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Abstract

Background: Sequence symmetry analysis (SSA) is a signal detection method that can be used to assist with
adverse drug event detection. It provides both a risk estimate and a data visualisation. Published methods provide
results in the form of an adjusted sequence ratio, which adjusts for underlying market trends of medicine use,
however no method for adjusting the visualisation is available. We aimed to develop and evaluate another method
of adjustment for prescribing trends and apply it to the SSA visualisation.

Methods: The SSA method relies on incident prescriptions for pairs of medicines of interest. Smoothing curves
were fitted to the frequency distributions of incident medicine use. When divided and normalised, these curves
yielded a set of proportions related to differences in prescribing trends over follow-up. These were then used to
adjust the unit counts for incident prescriptions in the SAA visualisation and to calculate the sequence ratio. Curve
fitting was also used to identify the proportional relationship between sequences over time for SSA and is
presented as a supplementary visualisation to the SSA. We compared the sensitivity and specificity of our method
with that from the SSA method of Tsiropolous et al.

Results: Curve-fit adjusted SSA visualisations yielded adjusted sequence ratios very close to those of Tsiropolous, with
a p-value of 0.999 for the two sample Kolmogorov-Smirnov test. Results for sensitivity and specificity derived from
adjusted sequence ratios were also practically the same. The curve-fit method graphically indicates the proportionality
of the sequence and provides a useful supplement of net differences between the two sides of the SSA visualisation.
Additionally, we found that incident prescriptions for patients common to both distributions are best precluded from
adjustment calculations, leaving only incident prescriptions for patients unique to one or other distribution. This
improved the accuracy of SSA in some atypical instances with negligible affect on accuracy elsewhere.

Conclusions: Our curve-fit method is equivalent to current methods in the literature for adjusting prescribing trends in
SAA, with the advantage of providing adjustment incorporated in the SAA visualisation.

Keywords: Sequence symmetry analysis (SSA), Waiting time distribution (WTD), Prescribing trend, Rate ratio (RR), Curve
fitting

Background
Sequence symmetry analysis is a signal detection method
used to assist with adverse drug event detection. The
method is suitable for use in administrative claims data
or electronic health records and has a similar perform-
ance to signal detection methods used with spontaneous
adverse drug reaction reports [1–3].
SSA uses a case-only design that assesses the sequence

of incident use of two medicines of interest within a

specified time interval. If the use of each medicine is in-
dependent then chance alone determines the sequence
order, hence the distribution of sequence orders in a
population who have both medicines is effectively
symmetrical. Alternatively, if a medicine is associated
with an adverse event then we expect the distribution of
sequence orders to be asymmetrical [4].
Specifically, if a medicine A has no adverse effect, the

likelihood of starting a medicine B (as an indicator of
treatment for an adverse event) after medicine A is the
same as that for starting medicine B before medicine A.
Where there is an adverse effect, the likelihood of
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starting medicine B after starting medicine A is greater
than that for starting medicine B before medicine A.
The method calculates the ratio of number of persons
who start medicine B after medicine A, to number of
persons who start medicine B before medicine A. This is
called the crude sequence ratio. Because the method is
sensitive to prescribing trends over time, a null-effect
sequence ratio is calculated to adjust for temporal trends
in medicine use. The null-effect sequence ratio is the
expected sequence ratio in the absence of a causal asso-
ciation, given incident medicine use and events in the
background population.
SSA also produces a visualisation of sequence orders,

enabling the temporality of sequences to be assessed. The
visualisation displays the frequency of patients by time
between incident dispensing of two medicines of interest
and is usually produced as a summary by weeks between
sequences. It can be a valuable addition in determining
the likelihood that a statistically significant result repre-
sents a signal for an adverse drug event as these are tem-
porally associated with initiation of therapy, with the
majority occurring within the first 4 months [5]. Currently,
while the null-effect sequence ratio adjusts for changes in
prescribing trends over time, no method is available that
provides an adjusted visualisation. We aimed to develop
and evaluate a method of adjustment for prescribing
trends applied to the SAA visualisation.

Waiting time distributions
An SSA visualisation is derived from two distributions of
start day counts, one for each medicine, from which the
patients common to both distributions are extracted.
These distributions are called waiting time distributions
(WTDs) [4, 6]. They are daily counts over a follow-up
period for first dispensing of each medicine. Figure 1

shows WTDs for amlodipine, a medicine for hyperten-
sion or heart disease, and frusemide, a diuretic. The
number of patients first dispensed each medicine was
plotted for each day from data spanning 10.5 years from
mid-2005 to end-2015. The higher initial counts, which,
in this instance, subside within the first 12 months, in-
clude counts for repeat dispensing of medicines after un-
identified dispensing sometime before mid-2005.
Accordingly, the first 12months of the WTDs is not used
in the SSA as incident use in this period cannot be deter-
mined. Differences in first supply times, measured in
numbers of days, between each medicine for patients
common to both WTDs are called supply lags. These sup-
ply lags make up the SSA visualisation of sequence orders.

Sequence symmetry analysis visualisation
For SSA we define a period within which we assume that
the supply of a medicine may result in an adverse out-
come. This period is informed by clinical relevance and
indicates the period up until where we expect the medi-
cine’s effect to have consistently diminished. Twelve
months has shown to be appropriate for many medicines
[1], hence our SSA visualisations are limited to 12
months. An example of an SSA visualisation is shown in
Fig. 2 in which amlodipine is suspected to have an
adverse effect. Each bar in the graph represents the
number of patients who started frusemide in that week
before or after starting amlodipine. Viewed together, the
sides should show symmetry if taking one medicine does
not lead to a condition that causes patients to take the
other medicine. In Fig. 2 there is more incident dispens-
ing of frusemide after incident dispensing of amlodipine
than before. Because there is more than chance alone
would suggest, we then conclude that some patients tak-
ing amlodipine develop a condition for which frusemide

Fig. 1 Waiting time distributions for a: amlodipine and b: frusemide over 10.5 years. The first year includes prevalent users, hence it is precluded
from follow-up
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is prescribed. The obvious interpretation is that of
oedema caused by vasodilatation.
The unadjusted, or crude, sequence ratio for the SSA

visualisation is calculated by dividing the number of pa-
tients with incident dispensing to the right of week zero
by the number of patients with incident dispensing to
the left of week zero. This estimates the incidence rate
ratio, which we refer to as rate ratio (RR). In Fig. 2, the
crude RR is 1.58. The adjusted RR seeks to compensate
for different background prescribing trends, which are
changes in medicine use that have nothing to do with
any adverse effect caused by a medicine but may influ-
ence the occurrence of a sequence of prescription. The

two methods of adjustment adopted in the literature are
Hallas [4] and Tsiropoulos [7] (see Additional file 1:
Appendix 1 for more information). The Tsiropolous
adjusted RR is 1.62.
The Hallas method was developed for studies where

there is no limitation in the time interval between two
treatments of interest. All incident observations in the
study period are used. The Tsiropoulos method is an
extension of the Hallas method and was developed for
studies where there is an upper cap on the interval
between two treatments of interest. The Tsiropoulos
method applies to this study, in which it is inappropriate
to make comparisons with the Hallas method.

Fig. 2 Unadjusted SSA visualisation for amlodipine and frusemide. The crude RR, 1.58, is the ratio of counts for first dispensings of frusemide occurring
after amlodipine (RHS) to counts for first dispensings of frusemide occurring before amlodipine (LHS). The Tsiropolous adjusted RR is 1.62

Fig. 3 a: Curve fitted WTD over a 9.5-year follow-up for amlodipine (suspected cause medicine). b: Corresponding curve fitted WTD for frusemide
(suspected effect medicine)
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The proportion of patients supplied both medicines,
shown in Fig. 2 as proportion of pairs in WTDs, is
calculated by dividing the total for patients supplied
both medicines across the two WTDs by the total for all
medicines (one or other medicine exclusively as well as
both medicines). Over the follow-up time of 9.5 years,
3.2% of patients were supplied both medicines. This pro-
portion is considered in the methods section.
In this paper we discuss adjustment methods for the

summary statistic and introduce a new method to pro-
duce an adjusted summary statistic that also allows
adjustment of the SSA visualisation. We compare the
results from our method with the Tsiropoulos-style sym-
metry analysis, but it is implicitly adapted to the Hallas-
style by not limiting the time between two treatments of
interest in the SSA visualisation. In the latter instance,
all incident observations in the study period are used.

Methods
There are often differences in prescribing trends between
two WTDs that need to be reconciled. If a medicine goes
off patent, for example, and uptake rapidly increases, this
would not be due to any causal mechanism ascribed to
the other medicine and would need compensating for by
adjustment to the crude RR. The adjusted RR attempts to
compensate for non-causal differences between two medi-
cines for patients common to both WTDs.
The Hallas method of adjustment was included

because it provides the context from which other devel-
opments ensue. (While ensuring our software program
has the flexibility to apply any of the methods where
appropriate, it also allowed us to examine the methods
under various test conditions.) Hallas provides a null-

effect sequence ratio representing an overall adjustment,
which does not adjust for counts of first supply times
based on where they occur in the WTDs. Tsiropoulos’
method yields a more locally derived null-effect se-
quence ratio from multiple, ‘moving window’ type calcu-
lations over shorter intervals of the WTDs. This
captures the effect of relatively local trend differences
between two WTDs. However, neither method provides
an adjustment to the shape of the SSA visualisation.
We have developed a way of calculating adjustment to

the SSA visualisation by curve fitting. Curve fitting is the
process of constructing a curve that fits a series of data
points. It determines characteristics of the data such as
rate of change anywhere on the curve, local minimum and
maximum points and area under the curve (probability
estimate) and can produce parameter values that most
closely match the data. Most tried and proven methods of
curve fitting are suitable for this purpose. (See Additional
file 1: Appendix 2 for a description of the method we
used.) Our default curve-fit parameter selects smoothing
values half way between no smoothing and full smoothing;
the former tracing the original graph and the latter tracing
a straight line of some orientation.
Upon curve fitting each WTD, as shown in Fig. 3 for

amlodipine and frusemide from mid-2006 to end-2015
(first year prevalent users excluded), we then divide each
fitted value of curve B (suspected effect medicine) by the
corresponding fitted value of curve A (suspected cause
medicine) to yield a set of ratios describing relative fre-
quencies. The set of ratios is then normalised by dividing
each value the by the average of all its values. This ex-
cludes the frequency difference between the WTDs but
retains the proportional difference in shape over the
WTD period. The proportions would all have a value of

Fig. 4 Supply lag 101 for frusemide (medicine b) after amlodipine (medicine a) across WTDs. There are nine supply lags with 101 days between
each medicine of a pair. Many pairs of first supply days are unique to a patient but others can be the same for two or more patients, such as
pairs 2 and 3. (Note: interleaving earlier pairs can be resolved by observing paired numbers)

Preiss et al. BMC Medical Research Methodology          (2019) 19:143 Page 4 of 12



1 if both WTDs had the same shape, no matter what the
shape might be.
As mentioned, numbers of days between supply times

of each medicine for patients common to both WTDs
are called supply lags. When accounting for underlying
temporal changes in medicine use we need to consider
where in the study-time supply lags occur. By way of ex-
ample, Fig. 4 shows counts of all supply days over
follow-up for just one of many sets of supply lags for
frusemide after amlodipine. It shows where supply lag
101 (i.e. where frusemide was first supplied 101 days
after amlodipine) occurs in the two WTDs. Counts of
supply days with the same supply lags are then summed.
In this instance, the count is nine. It comprises seven in-
dividual counts (frequency of 1) and two coincident
counts (frequency of 2).
Referring to Table 1, there are 23 pairs of first supply

days for frusemide after amlodipine constituting a set
with supply lag 1 and 14 pairs of first supply days consti-
tuting a set with supply lag 2, and so on, out to possible
supply days limited at supply lag 365. There is another
such instance for frusemide before amlodipine for which
counts of first supply days constituting sets of supply
lags are also summed. These are then used to construct
daily SSA data, which are further summed into weekly
groupings for a weekly SSA visualisation.
For frusemide after amlodipine there were 363 sets of

supply lags, as two sets were not found in the data. Table
1 shows just four of these: 23 pairs of first supply days
with a supply lag of 1 day in the WTDs, 14 with a supply
lag of 2 days, 9 with a supply lag of 101 days (refer to
Fig. 4), and 9 with a supply lag of 365 days. Each propor-
tion, derived from its specific location in the two WTDs,
is placed against the corresponding supply day within its
supply lag set. Summing counts of each set of supply
lags yields unadjusted SSA counts for the different sets
and summing the proportions over these sets yields ad-
justed SSA counts. The same scheme applies to frusem-
ide before amlodipine. This adjustment means that the
unit count for each supply lag in a set is otherwise
weighted by the normalised proportion according to
where it occurs in the WTDs. Any day a suspected effect
medicine of a pair occurs in its WTD, its contribution
(count) is adjusted according to the relationship on that
day to the suspected cause medicine WTD. That is, the
kind of adjustment ratios on the vertical axis of Fig. 5
described by curve B, are invoked on the day in the
WTDs that the suspected effect medicine is observed,
both in the medicine B before A situation and the B after
A situation.
Rate ratio adjustment compensates for different pre-

scribing trends due to external causes. These are changes
in prescribing frequency over time and need compensat-
ing for if each WTD is different in shape. Moreover, a

medicine of interest may cause a change of prescribing
frequency of another medicine, and this is additional to
the underlying trend. Any such change of prescribing
frequency is considered constant over follow-up; it is
considered not to alter the difference between trends in
the two WTDs. In practice, however, it can change over
time independently in each WTD, which can be prob-
lematic if the proportion of medicine pairs is high.
Hence applying any adjustment method yet discussed in
the literature works best where the proportion of medi-
cine pairs involved is typically low.
WTDs comprise exclusive components, which are

supplies to persons who did not receive the other

Table 1 Unadjusted and adjusted counts forfrusemide-after-
amlodipine supply lags 1, 2 … 101 … 365. The closer two WTDs
come to the having the same shape, the closer the proportions
come to having a value of one
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medicine of interest (i.e. not paired anywhere across the
WTDs), and inclusive components, which are supplies
to persons who had both medicines of interest (i.e.
paired anywhere in the WTDs.) Patients can have medi-
cine A exclusively, medicine B exclusively, or medicine A
and medicine B. Where a substantial proportion of
medicine pairs exist in relation to number of medicine
starts in a WTD and these vary in frequency over
follow-up, then this may differentially alter the original
background prescribing trends between WTDs. Some of
the difference in shape between two WTDs may be
attributed to an effect, which would corrupt an

adjustment—otherwise intended to compensate for dif-
ferent background prescribing trends—and tend to ad-
just out the effect. Consequently, only the exclusive
components should be used in adjustment calculations.
Figure 6 shows curve fitted WTDs of all compo-

nents for strontium ranelate and metoclopramide,
with the curve fit of exclusive components (lower
curves) superposed. Although the proportion of medi-
cine pairs across the WTDs is quite low (0.7%), the
relatively low contribution to overall medicine starts
from strontium ranelate means that the proportion of
medicine pairs is quite high at 7.85% with respect to

Fig. 5 a: Effect as a proportion of cause due to prescribing trends. On average, 1.816 times more patients started frusemide than started
amlodipine. b: Effect as a normalised proportion of cause due to prescribing trends. Dividing by the average (1.816) excludes the frequency
difference but retains the proportional difference in shape over the WTD period
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strontium ranelate on its own. Where there is little
or no change in shape between the WTDs because a
medicine of interest has little or no effect on the
background prescribing trend (constant over follow-
up), or because there are relatively few medicine
pairs, or because there is no cause-effect association,
both curves should run close to parallel within each
WTD. Figure 6 shows an example where using all
components of the WTDs resulted in a differential

change in shape between them due to a high propor-
tion medicine pairs for strontium ranelate.
Curve fitting the distribution of exclusive components

of each WTD eliminates this problem. It eliminates any
effect signal pairs might have upon the shape of one, the
other, or both WTDs, which would otherwise tend to
mitigate medicine cause-effect relationships upon adjust-
ment. Upon curve fitting exclusive components of each
WTD, we then, as before, divide each fitted value of

Fig. 6 The lower curves of Figures a and b show the prescribing trend for exclusive components—true trend—and the upper curves show the
prescribing trend for all components. In this example, using all components resulted in a differential change in shape between respective WTDs owing
to the change in shape of the distribution at Figure a. For little or no change in shape between WTDs, both curves should run close to parallel within
each WTD. (The two-year gap at the beginning of the WTDs indicates that fist supply times took extra time to settle down to where they could be
used for reliable follow-up)

Fig. 7 The curve-fit adjusted RR for amlodipine and frusemide is 1.61, which effectively agrees with the Tsiropoulos adjusted RR of 1.62. The
proportion of patients prescribed both medicines is 3.2%
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curve B by the corresponding fitted value of curve A to
yield a set of ratios, which is retained across any gaps
that may be left by exclusions of components. (However,
adequately populated WTDs do not normally have gaps
after exclusion of medicine pairs.) This is then normal-
ised by dividing the set of ratios by its average. Figure 7
is an SSA visualisation of the curve-fit adjusted associ-
ation between amlodipine and frusemide, where bar
heights represent counts adjusted by the method shown
in Table 1. We then calculate the curve-fit adjusted RR
as before for the crude RR, by dividing the number of
patients with incident dispensing to the right of week
zero by the number of patients with incident dispensing
to the left of week zero; only now those numbers of pa-
tients have been adjusted. Adjustment is not severe here
because the shape of the two WTDs (Fig. 3, a and b)
from which Figs. 2 and 7 are derived is not very differ-
ent. This is confirmed by the unadjusted and adjusted
RRs (1.58 vs 1.61), which are not so different.

Supplementary visualisation
Figure 8a shows a curve-fit adjusted SSA visualisation
for risperidone and frusemide, and Fig. 8b shows a curve
fitted visualisation of week-by-week differences between
the left and right sides. We call the visualisation in Fig.
8b a ‘Net Effect’ visualisation. The after count for each
week is subtracted from the before count for the corre-
sponding week and then plotted with dots before being
fitted with a curve. Red dots show the magnitudes by
which weekly counts for after-prescribed frusemide are
greater than those for before-prescribed frusemide and
blue dots show the magnitudes by which weekly counts

for after-prescribed frusemide are less than or equal to
those for before-prescribed frusemide. The dots indicate
spread of adjusted value differences. Net Effect visualisa-
tions show times to onset, peak and decline of an effect,
and allow shape differences between each side of an SSA
visualisation to be easily assessed.
The net effect proportion is calculated as the sum of

positive magnitudes divided by the sums of both magni-
tudes. If the confidence interval for the net effect pro-
portion straddles 0.5, then the effect is not statistically
significant. Minimum and maximum possible limits for
confidence intervals are implied at 0 and 1 respectively.
(Of course, the net effect proportion bears a direct
correspondence to the RR of the SSA visualisation.)
To validate our adjustment method, we compared it

with the established method of Tsiropoulous for sensitiv-
ity and specificity to detect known adverse drug effects.
The adverse drug effects assessed, along with the
method, have been reported elsewhere [1]. We assessed
59 known adverse reactions (true positives) that had
been identified within randomized controlled trials, and
65 negative controls (adverse effects not documented in
the product information of the medicines assessed but
identified as adverse effects of medicines in the other
medicine classes). We used a 10% sample of persons
with medicines supplied by the Australian Pharmaceut-
ical Benefits Scheme; the national scheme that provides
subsidised access to pharmaceuticals in Australia [8].

Results
Owing to incomplete data capture in the 10% sample,
our results underestimate those normally produced by

Fig. 8 a: The curve-fit adjusted RR for risperidone and frusemide is 1.26, which effectively agrees with the Tsiropoulos adjusted RR of 1.27. The
proportion of patients prescribed both medicines is 1.82%. b: The curve fitted difference where counts for after-prescribed frusemide generally
exceed those for before-prescribed frusemide is greatest around week 5 and extends to week 37. After that, the counts for after-prescribed
frusemide are generally less than those for before-prescribed frusemide. A sufficiently large positive effect denotes an adverse effect, a sufficiently
large negative effect denotes a protective effect, and zero is the locus for no effect
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the SSA procedure [1, 2, 9]. Nonetheless the 10% sample
was suitable because we were interested in relative re-
sults, not absolute results. Adjusted RRs calculated by
the Tsiropoulos and Curve-fit methods are summarized
in Fig. 9, which shows their respective cumulative distri-
bution functions. The results are effectively indistin-
guishable with an exact p-value of 0.994 for the two
sample Kolmogorov-Smirnov test, which tests for equal-
ity of two arbitrary distributions. (See Additional file 1:
Appendix 3 for a description of the Kolmogorov-
Smirnov test.) Results summarized in Table 2 for sensi-
tivity, specificity and predictive values for the two

methods over a follow-up of 9.5 years are the same.
(This does not necessarily mean that every single count
for a significant effect, or otherwise, is the same for each
method, just that the totals are the same.)
Having validated the Curve-fit method against Tsiro-

poulos, the main result is the adjusted SSA visualisation.
The overall height of each bar for each week, represent-
ing adjusted number of patient’s first prescriptions, is de-
rived from a composite of individual heights adjusted
according to where they come from in the WTDs.
A further result derives from the use of exclusive

WTD components, where we see improved sensitivity,

Fig. 9 The Kolmogorov-Smirnov statistic represents distance between two samples; here adjusted RRs derived from exclusive WTD components
over 9.5 years. Of 124 corresponding pairs of RRs for Tsiropoulos and Curve-fit, only a handful did not effectively coincide (four or five, depending
on how an outlier is defined), and these were for grossly deficient numbers of medicine pairs, typically in single digits. The exact p-value for the
124 pairs of RRs was 0.994
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specificity and predictive values shown in the 8-year
summaries of Table 2. Table 3 shows adjusted RRs for all
three adjustment methods for meloxicam and proton
pump inhibitors, where the lower contribution to overall
medicine starts from meloxicam means that the propor-
tion of medicine pairs is quite high at 11.89% with re-
spect to meloxicam on its own. The first row, derived
from all components, shows confidence intervals that
are not significant and the second row, derived from ex-
clusive components, shows confidence intervals that are
significant. The second row is the correct one for this
medicine pair, which is known to show an adverse effect.
Again, we have the situation where both curves do not
run close to parallel within at least one WTD, as is
evident for meloxicam in Fig. 10.

Discussion
Needing just three variables, SSA is economical with
respect to dataset size and computing resources, and
is easy to deploy. It has been applied to international
as well as national datasets [10]. Because it uses the
experience of different persons before and after ex-
posure, SSA cannot be considered self-controlled.
However, time invariant confounders, such as age,
smoking or hypertension, are effectively controlled be-
cause they do not predict prescription order given
that patients become users of both drugs. That is,

they do not contribute to the generation of an asym-
metrical distribution of sequence orders [4, 11]. Ac-
cordingly, the SSA visualisation can usefully assess
temporal relationships of effects.
SSA has proved useful as a signal detection tool to

provide early alerts of drug safety issues. Results from
the study by Wahab, Pratt, Wiese et al—which tested
the validity of SSA to detect adverse drug reactions from
an administrative claims database—show a sensitivity of
61%, specificity of 93%, positive predictive value of 77%
and negative predictive value of 87% [1]. These exceed
those of our study owing to the quality of the database
they utilised, which afforded complete data capture in
their case. Their study did not consider conditions dis-
cussed in our study that seek to further improve utility.
Still, they demonstrated that SSA has the potential to
identify early drug safety issues and could complement
existing pharmacosurveillance methods.
We have demonstrated that curve fitting produces a

similar statistic to that of the Tsiropoulos method and
can be extended to provide a mechanism to adjust the
visualisation of sequences. Additionally, we found that
curve fitting is useful for some related procedures, such
as for showing the net effect integration of each side of
the SSA visualisation. Displaying net raw values also
eliminates the confusion of corresponding after and
before weekly comparisons sometimes necessary when
viewing an SSA visualisation, by clearly showing which
week is the greater or otherwise.
Not all paired observations result from a medicine

effect. Remaining pairs are coincidental and become
more prevalent as the RR gets closer to 1. These are no
more or less important than exclusive observations.
They are part of the background trend and considered
to be distributed as such—hence excluding them, along
with signal pairs, should not prove problematic. Curve
fitting produces parameter values that closely match the
data. If two curves (one for all components and one for
exclusive components) displayed on the one WTD run
substantially parallel, then the shape of a WTD with or
without pairs remains effectively unchanged. Excluding
pairs from the WTDs in the RR adjustment calculation
made no effective difference in most instances in our
study. However, such exclusion precludes the possibility
of disproportionality that might markedly affect the
shape of a WTD due to a high proportion of medicine
pairs that can change over time. While an overall high
number of medicine pairs with respect to all medicine
starts for both WTDs can cause such a problem, an
overall low number of medicine pairs can likewise do so
if the frequency balance between a pair of WTDs is too
one sided. For the higher frequency WTD the propor-
tion of medicine pairs may well be low with respect its
medicine starts, but for the lower frequency WTD it can

Table 2 Comparison of results from 8-year WTDs show improved
sensitivity, specificity and predictive values when using only
exclusive components. The Curve-fit method compares closely with
Tsiropoulos and yields the same result over a follow-up of 9.5 years

Table 3 Adjusted RRs for Hallas (used advisedly here), Tsiropoulos
and Curve-fit. The first row shows an incorrect result for
meloxicam and proton pump inhibitors for all three methods
because the confidence intervals (CI) straddle the value 1. The
second row shows the correct result for all three methods

Preiss et al. BMC Medical Research Methodology          (2019) 19:143 Page 10 of 12



be quite high. There were a few instances in which
disproportionality was an issue and for these we found
improved adjusted RR accuracy reflected in sensitivity,
specificity and predictive values when using only exclu-
sive components.
Finally, curve fitting, as supplied in statistical pack-

ages, is a relatively simple substitute for the mathem-
atical complexity involved in the Tsiropoulos method.
They both implement moving average procedures that
capture the effect of local trend differences between
two WTDs. Curve fitting also has the advantage of
not having to specify a cut-off time related to the
time a medicine effect may diminish. (See Additional
file 1: Appendix 1, equation 3 where a cut-off time
for the Tsiropoulos method must be specified.)

Conclusions
Our curve-fit method is equivalent to the Tsiropoulos
method for adjusting prescribing trends in SAA, with
the advantage of providing adjustment incorporated
in the SAA visualisation. An adjusted visualisation
can more accurately assist in determining the likeli-
hood that a statistically significant result represents a
signal for an adverse drug event. Excluding pairs
eliminates any effect signal pairs might have upon the
shape of either WTD, which would otherwise tend to
mitigate medicine cause-effect relationships upon ad-
justment. Further work is planned to test the curve-
fit method on short period WTDs of about 31/2 years
to see how it compares with the Tsiropoulos method.
This matters because adjustment for prescribing

trends at each end of WTDs can be compromised
due to lack of data on one or other side of an index
date. The longer the WTDs, the less this is an issue.
Since different statistical methods can treat boundary
conditions in different ways, such a comparison is
considered worthwhile.
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