based approach to power analysis. A link to
the R code is provided in the same webpage where the tu-
torial is hosted. It is also currently not possible for the
web application to approximate a full power curve, given
the unreasonable amount of time that it would take the
server to do this, but the R code provided can offer this to
the user if it were to be run in a local computer.

Discussion
The popularity of multilevel or linear mixed effects
models to analyze clustered data and investigate com-
plex hypotheses has placed an increased demand on the
technical knowledge of researchers interested in using
them. Because no closed-form formulas are available,
power analyses for multilevel logistic regressions can
only be approximated through computer simulation [11,
32]. Even though we used a (relatively) simple and

Fig. 13 Power curves for the continuous (Level 1) by categorical (Level 2) cross-level interaction. Moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30

imbalance) and extreme (skewness of
ffiffiffi
8

p
and 90/10 imbalance) simulation conditions are presented. The population ICC is 0.3 and the regression

coefficients use a medium effect size of 0.3. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and
the vertical axis shows power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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common model that reflects realistic data analysis condi-
tions, the simulation results highlight the substantial in-
fluence that predictor distributions may have on the
statistical power for main effects and interaction effects.
In the following, we discuss several trends from our re-
sults that we believe are important to highlight.
First, categorical predictors require larger sample sizes

to reach acceptable levels of power than continuous pre-
dictors. This is not a new finding within the multilevel
model literature for both linear and logistic regression
but, to the authors’ knowledge, this is the first simula-
tion attempt that manipulates the proportion of preva-
lence in the Level 1 predictor [14]. The presence of
unevenly-distributed groups is commonplace in
epidemiological-observational studies, and the simula-
tion results presented herein highlight the fact that un-
balanced Level 1 predictors can substantially reduce the
statistical power for the detection of an effect. Power

analyses that are conducted without taking this aspect
into consideration may result in over-optimistic power
estimates. Although the distribution of the continuous
predictor influenced the approximated power, it was
mostly negligible with the Level 2 coefficient showing
acceptable levels at 50 clusters or more.
Second, cross-level interactions require larger samples

at both levels and the sample size demands are usually
higher than those of its constituent main effects. This
has also been demonstrated previously in the literature
for multilevel models, but this simulation attempts to
highlight the cases where the ability to detect interac-
tions is further influenced by the distributions of the
predictors that define it [20]. This information is par-
ticularly relevant to researchers who examine hypotheses
within models that involve theoretically and practically
relevant cross-level interactions [18].The results pre-
sented here highlight the fact that large sample sizes

Fig. 14 Power curves for the variance component of the random intercept are presented, now for a Level 1 (continuous) and Level 2

(categorical) predictors. Moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30 imbalance) and extreme (skewness of

ffiffiffi
8

p
and 90/10 imbalance) simulation

conditions are shown. Variance for the random intercept is σ20 ¼ π2
7 for an ICC of 0.3 (medium effect size). Power of 80% is marked with a

horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are shown on top of each panel in
grey. LV1 stands for Level 1 and LV2 stands for Level 2
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may be needed to detect a given effect size in this kind
of setting.
Third, we recommend researchers to conceptualize

their power analyses in terms of curves as opposed to
single point estimates. The computational time needed
to obtain a power curve might be cumbersome, due to
the fact that a full simulation is needed for each combin-
ation of conditions; however, power curves allow re-
searchers to see how the power of each predictor
behaves in combination with other predictors in the
model. Such information would be invaluable for plan-
ning Level 1 and Level 2 sample sizes and for making
adequate inferences about levels and effect sizes for each
predictor. Because two different types of sample sizes
play a role in these analyses (the individual-level and
cluster-level one), there is more than one combination
of them that, for a given population effect size, would
yield the same power. Whenever possible, using power

curves for meaningful combinations of sample and effect
sizes is recommended.
Finally, in light of our findings we recommend that re-

searchers who conduct studies requiring multilevel logis-
tic regressions with unbalanced/non-normal predictors
to very judiciously choose a study’s hypothesized effect
size estimates, based on existing research evidence –
ideally, by drawing from comprehensive literature re-
views or consulting published meta-analyses – before a
power analysis is conducted [33]. This is important, be-
cause researchers commonly default to Cohen’s generic
effect size categorization [29] and a hypothesized effect
size that is too small or too large – however, defaulting
to a general benchmark may provide an overly conserva-
tive or overly liberal estimate of power, particularly if
small or medium effect sizes are paired with unbalanced
groups or skewed predictors. Ideally, an informative
combination of power curves at different population

Fig. 15 Power curves for the variance component of the random slope are presented, now for a Level 1 (continuous) and Level 2 (categorical)

predictors. Moderate (skewness of
ffiffiffiffiffiffiffi
8=5

p
and 70/30 imbalance) and extreme (skewness of

ffiffiffi
8

p
and 90/10 imbalance) simulation conditions are

shown. Variance for the random slope is σ21 ¼ 0:3 with an ICC of 0.3 (medium effect size). Power of 80% is marked with a horizontal line.
Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are shown on top of each panel in grey. LV1
stands for Level 1 and LV2 stands for Level 2
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effect sizes should be calculated so that researchers can
observe the power-sample size trade-off more directly
and make practical decisions accordingly.

Conclusion
Power analysis in multilevel modelling requires a nu-
anced understanding of how the statistical models are
defined and estimated. Thanks to the advances of mod-
ern computers, it is now possible to calculate these
power analyses, but more research is needed both in the
type of predictors and how they interact in situations
with non-normal and/or unbalanced distributions. For
instance, creating an imbalance in dummy-coded cat-
egorical predictors induces a correlation between this
predictor and its Level 2 counterpart, a simulation factor
that we did not investigate but which is known to influ-
ence the power to detect an effect [34]. In our simula-
tion, we exclusively worked with a binary predictor, and
it would be of interest to future users to see how this
generalizes to predictors that are coded for multiple

groups. We highlighted that the level of imbalance of
the categorical predictor or skewness of the continuous
predictor were related to a decrease in approximated
power, but only a descriptive relationship is of this fact
is offered in the present article. Elucidating this point
from a more mathematically-justified perspective would
help users understand the relationship between distribu-
tional assumptions and power in a more proper fashion.
Also, it remains to be seen in what ways introducing
additional (and possibly correlated) Level 1 and Level 2
predictors affect the statistical power of Level 1 and
Level 2 predictors with non-normal/unbalanced distribu-
tional properties, in the multilevel logistic regression
case. Although the definitions of “small”, “medium” and
“large” effect size are commonplace within the scientific
literature, the simulation design presented herein does
not account for the changes in the variance of the pre-
dictors (e.g., a variance of .25 for the 50/50 binary condi-
tion VS .09 for the 90/10 unbalanced condition or a
variance of 1 for the standard normal case VS a variance

Fig. 16 Power curves for continuous, normally-distributed Level 1 predictor and unbalanced, categorical Level 2 predictor (10% incidence). The
population ICC is 0.3 and the regression coefficients use medium effect sizes (0.3 for continuous predictor and 0.5 for the categorical predictor).
Power of 80% is marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are
shown on top of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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of 2 for the chi-square distribution with 1 degree of free-
dom). An important avenue of future research could
include a design that controls for this fact as well,
given the relationship between issues of variability
and power, particularly at smaller samples. Finally,
multilevel logistic regression is becoming relatively
well-known among researchers, but there are other
multilevel generalized linear models (such as Poisson
regression or Negative Binomial regression) which
have received far less attention with regards to the
power to detect their effects and the influence that
predictor distributions have on it. This could be an
interesting avenue of future research to help comple-
ment the literature of multilevel models and their
sample size requirements. We hope that the findings
from our simulation and the newly developed inter-
active power web application supports researchers in
obtaining estimates of power in multilevel logistic re-
gression without resorting to “one-size-fits-all”

solutions, and also informs further theoretical and ap-
plied research in this complex and growing area of
research.

Endnotes
1Preliminary simulations were conducted to ensure

that Type I error rate was maintained. Symmetric distri-
butions with non-zero kurtosis were also examined. No
detrimental effect on the power of the tests was found
from these distributions.
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