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Abstract

Background: Dynamic risk models, which incorporate disease-free survival and repeated measurements over time,
might yield more accurate predictions of future health status compared to static models. The objective of this study
was to develop and apply a dynamic prediction model to estimate the risk of developing type 2 diabetes mellitus.

Methods: Both a static prediction model and a dynamic landmark model were used to provide predictions of a 2-year
horizon time for diabetes-free survival, updated at 1, 2, and 3 years post-baseline i.e., predicting diabetes-free survival to 2
years and predicting diabetes-free survival to 3 years, 4 years, and 5 years post-baseline, given the patient already survived
past 1 year, 2 years, and 3 years post-baseline, respectively. Prediction accuracy was evaluated at each time point using
robust non-parametric procedures. Data from 2057 participants of the Diabetes Prevention Program (DPP) study (1027 in
metformin arm, 1030 in placebo arm) were analyzed.

Results: The dynamic landmark model demonstrated good prediction accuracy with area under curve (AUC) estimates
ranging from 0.645 to 0.752 and Brier Score estimates ranging from 0.088 to 0.135. Relative to a static risk model, the
dynamic landmark model did not significantly differ in terms of AUC but had significantly lower (i.e., better) Brier Score
estimates for predictions at 1, 2, and 3 years (e.g. 0.167 versus 0.099; difference− 0.068 95% CI − 0.083 to − 0.053, at 3 years
in placebo group) post-baseline.

Conclusions: Dynamic prediction models based on longitudinal, repeated risk factor measurements have the potential to
improve the accuracy of future health status predictions.
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Background
In recent years, a wide range of markers have become
available as potential tools to predict risk or progression
of disease, leading to an influx of investment in the area
of personalized screening, risk prediction, and treatment
[1–4]. However, many of the available methods for per-
sonalized risk prediction are based on snapshot mea-
surements (e.g., biomarker values at age 50) of risk
factors that can change over time, rather than longitu-
dinal sequences of risk factor measurements [2, 5–7].
For example, the Framingham Risk Score estimates the
10-year risk of developing coronary heart disease as a
function of most recent diabetes status, smoking status,
treated and untreated systolic blood pressure, total chol-
esterol, and HDL cholesterol [6]. With electronic health

record and registry data, incorporating repeated mea-
surements over a patient’s longitudinal clinical history,
including the trajectory of risk factor changes, into risk
prediction models is becoming more realistic and might
enable improvements upon currently-available static
prediction approaches [8, 9].
Specifically considering prediction of incident type 2

diabetes, a recent systematic review by Collins et al. [10]
found that the majority of risk prediction models have
focused on risk predictors assessed at a fixed time; the
most commonly assessed risk predictors were age, family
history of diabetes, body mass index, hypertension, waist
circumference and gender. For example, Kahn et al. [11]
developed and validated a risk-scoring system for 10-
year incidence of diabetes including (but not limited to)
hypertension, waist circumference, weight, glucose level,
and triglyceride level using clinical data from 9587 indi-
viduals. Models that aim to incorporate the trajectory of
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risk factor changes, e.g., the change in a patient’s glucose
level in the past year, into risk prediction for incident
diabetes have been sparse. Some available methods that
allow for the use of such longitudinal measurements are
often considered overly complex or undesirable due to
restrictive parametric modeling assumptions or infeas-
ible due to computational requirements [12–15]. That is,
with these methods it is often necessary to specify a
parametric model for the longitudinal measurements,
and a parametric or semiparametric model characteriz-
ing the relationship between the time-to-event outcome
and the longitudinal measurements and then use, for ex-
ample, a Bayesian framework to obtain parameter
estimates.
Recently, the introduction of the dynamic landmark pre-

diction framework has proved a useful straightforward al-
ternative in several other clinical settings [16–19]. In the
dynamic prediction framework, the risk prediction model
for the outcome of interest is updated over time at pre-
specified “landmark” times (e.g. 1 year or 2 years after the
initiation of a particular medication) incorporating infor-
mation about the change in risk factors up to that particu-
lar time. That is, suppose the goal is to provide an
individual with the predicted probability of survival past
time τ = t + t0 given that he/she has already survived to
time t0 (t0 is the landmark time), the dynamic prediction
approach provides this prediction using a model that is
updated at time t0 such that it can incorporate the infor-
mation available up to time t0. The approach is appealing
because it is relatively simple and straightforward, and
does not require as strict parametric modeling assump-
tions as is required by a joint modeling approach.
In this paper, we describe the development and use of

a dynamic prediction model to estimate the risk of de-
veloping type 2 diabetes mellitus, incorporating bio-
marker values measured repeatedly over time, using data
from the Diabetes Prevention Program study. We com-
pare our dynamic prediction approach to a static predic-
tion model to determine whether improvements in
prediction accuracy can be obtained. Our aim is to illus-
trate how such a dynamic approach may be useful and
appealing to both clinicians and patients when develop-
ing prediction models for the incidence of type 2
diabetes.

Methods
Static prediction model
For each individual i, let Zi denote the vector of available
baseline covariates, Ti denote the time of the outcome of
interest, Ci denote the censoring time assumed to be in-
dependent of Ti given Zi, Xi =min(Ti, Ci) denote the ob-
served event time, and Di = I(Ti <Ci) indicate whether
the event time or censoring time was observed. Suppose
the goal is to predict survival to some time τ for each

individual i, based on their covariates Zi. A static model
based on the Cox proportional hazards model [20, 21]
can be expressed as:

P Ti > τjZið Þ ¼ exp −Λ0 τð Þ exp β
0
Zi

� �n o
ð1:1Þ

in terms of survival past time t, or in terms of the hazard
function as

λ τjZið Þ ¼ λ0 τð Þ exp β
0
Zi

� �
ð1:2Þ

where Λ0(τ) is the cumulative baseline hazard at time τ,
λ0(τ) is the baseline hazard at time τ, and β is the vector
of regression parameters to be estimated. Estimates of β
are obtained by maximizing the partial likelihood [22].
Here, we use the term “static” because the model itself

never changes; the model is fit once, the β vector of pa-
rameters is estimated, and these estimates are used to
calculate an individual’s predicted probability of survival
given their particular Zi. In practice, even when Zi is ac-
tually a vector of covariate values measured after base-
line (e.g. 1 year later), this model is still used under this
static approach. This type of model is standard in the
risk prediction literature [2, 6, 7, 10, 23]. For example,
with the Framingham risk score, there is a single static
model that is used to provide risk estimates to patients
– whether a patient comes in at age 40 or age 60 (using
age as the time scale), the actual β estimates used to cal-
culate risk are the same, only the Zi values potentially
change to reflect the current covariates values.

Dynamic prediction model
A dynamic prediction model differs from a static predic-
tion model in that the model itself is updated (i.e., refit)
at specified “landmark times” e.g. 1 year, 2 years, 3 years
after baseline [17, 18, 24]. This model can be expressed
as a landmark Cox proportional hazards model:

P Ti > τjTi > t0;Zi t0ð Þð Þ
¼ exp −Λ0 τjt0ð Þ exp α

0
Zi t0ð Þ

� �n o
ð1:3Þ

in terms of survival past time τ, or in terms of the haz-
ard function as

λ τjt0;Zi t0ð Þð Þ ¼ λ0 τjt0ð Þ exp α
0
Zi t0ð Þ

� �
ð1:4Þ

where t0 is the landmark time, τ = t + t0, t is referred to
as the “horizon time”, Zi(t0) denotes a vector of covari-
ates and (if available) covariates that reflect changes in
biomarker values from baseline to t0, Λ0(τ| t0) is the cu-
mulative baseline hazard at time τ given survival to t0,
λ0(τ| t0) is the baseline hazard at time τ given survival to
t0, and α is the vector of regression parameters to be es-
timated at each time t0. As in model (1.1), estimates of α
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are obtained by maximizing the appropriate partial like-
lihood. However, for estimation of α, model (1.3) is fit
only among individuals surviving to t0 and thus, the par-
tial likelihood is composed of only these individuals.
The key substantive differences between the static and

dynamic landmark models are that (1) no information re-
garding change in covariate (e.g., biomarker) measure-
ments are incorporated in the static approach, (2) no
information regarding survival up to t0 is incorporated in
the static approach, and (3) the static approach uses a sin-
gle model (i.e. a single set of Cox regression coefficients)
for all predictions, whereas the dynamic landmark model
fits an updated model at each landmark time and thus,
has a distinct set of regression coefficients for each t0. Im-
portantly, the probability being estimated with the static
model vs. the landmark model is different and thus, the
resulting interpretation of this probability is different be-
tween the two approaches. The static model estimates
P(Ti > τ| Zi), ignoring any information about survival to t0
while the landmark model estimates P(Ti > τ| Ti > t0,
Zi(t0)), explicitly incorporating information about survival
to t0 and changes in biomarker values from baseline to t0.
Of course, a simple derivation can be used to show that
one could obtain an estimate for P(Ti > τ| Ti > t0,Zi) using

the static model based on model (1.1) as expf−ðΛ̂0ðτÞ−
Λ̂0ðt0ÞÞ expðβ̂

0
ZiÞg where β̂ and Λ̂0 denote the estimates

of the regression coefficients from maximizing the partial
likelihood and the Breslow estimator of the baseline cu-
mulative hazard, respectively. However, this is not what is
done in current practice when using a static model; the es-
timated P(Ti > τ| Zi) is typically provided to patients even
when it is known they have survived to t0 e.g. the patient
is given this prediction at a 1 year post-intervention ap-
pointment time, t0 = 1 year. In addition, even with this cal-

culation, the estimation of β̂ and Λ̂0 themselves are not
restricted to individuals that survive to t0 but were instead
estimated using all patients at baseline.
Using the dynamic prediction model, one would gen-

erally expect improved prediction accuracy due to the
fact that the updated models are taking into account
survival to t0 and should more precisely estimate risk for
patients after time t0. Indeed, previous work has shown,
through simulations and applications outside of diabetes,
the benefits of this dynamic approach compared to a
static model [24]. Parast & Cai [24] demonstrated
through a simulation study improved prediction per-
formance when a dynamic landmark prediction model
was used instead of a static model in a survival setting.
With respect to the selection of the times t0, these

times are generally chosen based on the desired predic-
tion times relevant to the particular clinical application.
For example, if patients come in for yearly appoint-
ments, the t0 times of interest may be 1 year, 2 years,

and 3 years. If patients come in every 2 years, the t0
times of interest may be 2 years and 4 years.

Model assumptions and model complexity
Both the static model and dynamic prediction model de-
scribed above rely on correct specification of the rele-
vant models (models (1.2) and (1.4), respectively).
Correct model specification includes the assumption of
linearity in the covariates (i.e., β′Zi), the assumption of
no omitted confounders, and the proportional hazards
assumption. The proportional hazards assumption states
that the ratio of the hazards for two different individuals
is constant over time; this can be seen in the specifica-
tion of model (1.2) where the hazard ratio for two indi-
viduals λ(τ| Zi) and λ(τ| Zj) can be seen to be exp(β′(Zi −
Zj)) which is not a function of time. The simulation
study of Parast & Cai [24] showed that when model (1.2)
holds, the static model and dynamic landmark model
perform equally well, but when this model is not cor-
rectly specified, the dynamic landmark model outper-
forms the static model.
Models (1.2) and (1.4) are relatively straightforward.

These models could certainly be altered to incorporate
desired complexities including more complex functions
of the covariates, spline or other basis expansions, and/
or regularized regression. In addition, this dynamic pre-
diction framework is not restricted to the Cox propor-
tional hazards model alone. Other modeling approaches
appropriate for time-to-event outcome can be consid-
ered here including an accelerated failure time model,
proportional odds model, or even a fully non-parametric
model if there are only 1–2 covariates and the sample
size is very large [25, 26].

Evaluation of prediction accuracy
To evaluate the accuracy of the prediction models in this
paper, we assessed both discrimination and calibration.
Discrimination measures the extent to which the predic-
tion rule can correctly distinguish between those who
will be diagnosed with diabetes within 2 years and those
who will not. As a measure of discrimination, we used
the area under the receiver operating characteristic curve
(AUC) [27, 28] defined as:

AUCK τ; t0ð Þ ¼ P p̂Ki < p̂Kj
� ���t0 < Ti≤τ;T j > τÞ

for K = D, S (i.e., dynamic and static), where p̂Di and p̂Si
indicate the predicted probability of survival to time τ
using the dynamic model and static model, respectively,
for person i. The AUC ranges from 0 to 1 with higher
values indicating better prediction accuracy. The AUC
has an appealing interpretation as the probability that
the prediction model being evaluated will assign a lower
probability of survival to an individual that will actually
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experience the event within the time period of interest,
compared to an individual that will not.
Calibration is based on the alignment between ob-

served event-rates and predicted event probabilities (i.e.,
how well predictions match observed rates). As a meas-
ure of calibration, we used the Brier Score [29, 30] de-
fined as:

BSK τ; t0ð Þ ¼ E I Ti > τÞ−p̂Kið jTi > t0½ �2� �

for K = D, S. The Brier Score ranges from 0 to 1 with
lower values indicating better prediction accuracy. The
Brier Score captures the mean squared error comparing
the true event rates and the predicted event rates ob-
tained from the prediction model. As a test of calibra-
tion, we additionally calculated the Hosmer-Lemeshow
goodness of fit test statistic (extended to survival data)
[31, 32]. We compare the AUC, Brier Score, and Hos-
mer-Lemeshow test statistic from the dynamic model
versus the static model.
Lastly, as another measure of comparison between the

dynamic and static model, we calculated the net reclassi-
fication improvement (NRI) [33, 34]. The NRI quantifies
how well a new model (the dynamic model) reclassifies
individuals in terms of estimated risk predictions, either
appropriately or inappropriately, as compared to an old
model (the static model).
For all AUC, Brier Score and NRI, we used a nonpara-

metric inverse probability of censoring weighted estima-
tion approach that does not rely on the correct
specification of any of the prediction models described
above [28, 35] and bootstrapped the approach using 500
samples to obtain confidence intervals and p-values [36].
In addition, for all four accuracy metrics, we used gen-
eral cross-validation whereby we repeatedly split the data
into a training set and a test set during the estimation
process to guard against over-fitting (as we did not have
access to an external validation data source) [37, 38].
That is, when the same dataset is used to both construct
a prediction rule and evaluate a prediction rule, the pre-
diction accuracy measures can sometimes appear overly
optimistic because the prediction rule has been over-fit
on the single dataset available. Therefore, the accuracy
observed may not reflect what one could expect to see
using an external validation data source. Cross-validation
is helpful in settings where only one dataset is available;
data are split such that some portion is used to “train”
the prediction rule (build the model) and the remainder
is used to “test” the prediction rule i.e., evaluate the ac-
curacy. This is not as ideal as having access to an exter-
nal validation source, but is more beneficial than no
cross-validation at all. For our analysis, we took a ran-
dom sample of 2/3 of the data to use as a training set,
and the remaining 1/3 of the data was the test set. This

random splitting, fitting, and evaluating, was repeated
100 times and the average of those 100 estimates was
calculated.

Application to diabetes prevention program: study
description
Details of the Diabetes Prevention Program (DPP) have
been published previously [39, 40]. The DPP was a ran-
domized clinical trial designed to investigate the efficacy
of multiple approaches to prevent type 2 diabetes in
high-risk adults. Enrollment began in 1996 and partici-
pants were followed through 2001. Participants were
randomly assigned to one of four groups: metformin
(N = 1073), troglitazone (N = 585; this arm was discon-
tinued due to medication toxicity), lifestyle intervention
(N = 1079) or placebo (N = 1082). After randomization,
participants attended comprehensive baseline and an-
nual assessments as well as briefer quarterly visits with
study personnel. In this paper, we focus on the placebo
and metformin groups. Though lifestyle intervention
was found to be more effective in terms of reducing dia-
betes incidence in the main study findings [40], prescrib-
ing metformin for patients at high-risk of diabetes is
becoming more common in current clinical practice and
thus, this comparison is likely of more practical interest
[41]. We obtained data on 2057 DPP participants (1027
in metformin arm, 1030 in placebo arm) collected on or
before July 31, 2001 as part of the 2008 DPP Full Scale
Data Release through the National Institute of Diabetes
and Digestive and Kidney Diseases (NIDDK) Data Re-
pository, supplemented by participant data released by
the 2011 Diabetes Prevention Program Outcomes Study,
which followed participants after the conclusion of DPP,
through August 2008. The median follow-up time in this
cohort was 6.11 years.
The primary outcome was time to development of

type 2 diabetes mellitus, measured at mid-year and an-
nual study visits, as defined by the DPP protocol: fasting
glucose greater than or equal to 140 mg/dL for visits
through 6/23/1997, greater than or equal to 126 mg/dL
for visits on or after 6/24/1997, or 2-h post challenge
glucose greater than or equal to 200 mg/dL. For individ-
uals who did not develop type 2 diabetes mellitus, their
observation time was censored on the date of their last
visit within the study.
Available patient non-laboratory baseline characteristics

included age group (< 40, 40–44, 45–49, 50–54, 55–59,
60–64, 65+), gender, body mass index group (BMI; < 30
kg/m2, ≥30 to < 35 kg/m2, ≥35 kg/m2), smoking status
(yes, no, not available), and race/ethnicity (White, Black,
Hispanic, Other). These variable aggregations, which re-
sult in some information loss, were instituted in the
NIDDK data release to protect patient confidentiality. La-
boratory values included fasting plasma glucose and
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hemoglobin A1c (HbA1c) measured at randomization
(i.e., baseline), at 6months post-randomization, and at an-
nual visits thereafter. For each laboratory measurement
after baseline, we calculated change-from-baseline values
for use in our prediction models.
This study (a secondary data analysis) was approved

by RAND’s Human Subjects Protection Committee.

Application to diabetes prevention program: analysis
In this application, our goal was to provide predictions
of a 2-year horizon time for diabetes-free survival, up-
dated at 1, 2, and 3 years post-baseline. That is, we are
predicting diabetes-free survival to 2 years post-baseline,
and then predicting diabetes-free survival to 3 years, 4
years, and 5 years post-baseline, given the patient already
survived to 1 year, 2 years, and 3 years post-baseline, re-
spectively. In our defined notation, τ = 2, 3, 4, 5 years
and t0 = 0, 1, 2, 3 years and t = 2 years. Our focus on
somewhat short-term survival here is due to both data
availability for this study and the fact that the study
population is composed of high-risk individuals.
We first fit the static model (model (1.2)) with covari-

ates age, gender, BMI, smoking status, race/ethnicity,
and baseline (the time of randomization) measurements
of HbA1c and fasting plasma glucose. Recall that this re-
sults in a single model, with a single set of regression co-
efficients. To obtain our predictions of interest from the
static model when t0 > 0, probabilities were calculated
using the HbA1c and fasting plasma glucose measure-
ments at t0, applied to this single model.
Next, we fit dynamic landmark prediction models

where we additionally incorporate information on sur-
vival to the landmark times t0 = 1, 2, 3 years and in-
formation on the change in HbA1c and fasting
plasma glucose from baseline to t0. These models re-
sult in an estimate of the probability of a diabetes
diagnosis within 2 years after the landmark time as a
function of baseline characteristics, lab measurements
at baseline, and the change in lab measurements from
baseline to t0. This approach results in four models,
each with its own set of regression coefficients. (Note
that at baseline, the static model is equivalent to the
dynamic model.) The full dynamic model framework
thus results in estimates of: (a) a patient’s 2-year pre-
dicted probability of developing diabetes at baseline
(t0 =0; same as static model), (b) an updated 2-year
predicted probability for a patient at the landmark
time (t0 = 1 year), for patients who survived 1 year
after baseline without a diabetes diagnosis, incorporat-
ing both the change in laboratory values and the pa-
tient’s diabetes-free survival over the last year, (c) a
similarly updated 2-year prediction at 2 years post-
baseline, (d) a similarly updated 2-year prediction at
3 years post-baseline.

We stratified all analyses by treatment group: placebo
and metformin.

Data availability, code and software
DPP data are publicly available upon request from the
NIDDK Data Repository and require the establishment
of a data use agreement. Code for all analyses presented
here is available upon request from the authors. All ana-
lyses were performed in R Version 3.3.2, an open source
statistical software, using the packages survival and
landpred.

Results
Approximately 49% of participants in our sample were
younger than 50, 67% were female, and the majority
were of white race (Table 1). At baseline, more than
one-third of participants had BMI greater than 35 kg/m2,
and the majority did not smoke. Previous analyses have
shown that these characteristics were balanced across
the randomized treatment groups [40, 42]. Eight partici-
pants were missing HbA1c values at baseline and were
thus excluded from our subsequent analyses.
A total of 182 participants assigned to the placebo arm

(18%) and 126 participants assigned to the metformin
arm (12%) were diagnosed with diabetes within 2 years
of baseline. Among the 866 placebo participants and 914
metformin participants who survived to 1 year post-
baseline without a diabetes diagnosis, 159 (18%) and 140
(15%) were diagnosed with diabetes within 2 years (i.e.,
by 3 years post-baseline), respectively. Among the 748
placebo participants and 815 metformin participants
who survived to 2 years without a diabetes diagnosis,
105 (14%) and 127 (16%) were diagnosed with diabetes
within 2 years (i.e., by 4 years post-baseline), respectively.
Among the 638 placebo participants and 703 metformin
participants who survived to 3 years without a diabetes
diagnosis, 73 (11%) and 74 (11%) were diagnosed with
diabetes within 2 years (i.e., by 5 years post-baseline),
respectively.
In the baseline static prediction model for the placebo

arm, the risk of developing diabetes within 2 years was
higher for BMI ≥35 kg/m2 than for BMI < 30 kg/m2 (haz-
ard ratio [HR] = 1.28, p < 0.05) and higher among His-
panic than among white participants (HR = 1.31, p <
0.05) (Table 2). In both treatment arms, higher baseline
fasting plasma glucose and HbA1c were associated with
higher diabetes risk (for glucose, HR = 1.08 in the pla-
cebo arm and 1.05 in the metformin arm, p < 0.001; for
HbA1c, HR =1.52 and 1.73, p < 0.001). In the dynamic
models (see Additional file 1 for model results), the risks
associated with each variable changed over time and as
expected, larger changes (increases) in fasting plasma
glucose and HbA1c compared to baseline were associ-
ated with higher diabetes risk.
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In terms of prediction accuracy, at baseline, the static
and dynamic models are equivalent and thus, had equal
AUC estimates as expected (0.728 for the placebo group
and 0.663 for the metformin group). At each subsequent
landmark time (years 1, 2, and 3), the AUC of the dy-
namic model was slightly better than that of the static
model (Fig. 1), though not significantly. In the placebo
group, the AUC was 0.725 for the static model versus
0.735 for the dynamic model at 1 year (difference 0.010;
95% CI, − 0.015 to 0.035), 0.736 versus 0.752 at 2 years
(0.016; − 0.020 to 0.052), and 0.678 versus 0.682 at 3
years (0.004; − 0.043 to 0.051). In the metformin group,
the AUC was 0.638 for the static model versus 0.645 for
the dynamic model at 1 year (difference 0.007; 95% CI,
− 0.027 to 0.041), 0.697 versus 0.709 at 2 years (0.012; −
0.023 to 0.047), and 0.728 versus 0.752 at 3 years (0.024;
− 0.029 to 0.077). None of these differences in AUC
were statistically significant.

The Brier Score at baseline was 0.130 for the placebo
group and 0.107 for the metformin group for both
models. At each landmark time, the Brier Score of the
dynamic model was lower (i.e., better) than that of the
static model (Fig. 1). In the placebo group, these Brier
Score differences were statistically significant at all 3
landmark times: 0.145 for the static model versus 0.135
for the dynamic model at 1 year (difference − 0.010; 95%
CI, − 0.017 to − 0.003), 0.148 versus 0.114 at 2 years (−
0.034; − 0.044 to − 0.024), and 0.167 versus 0.099 at 3
years (− 0.068; − 0.083 to − 0.053). In the metformin
arm, Brier Score differences were statistically significant
at 2 years (0.136 static versus 0.126 dynamic; difference
− 0.01; − 0.017 to − 0.003) and 3 years (0.118 versus
0.088; − 0.030; − 0.040 to − 0.020).
The Hosmer-Lemeshow test statistics, provided in

Table 3, show that for most time points, both the static
model and dynamic model are reasonable. There are

Table 1 Baseline characteristics of analytic sample

Overall
(N = 2057)
N(%) or Mean (SD)

Placebo
(N = 1027)
N(%) or Mean (SD)

Metformin
(N = 1030)
N(%) or Mean (SD)

Age

< 40 286 (13.9%) 151 (14.7%) 135 (13.1%)

40–44 306 (14.9%) 147 (14.3%) 159 (15.5%)

45–49 422 (20.5%) 231 (22.4%) 191 (18.6%)

50–54 376 (18.3%) 167 (16.2%) 209 (20.4%)

55–59 255 (12.4%) 134 (13%) 121 (11.8%)

60–64 201 (9.8%) 100 (9.7%) 101 (9.8%)

65+ 211 (10.3%) 100 (9.7%) 111 (10.8%)

Gender

Male 689 (33.5%) 174 (33.8%) 186 (36.3%)

Female 1368 (66.5%) 699 (67.9%) 669 (65.1%)

BMI

< 30 kg/m2 665 (32.3%) 326 (31.7%) 339 (33%)

≥ 30 to < 35 kg/m2 620 (30.1%) 297 (28.8%) 323 (31.5%)

≥ 35 kg/m2 772 (37.5%) 407 (39.5%) 365 (35.5%)

Smoking Status

Yes 136 (6.6%) 71 (6.9%) 65 (6.3%)

No 1764 (85.8%) 878 (85.2%) 886 (86.3%)

Not available 157 (7.6%) 81 (7.9%) 76 (7.4%)

Race/ethnicity

White 1188 (57.8%) 586 (56.9%) 602 (58.6%)

Black 440 (21.4%) 219 (21.3%) 221 (21.5%)

Hispanic 330 (16%) 168 (16.3%) 162 (15.8%)

Other 99 (4.8%) 57 (5.5%) 42 (4.1%)

Fasting plasma glucose (mg/dL) 107.35 (7.84) 107.42 (7.83) 107.27 (7.86)

Hemoglobin A1c (%)a 5.91 (0.51) 5.91 (0.5) 5.91 (0.51)
a Eight participants were missing HbA1c, calculation is among non-missing values
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two exceptions for the static model: when examining the
predictions at 3 years in the placebo group, and 1 year in
the metformin group where the Hosmer-Lemeshow test
statistic indicates significantly poor calibration. For all
time points and both groups, the Hosmer-Lemeshow
test statistic was lower for the dynamic model when
compared to the static model, indicating better calibra-
tion as measured by this quantity.
NRI estimates as well as individual components of this

quantity are shown in Table 4. Here, these quantities re-
flect the extent to which the dynamic landmark model
moves an individual’s predicted risk “up” or “down” in
the correct direction, compared to the static model. In
the metformin group, examining predictions at 1 year,
these results show that among those individuals that will
have an event within 2 years, the dynamic landmark
model gave 40.4% of them a higher risk (correct direc-
tion of risk change) and 59.6% a lower risk (incorrect
direction of risk change), compared to the static model.

Among those that will not have an event within 2 years,
the dynamic landmark model gave 38.1% a higher risk
(incorrect direction of risk change) and 61.9% (correct
direction of risk change) a lower risk. On net, 4.6% of
participants had more accurate risk estimates under the
dynamic model than under the static model at year 1
(NRI = 4.6, 95% CI: − 15.8 to 24.9%, p = 0.661). With the
exception of predictions calculated at 1 year in the pla-
cebo group, the dynamic model tended to produce more
accurate risk estimates than the static model, though
these improvements were not statistically significant.

Discussion
Our results demonstrate the potential to improve indi-
vidual risk prediction accuracy by incorporating infor-
mation about biomarker changes over time into a
dynamic modeling approach. Using DPP clinical trial
data, we found that incorporating changes in fasting
plasma glucose and HbA1c into the diabetes prediction

Table 2 Static prediction model

Placebo
Hazard Ratio (95% Confidence Interval)

Metformin
Hazard Ratio (95% Confidence Interval)

Age

< 40 REF REF

40–44 1.17 (0.84,1.63) 1.05 (0.72,1.52)

45–49 1.07 (0.79,1.45) 0.93 (0.65,1.34)

50–54 0.9 (0.64,1.25) 0.95 (0.67,1.34)

55–59 0.76 (0.53,1.1) 0.8 (0.53,1.21)

60–64 0.91 (0.61,1.36) 1.07 (0.72,1.6)

65+ 0.98 (0.64,1.49) 1 (0.66,1.51)

Gender

Male REF REF

Female 1.04 (0.85,1.28) 1.14 (0.92,1.42)

BMI

< 30 kg/m2 REF REF

≥ 30 to < 35 kg/m2 0.96 (0.75,1.22) 0.91 (0.71,1.18)

≥ 35 kg/m2 1.28 (1.02,1.62)* 1 (0.78,1.29)

Smoking Status

Yes 0.93 (0.67,1.3) 1.33 (0.91,1.94)

No REF REF

Not available 1.15 (0.82,1.62) 1.31 (0.92,1.87)

Race/ethnicity

White REF REF

Black 1.13 (0.89,1.43) 0.94 (0.73,1.22)

Hispanic 1.31 (1,1.7)* 0.98 (0.74,1.3)

Other 1.34 (0.89,2.01) 0.86 (0.5,1.47)

Fasting plasma glucose (mg/dL) 1.08 (1.07,1.09)*** 1.05 (1.04,1.07)***

Hemoglobin A1c (%) 1.52 (1.24,1.87)*** 1.73 (1.39,2.17)***

*p-value< 0.05; ***p-value< 0.001
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Fig. 1 Estimated Area Under the ROC curve (AUC) and Brier Score for Both Prediction Approaches. Note: Higher values for AUC indicate better
prediction accuracy. Lower values for the Brier Score indicate better prediction accuracy; *indicates that the two values at this point are
significantly different at the 0.05 level i.e., the 95% bootstrap confidence interval for the differences between these two points does not
contain zero

Table 3 Hosmer-Lemeshow test statistics

Static Model Dynamic Model

Hosmer-Lemeshow test statistic p-valuea Hosmer-Lemeshow test statistic p-valuea

Placebo

Baseline 7.43 0.11 7.43 0.11

1 year 7.28 0.12 5.64 0.23

2 years 5.70 0.22 5.65 0.23

3 years 11.03 0.03 7.95 0.09

Metformin

Baseline 6.34 0.17 6.34 0.17

1 year 16.40 0.002 7.80 0.10

2 years 7.79 0.10 6.34 0.18

3 years 6.25 0.18 5.68 0.22
ap-value calculated using chi-squared distribution with degrees of freedom = g-1 = 4 where g = 5 is the number of strata used in the calculation of the Hosmer-
Lemeshow test statistic
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model moderately improved predication accuracy, in
terms of calibration, among study participants in both
the placebo and metformin trial arms.
However, we found no evidence of improvements in

terms of discrimination (i.e, AUC or NRI) when the dy-
namic model was used. This is not unexpected given that
calibration and discrimination each measure important,
but distinct, aspects of prediction accuracy [43, 44]. These
results indicate that while the dynamic model does not ap-
pear to significantly improve the ordering or ranking of in-
dividuals in terms of risk of a diabetes diagnosis, the
approach does improve upon the absolute risk estimates
compared to the static model. The clinical significance of
this improvement in accuracy as measured by the Brier
Score and the Hosmer-Lemeshow test statistic depends
on the practical use of the calculated predictions. For ex-
ample, if risk estimates are to be compared to certain

absolute thresholds for the purpose of clinical decision
making—for example, when an intervention or treatment
will be initiated if the risk of an event exceeds 10% - our
observed small but significant improvement in precision
may be considered clinically meaningful. However, the
additional computational complexity required to imple-
ment the dynamic prediction model may not be worth the
trade-off for this small improvement.
The methodology described here offers a straightfor-

ward approach to developing more accurate and person-
alized prediction rules for individual patients. In
addition, this approach can be extended to take advan-
tage of longitudinal electronic health record data that
might already be available in practice. Multiple areas of
health research have focused on collecting and improv-
ing the utility of a vast amount of patient-level data, for
example, by allowing for data collection using

Table 4 Net reclassification improvementa

Placebo

Percentage of individuals for whom the dynamic
landmark model estimates a higher risk than the
static model

Percentage of individuals for whom dynamic
landmark model estimates a lower risk than the
static model

Overall Net reclassification
improvement (95%
Confidence Interval)

1 year

Events 26.5% 73.5% −3.8% (−26.0, 18.4%)b

Non-
events

28.4% 71.6%

2 years

Events 4.3% 95.7% 3.5% (−10.4, 17.3%)

Non-
events

2.6% 97.4%

3 years

Events 1.4% 98.6% 1.9% (−7.3, 11.0%)

Non-
events

0.4% 99.6%

Metformin

Percentage of individuals for whom the dynamic
landmark model estimates a higher risk than the
static model

Percentage of individuals for whom dynamic
landmark model estimates a lower risk than the
static model

Overall Net reclassification
improvement (95%
Confidence Interval)

1 year

Events 40.4% 59.6% 4.6% (−15.8, 24.9%)

Non-
events

38.1% 61.9%

2 years

Events 19.9% 80.1% 18.6% (−5.1, 42.4%)

Non-
events

10.6% 89.4%

3 years

Events 5.0% 95.0% 7.0% (−12.9, 26.9%)

Non-
events

1.5% 98.5%

a Bolding indicates correct risk movement by the dynamic landmark model e.g. individuals who have an event should be given a higher risk
b This calculation is based on: (26.5–73.5) – (28.4–71.6) = −3.8
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smartphones or tablets [45, 46]. The development of
methods that can use this wealth of data to appropriately
inform decision-making warrants further research.
While most risk predictions are based on static models,
there are some notable exceptions that have been devel-
oped very recently such as the Million Hearts Longitu-
dinal Atherosclerotic Cardiovascular Disease Risk
Assessment Tool [47] which uses a dynamic prediction
modeling approach.
Though we do not focus heavily here on discussing

the estimated association between covariates and the pri-
mary outcome (i.e., the model coefficients and hazard
ratios), we have assumed that these associations would
be important to practitioners in this setting. For ex-
ample, both practitioners and patients may wish to view
explicit regression coefficients to understand the contri-
bution of each risk factor to their risk score [48]. If this
were not the case, and only the individual predictions
were needed, then other approaches, such as machine
learning approaches including boosting algorithms and
artificial neural networks -- which could incorporate this
dynamic prediction concept-- should also be considered
[49–52]. Though these approaches do not provide expli-
cit estimates of associations between individual covari-
ates and the primary outcome (e.g. regression coefficient
estimates), they might be useful when relationships be-
tween covariates and primary outcomes are complex
(e.g. nonlinear, nonadditive, etc.), and/or a large number
of covariates is available (e.g. genetic information). Fu-
ture research comparing our approach to machine learn-
ing approaches in a dynamic prediction framework is
warranted.
Our study applying these methods to the DPP data has

some limitations. First, since these data are from a clin-
ical trial that was specifically focused on high-risk adults,
these results may not be representative of individuals at
lower risk for diabetes. Second, our data lacked precise
information on patient characteristics (exact age and
BMI, for example) and was limited to the biological in-
formation available in the DPP data release. This may
have contributed to our observed overall moderate pre-
diction accuracy even using the dynamic model in the
0.6–0.7 range for the AUC. Future work examining the
utility of dynamic models is warranted within studies
that have more patient characteristics available for pre-
diction. However, even with this limitation, this illustra-
tion shows the potential advantages of such a dynamic
approach over a static approach.

Conclusions
Dynamic prediction has the potential to improve the ac-
curacy of future health status predictions for individual
patients. Given the widespread use of risk prediction
tools in population management and clinical decision

making, even modest enhancements in prediction accur-
acy could yield improvements in care for large numbers
of patients—at little added cost or effort.
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