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Abstract

Background: The importance of adjusting for cross-study heterogeneity in control group response rates when
conducting network meta-analyses (NMA) was demonstrated using a case study involving a comparison of
biologics for the treatment of moderate-to-severe rheumatoid arthritis.

Methods: Bayesian NMAs were conducted for American College of Rheumatology (ACR) 50 treatment response
based upon a set of randomized controlled trials (RCTs) identified by a recently completed systematic review of the
literature. In addition to the performance of an unadjusted NMA, a model adjusting for cross-study heterogeneity of
control group response rates using meta-regression was fit to the data. Model fit was evaluated, and findings from
both analyses were compared with regard to clinical interpretations.

Results: ACR 50 response data from a total of 51 RCTs and 16,223 patients were analyzed. Inspection of cross-study
variability in control group response rates identified considerable differences between studies. NMA incorporating
adjustment for this variability was associated with an average change of 38.1% in the magnitude of the ORs between
treatment comparisons, and over 64% of the odds ratio changed by 15% or more. Important changes in the clinical
interpretations drawn from treatment comparisons were identified with this improved modeling approach.

Conclusions: In comparing biologics for moderate to severe rheumatoid arthritis, failure to adjust for cross-trial
differences in the control arm response rates in NMA can lead to biased estimates of comparative efficacy between
treatments.
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Background
During the past decade, network meta-analyses (NMA)
have become increasingly common in healthcare
research [1, 2]. Applications of NMA have grown in fre-
quency and popularity and can inform the comparison
of multiple interventions which may not have been com-
pared directly in head-to-head clinical trials [3–5]. In
practice, when undertaking an NMA, researchers must
pay careful attention to the extent of variability between
studies in terms of both study design and patient

characteristics (henceforth referred to as ‘heterogeneity’)
to establish the appropriateness of integrating the results
from multiple studies in NMA [6, 7]. When well per-
formed, NMAs allow for decision-making in scenarios
where direct comparisons of interventions (in the con-
text of clinical trials) are unavailable, however, the end
users of such analyses must be made aware of the poten-
tial limitations that can emerge if cross-trial heterogene-
ity is present and is not formally addressed. In such
analyses, there is a greater risk of drawing misleading
interpretations from the findings around treatment
effects [6, 7] and potentially impacting clinical decision-
making. Past research has demonstrated how adjusting
for cross-trial heterogeneity can potentially play an
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important role in the validity of meta-analysis and
NMAs. For example, Salanti et al. [8], previously demon-
strated in NMA-based comparisons of interventions to
prevent dental caries that magnitudes of treatment
effect, as well as the rank ordering of treatments, were
altered when accounting for differences in clinically rele-
vant covariates such as baseline mean caries level [8].
Therefore, it is important to demonstrate the need for
assessing systematic differences in treatment effect
modifiers across comparisons when conducting an NMA
for healthcare decision-makers and researchers. Variabil-
ity in control group response rate between interventions
and studies within NMA can inflate relative estimates of
treatment effect for those interventions with values
lower than the overall average while biasing against
those interventions with higher response rates. Given
the common challenge of access to sufficiently large
numbers of studies for meta-regression analysis and lack
of reporting of many characteristics, [9] the availability
of a characteristic such as control group response rate
which can indirectly account for variability in multiple
measures can be of considerable value.
Comparison of interventions for moderate to severe

rheumatoid arthritis (RA) represents one of the most
heavily studied therapeutic areas in terms of past appli-
cations of NMA, with a total of 28 published between
2003 and 2014 [10]. While well-established methods
guidance for NMA has previously noted the importance
of incorporation of adjustments for between-study varia-
bility in control group risk [6], follow-through on this
recommendation has been varied. In 2017, a clinical
review reported by the Institute for Clinical and Economic
Review (ICER) incorporated adjustments for control
group risk in NMAs evaluating the effects of targeted
immune modulators for RA [11], as have some other past
reviews. Conversely, a number of other NMAs in this
clinical area have failed to do so, including the original
analysis from which our data was abstracted [12]. Discor-
dance in findings between these reviews is apparent in
terms of the interventions that were concluded to be asso-
ciated with greater extents of clinical benefit. Thus, there
remains a need to assess the importance of adjustments
for cross-study heterogeneity in control group response
rate when comparing interventions for moderate to severe
RA to re-affirm for researchers the importance of this
inclusion in their systematic review methods when plan-
ning future research.

Methods
An overview of the approach taken to establish the evi-
dence base for the NMAs in a case study is provided,
including selection criteria and approaches for the synth-
esis of the evidence (approaches for the fitting of both
unadjusted and adjusted models are noted). Graphical

approaches used to establish the existence of heterogene-
ity between studies and to summarize changes in treat-
ment effects achieved using unadjusted and adjusted
models are also presented, and subsequent discussion is
focused upon contextualizing the importance of account-
ing for cross-study heterogeneity when comparing inter-
ventions for moderate to severe RA.

Case study: network meta-analyses of biologic therapies
for moderate-to-severe rheumatoid arthritis
To illustrate the importance of adjusting for cross-study
heterogeneity in RA, we present an illustration based on
an evidence base derived from a recent Technology
Review of interventions from the Canadian Agency for
Drugs and Technologies in Health (CADTH) for moder-
ate to severe RA [13]. We focus on an example employ-
ing innovator biologic interventions in the main text of
this report, while further analyses adding consideration
of biosimilars are presented in the Additional file 1. Out-
come data for this illustration were compiled through
inspection of the review’s listing of included studies [13]
and subsequent data collection from the trial articles by
the research team of this report. Approaches for both
the inspection of studies for clinical heterogeneity as
well as the performance of NMAs using unadjusted and
adjusted models used established models recommended
by the National Institute for Health and Care Excellence
[6, 7] (NICE; additional modeling details are described
below). A total of 51 RCTs (Additional file 1: Appendix
1) (n = 16,223 patients) were included for NMA of the
ACR 50 (American College of Rheumatology 50)
response outcome, a commonly assessed binary outcome
measure which captures the proportion of patients
achieving 50% or greater improvement in severity of dis-
ease from study baseline. This score is a composite of
both clinical and laboratory parameters used in the
assessment of disease activity. The network diagram pre-
sented in Fig. 1 provides an overview of the evidence
base available for this outcome measure. The network
consisted of many comparisons of biologic interventions
against placebo, while a smaller number of head-to-head
comparisons were also present. In total, 166 treatment
arms were included in the evidence base for ACR 50.

Statistical methods for unadjusted NMAs of ACR 50
response
To inform comparisons between biologics, unadjusted
Bayesian random effect (RE) NMAs using the logit link
and binomial likelihood were conducted using R
Software (Version 3.5.1, The R Foundation for Statistical
Computing) and WinBUGS software (version 1.4.3,
MRC Biostatistics Unit, United Kingdom) in accordance
with recommendations and statistical code made avail-
able by NICE that adjusts for correlation in multi-arm
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trials [7]; RE models were chosen as the focus of this
report given the heterogeneity amongst studies as well
as measures of model fit. Vague prior distributions for
treatment effects (Normal with mean 0 and precision
0.0001) in both models were used. Odds ratios (ORs)
with 95% credible intervals (CrIs) were estimated to cap-
ture pairwise comparisons between all interventions
(including both biologics and placebo). Surface Under
the Cumulative Ranking (SUCRA) curve measures were
also estimated to provide the probability of a treatment
ranking highly. SUCRA values range from 0 to 100%,
with values closer to 100% representing treatments with
more favorable rankings for ACR50. These values can be
informative for readers in terms of providing an over-
view of the treatment hierarchy for an outcome of inter-
est. All NMAs were carried out using three sets of
starting values and were based on sampling of 40,000
iterations including burn in. Evaluation of model conver-
gence was informed by inspection of trace plots,
Gelman-Rubin plots, and Monte Carlo standard error of
parameter estimates from the Markov Chain Monte
Carlo (MCMC) analysis.

Evaluating cross-study heterogeneity in control group
response rates
Cross-study heterogeneity has been identified in past lit-
erature addressing comparisons of biologic interventions
for RA [6, 13]. Of particular interest in this methodolo-
gic exercise was variability across studies in control
group response rate (commonly referred as baseline risk
adjustment [6]), a measure which is known to be a proxy
for cross-study variability in multiple confounders (both
measured and unmeasured) and which has previously
been cited as a vital adjustment factor for NMAs of
interventions for RA [6]. We generated a box plot of
control group response rates (Fig. 2) to identify differ-
ences in response rate between intervention groups.

Statistical methods for adjusted NMAs of ACR 50
response
Bayesian random effect (RE) NMAs were conducted
using R Software (Version 3.5.1, The R Foundation for
Statistical Computing) and WinBUGS software (version
1.4.3, MRC Biostatistics Unit, United Kingdom) in
accordance with recommendations and statistical code

Fig. 1 Evidence Network Comparing Biologics for Moderate to Severe Rheumatoid Arthritis, ACR50 Response. Treatment nodes are sized to
proportionally reflect the numbers of patients randomized to each intervention, while the line thickness of edges joining nodes are asized to
propotionally reflect the numbers of studies informing each comparison. Legend: ABA = abatacept; ADA = adalimumab; BAR_4 = 4mg baricitinib;
CERTO = certolizumab pegol; csDMARD = conventional synthetic disease-modifying anti-rheumatic drug; ETN = etanercept; GOL = golimumab;
INF = infliximab; IV = intravenous; MTX =methotrexate; RIT = rituximab; SAR_200 = 200mg sarilumab; SC = subcutaneous; SSZ = sulfasalazine; STD =
standard dose; TOC_4 = tocilizumab 4mg/kg; TOC_8 = 8mg/kg tocilizumab; TOF = tofacitinib
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made available by NICE TSD to conduct a meta-
regression model to adjust for baseline-risk [6]. To
assess whether the meta-regression model was better for
analysis than the unadjusted model (and thus more sui-
table for use in drawing clinical interpretations), gui-
dance from the NICE Decision Support Unit (DSU)
Technical Support Documents (TSD) was used [6]. This
included establishing whether the regression coefficient
was associated with a 95% CrI which excluded 0 and
whether the between-study standard deviation parameter
(and its 95% CrI) was reduced in magnitude; the
deviance information criterion (DIC) and the posterior
residual deviance were also assessed. As recommended
by guidance from the NICE TSD series, decisions about
model choice were focused upon all of the above

information as opposed to DIC alone, which can be
unreliable for such decisions [6].

Results
Assessment of variability in control group response rates
and relationship with treatment effect
Inspection of the bar chart in Fig. 2 identifies several
variations of note. Compared to the overall average con-
trol group response rate of 14.97%, the median and
range of control group response associated with some
interventions (e.g. etanercept + methotrexate (MTX),
etanercept monotherapy, MTX + sulfasalazine (SSZ) +
hydroxychloroquine (HCQ), SSZ +HCQ, tocilizumab
(TOC) 4 mg) was notably higher, while in other cases
(e.g. certolizumab (CERTO) +MTX, golimumab+MTX,

Fig. 2 ACR50 response rate of control group, placebo + MTX (ie, MTX) across interventions and studies. A boxplot summary of the control group
response rates, by intervention, is shown. Interventions associated with control group response rates above the average line may have
unadjusted NMA results biased against them, while interventions with control group response rates below the average line may have unadjusted
NMA results biased in their favor. Legend: ABA = abatacept; ABP501 = biosimilar adalimumab; ADA = adalimumab; ANBAI = AnBaiNuo (biosimilar
adalimumab); BAR_4 = 4mg baricitinib; CERTO = certolizumab pegol; csDMARD = conventional synthetic disease-modifying anti-rheumatic drug;
CT-P13 = biosimilar of infliximab; ETN = etanercept; GOL = golimumab; HCQ = hydroxychloroquine; HD203 = etanercept biosimilar; INF = infliximab;
IV = intravenous; MTX =methotrexate; RIT = rituximab; SAR_200 = 200mg sarilumab; SB2 = biosimilar infliximab 3mg/kg; SB4 = biosimilar
etanercept 50mg; SB5 = biosimilar adalimumab; SC = subcutaneous; SSZ = sulfasalazine; STD = standard dose; TOC_4 = tocilizumab 4mg/kg;
TOC_8 = 8mg/kg tocilizumab; TOF = tofacitinib; ZRC-3197 = biosimilar of adalimumab
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rituximab (RIT), RIT +MTX, TOC 8mg, tofacitinib
(TOF) +MTX) was notably lower. Estimated odds ratios
summarizing eTach intervention’s relative treatment
effect for ACR 50 response versus placebo are presented
in Fig. 3, and demonstrate a strong inverse negative
linear relationship between control group response rate
and treatment effect. This finding provides strong
support for the incorporation of an interaction term
using meta-regression analysis that may prove of consid-
erable value for evidence synthesis and decision-making.
Additional file 1: Appendix 2 provides a summary of
model fit information from both the unadjusted and
adjusted NMA models.

Findings from unadjusted NMA of ACR 50 response
The forest plot presented in Fig. 4 includes a summary
of comparisons between biologics and placebo from the
unadjusted (and adjusted) analysis using MTX + placebo
as the reference group; Additional file 1: Appendix 3
presents a league table of all pairwise comparisons
between biologics in the network. Nearly all active inter-
ventions were found to be associated with a greater like-
lihood of ACR 50 response compared to placebo, with
ORs ranging in magnitude between 1.62 (95% CrI 0.50

to 5.00; adalimumab) and 59.81 (95% CrI 10.40 to
351.74; MTX + SSZ + HCQ). SUCRA values (see left
panel of Fig. 5) ranged between 0 and 96%, with the
highest ranked five interventions being MTX SSZ +
HCQ (96%), baricitinib 4mg +MTX (89%), TOF +MTX
(85%), CERTO + MTX (85%), and RIT +MTX (81%);
the five lowest-ranked interventions were placebo (0%),
adalimumab (4%), TOF (11%), sarilumab 200 mg (11%)
and placebo + MTX (19%).

Findings from adjusted NMAs accounting for differences
in baseline risk
To account for cross-study differences in control group
response rate that were identified in Figs. 2 and 3, a
meta-regression adjustment was introduced into the
NMA RE model using an established extension of the
unadjusted model used earlier.
The NMA incorporating adjustment for control group

response rate was more reliable for decision-making
purposes. The between-study standard deviation was
reduced from 0.35 (95% CrI 0.19 to 0.55) to 0.29 (95%
CrI 0.16 to 0.44), and the regression coefficient demon-
strated a potentially important effect on model results
(− 0.68, 95% CrI − 0.89 to − 0.44). A beta coefficient of

Fig. 3 Scatterplot of placebo response rates versus log (OR) for ACR 50 response. A scatterplot of the natural log of each study’s treatment effect
against its corresponding control group response rate. Points are color-coded by intervention. A clear relationship exists between % control
group response and treatment effect, wherein lower response rates are associated with larger treatment effects. Legend: ABA = abatacept; ADA =
adalimumab; BAR_4 = 4mg baricitinib; CERTO = certolizumab pegol; csDMARD = conventional synthetic disease-modifying anti-rheumatic drug;
ETN = etanercept; GOL = golimumab; INF = infliximab; IV = intravenous; MTX =methotrexate; RIT = rituximab; SAR_200 = 200mg sarilumab; SC =
subcutaneous; SSZ = sulfasalazine; STD = standard dose; TOC_4 = tocilizumab 4 mg/kg; TOC_8 = 8 mg/kg tocilizumab; TOF = tofacitinib

Cameron et al. BMC Medical Research Methodology          (2019) 19:193 Page 5 of 10



Fig. 4 (See legend on next page.)
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− 0.68 (95% CrI − 0.89 to − 0.44) suggests that control
group response is an important treatment effect modifier
in NMAs of ACR50 response in rheumatoid arthritis
and that lower control group response rates are asso-
ciated with more favorable ORs than higher control
group response rates (Additional file 1: Appendix 4).
In addition to results from the unadjusted NMA, the

forest plot in Fig. 4 also presents a summary of the odds
ratios for each intervention compared with placebo +

MTX from the adjusted analysis, while corresponding
SUCRA values are provided in the right panel of Fig. 5
(Additional file 1: Appendix 3 also provides a league
table summary of all pairwise comparisons). Overall, an
average change of 38.1% in the magnitude of the ORs
between treatment comparisons (Additional file 1:
Appendix 5). Notable gains can be seen for several treat-
ments including etanercept + MTX (from 63 to 89%),
MTX +HCQ (from 74 to 93%), MTX + SSZ (from 48 to

(See figure on previous page.)
Fig. 4 Forest Plot of ACR50 Treatment Effect Estimates (OR and 95% CrI) from Unadjusted and Adjusted NMAs. Odds ratios estimated from the
unadjusted and control group risk adjusted RE NMAs are presented above, focused on comparisons of active interventions versus placebo. Values
are reported with corresponding 95% credible intervals. Odds ratios and > 1 favor the active comparator. Downward and upward shifts in
treatment effects between NMA approaches can be seen. Legend: ABA = abatacept; ADA = adalimumab; BAR_4 = 4mg baricitinib; CERTO =
certolizumab pegol; csDMARD = conventional synthetic disease-modifying anti-rheumatic drug; ETN = etanercept; GOL = golimumab; INF =
infliximab; IV = intravenous; MTX =methotrexate; RIT = rituximab; SAR_200 = 200mg sarilumab; SC = subcutaneous; SSZ = sulfasalazine; STD =
standard dose; TOC_4 = tocilizumab 4mg/kg; TOC_8 = 8mg/kg tocilizumab; TOF = tofacitinib

Fig. 5 Heat Map of SUCRA Values per Intervention from Unadjusted and Adjusted NMAs, ACR 50 Response. SUCRA values from both unadjusted
and baseline risk adjusted NMAs are presented using a heat map to allow visualization of treatment hierarchy as well as changes in SUCRA valus
between models. Legend: ABA = abatacept; ADA = adalimumab; BAR_4 = 4mg baricitinib; CERTO = certolizumab pegol; csDMARD = conventional
synthetic disease-modifying anti-rheumatic drug; ETN = etanercept; GOL = golimumab; INF = infliximab; IV = intravenous; MTX =methotrexate;
RIT = rituximab; SAR_200 = 200 mg sarilumab; SC = subcutaneous; SSZ = sulfasalazine; STD = standard dose; TOC_4 = tocilizumab 4mg/kg;
TOC_8 = 8mg/kg tocilizumab; TOF = tofacitinib
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81%), etanercept monotherapy (from 37 to 67%) and
SSZ + HCQ (from 33 to 56%), all of which were asso-
ciated with increased or comparable ranges of control
group response rate relative to the overall average rate
across trials; conversely, sizable reductions were
observed for RIT +MTX, TOF +MTX, ADA +MTX
and CERTO + MTX, amongst other interventions. The
five most highly ranked interventions based upon
SUCRA value were MTX + SSZ +HCQ (100%), MTX +
HCQ (93%), etanercept + MTX (89%), baricitinib 4 mg
(85%) and MTX + SSZ (81%).
Several changes in clinical interpretations drawn from

the unadjusted model were noted with regard to esti-
mated treatment effects. There has been significant
variability in the placebo response rates of RA clinical
trials. For example, the odds ratio’s for adalimumab plus
methotrexate versus etanercept plus methotrexate
changes from 1.21 (95% CrI 0.60 to 2.23) favoring adali-
mumab in unadjusted NMA to 1.82 (95% CrI 1.06 to
3.14) favoring etanercept after adjustment in NMA.
Additional file 1 Appendix 6 provides an analogous

description of findings from unadjusted and adjusted
NMAs conducted with the same network of therapies,
with the incorporation of biosimilars. Similar improve-
ments in model fit and shifting of point estimates and
SUCRA values were observed.

Discussion
In the current study, we re-created an NMA comparing
biologic interventions for moderate-to-severe RA [13].
In addition to re-creating this analysis, the data from this
study were used to demonstrate approaches to inspect-
ing for the presence of cross-study variability in control
group risk, as well as the importance of accounting for
its presence in the context of NMAs in general and with
respect to RA. This study will add to past research that
has discussed the importance of addressing cross-trial
heterogeneity in NMA [6, 8, 13].
As NMAs continue to become increasingly common

regarding their use to compare healthcare interven-
tions and more researchers develop an interest in
their implementation, there is a need to encourage
rigorous efforts for modeling when cross-study varia-
bility exists. If researchers undertaking NMAs fail to
inspect data sets for such variability carefully, then
the risk of presenting and drawing interpretations
from potentially misleading estimates of treatment
effect from NMAs increases. In presenting the current
case study, we hope to add to past literature that has
noted the value and importance of exploring covariate
adjustments in NMA in general and to re-emphasize
their importance in the context of analyses seeking to
compare biologic interventions for RA.

The current case study of biologics for RA presents an
illustration of an NMA wherein considerable cross-study
heterogeneity was identified regarding ACR50 control
group response. Network structure did not allow us to
adjust for multiple characteristics simultaneously but
allowed for adjustment of control group response which
serves as a proxy for differences in multiple characteris-
tics. We focused on ACR 50 because that was the pri-
mary outcome in the CADTH therapeutic review [12].
In the original review, adjustments for control group
response rate were not performed [12]. The NICE TSD
series have previously identified analyses of ACR out-
comes in RA as a scenario wherein analyses accounting
for this source of variability should be considered as the
primary analysis from which interpretations should be
drawn [6]. Other guidance documents have also
addressed the importance of accounting for the presence
of heterogeneity [14–16]. It is very evident from box
plots (Fig. 2) and scatterplots of effect estimates about
ACR 50 control group response across trials (Fig. 3) that
control group response rate is related to treatment
effect. Not surprisingly, a meta-regression adjusting to
account for this relationship was associated with an
improved model fit (associated with statistically signifi-
cant regression coefficient and a reduction in the
between-study variance parameter). Lack of adjustment
for cross-trial differences was associated with different
clinical interpretations of findings from NMA, demon-
strating a bias against interventions which reported
higher ACR 50 response rates in the control group (e.g.,
etanercept).
The findings of this study have important implications

for HTA agencies where NMAs are often incorporated
into health economic evaluations. As noted in NICE
TSDs, cost-effectiveness estimates from an unadjusted
NMA will be very different compared to an NMA
adjusting for differences in patient characteristics across
studies. For example, in our case study, the relative risk
of adalimumab plus methotrexate versus etanercept plus
methotrexate changes from favoring adalimumab in
unadjusted NMA to favoring etanercept after adjustment
in NMA. Given health economic evaluations are driven
by mean treatment effects, the naïve use of an unad-
justed NMA in a cost-effectiveness analysis could funda-
mentally result in an author incorrectly concluding that
etanercept is more expensive and less effective than ada-
limumab. It is therefore imperative that authors of cost-
effectiveness analyses in RA assess whether NMAs have
adequately adjusted for differences in patient popula-
tions before using to populate their economic models. It
is reassuring that the importance of adjustment for con-
trol group risk has been recognized by NICE [6]; they
indicate that investigations of interventions for RA
should clearly identify a relationship between the efficacy
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of interventions and control group risk “that needs to be
incorporated into cost-effectiveness analyses”.
As others have recommended previously, the current

case study provides strong support that NMAs of ACR
outcomes in the realm of moderate-to-severe RA should
be based upon a model accounting for cross-study dif-
ferences in baseline risk, and when uncertain of this, that
authors should undertake inspections of heterogeneity
between studies to assess its presence. Variability in
patients baseline demographics are known in general to
have the ability to impact findings within both clinical
trials and knowledge syntheses, and in the context of
NMA, adjustments for control group risk can function
as a proxy measure, capturing the effects of several rele-
vant known (e.g., duration of rheumatoid arthritis, biolo-
gic experience) and unknown factors simultaneously.
This is advantageous because it permits adjustment for
multiple clinical characteristics which are relevant in RA
that is not possible to adjust for using meta-regressions
on individual characteristics due to network structure
(i.e., often only enough studies to adjust in meta-
regression for one variable). There was strong support
observed in Fig. 3 for the incorporation of an interaction
term in NMA using meta-regression, and changes in
estimates of treatment effect observed in Fig. 4 clearly
show that this approach has important implications for
clinical decision-making and economic evaluation of bio-
logic interventions for RA. Therefore, adjustment for
baseline risk likely represents an especially important
adjustment factor in scenarios wherein assorted cross-
trial differences between study populations are known to
be present.
In general, adjusting for baseline-risk in meta-regression

is most useful when: a) networks include one or more
connections with many studies (e.g., greater than 5); b)
there is spread across studies in terms of control group
response rate, and; c) there is a relationship between con-
trol group response rate and treatment effect. Fortunately,
the ACR50 network in rheumatoid arthritis meets all
these criteria and it is worthwhile to conduct in the exam-
ple here, but that may not always be the case in other
therapeutic areas. Indeed, in many therapeutic areas, there
won’t be a sufficient number of studies in the network to
conduct a meta-regression adjusting for baseline-risk, and
methods leveraging individual patient data will be
required to adequately adjust for heterogeneity [17].

Conclusions
When comparing findings from a collection of RCTs
which consist of heterogeneous patient populations, the
use of an NMA that does not properly adjust for patient
characteristics is likely to produce estimates of treatment
effect that may be biased. Efforts should be taken to
account and adjust for sources of heterogeneity,

especially when they are well established and accepted in
the literature. Use of an NMA model accounting for
cross-study variability in control group response, which
can account for both observed and unobserved confoun-
ders, was associated with important gains in model fit as
well as several significant shifts in clinical interpretation.
Future clinical systematic reviews and health technology
assessments related to the comparison of interventions
for rheumatoid arthritis should consider adjustment for
control group response rate when conducting NMAs.
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