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COVID-19 prevalence estimation by
random sampling in population - optimal
sample pooling under varying assumptions
about true prevalence
Ola Brynildsrud1,2

Abstract

Background: The number of confirmed COVID-19 cases divided by population size is used as a coarse
measurement for the burden of disease in a population. However, this fraction depends heavily on the sampling
intensity and the various test criteria used in different jurisdictions, and many sources indicate that a large fraction
of cases tend to go undetected.

Methods: Estimates of the true prevalence of COVID-19 in a population can be made by random sampling and
pooling of RT-PCR tests. Here I use simulations to explore how experiment sample size and degrees of sample
pooling impact precision of prevalence estimates and potential for minimizing the total number of tests required to
get individual-level diagnostic results.

Results: Sample pooling can greatly reduce the total number of tests required for prevalence estimation. In low-
prevalence populations, it is theoretically possible to pool hundreds of samples with only marginal loss of precision.
Even when the true prevalence is as high as 10% it can be appropriate to pool up to 15 samples. Sample pooling
can be particularly beneficial when the test has imperfect specificity by providing more accurate estimates of the
prevalence than an equal number of individual-level tests.

Conclusion: Sample pooling should be considered in COVID-19 prevalence estimation efforts.

Background
It is widely accepted that a large fraction of COVID-19
cases go undetected. A crude measure of population
prevalence is the fraction of positive tests at any given
date. However, this is subject to large ascertainment bias
since tests are typically only ordered from symptomatic
cases, whereas a large proportion of infected might show
little to no symptoms [1, 2]. Non-symptomatic infections
can still shed the Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus and are therefore

detectable by reverse transcriptase polymerase chain
reaction (RT-PCR)-based tests. It is therefore possible to
test randomly selected individuals to estimate the true
disease prevalence in a population. However, if the dis-
ease prevalence is low, very little information is garnered
from each individual test. Under such situations it can
be advantageous to pool individual patient samples into
a single pool [3–5]. Pooling strategies, also called group
testing, effectively increase the test capacity and reduces
the required number of RT-PCR-based tests. For SARS-
CoV-2 pooling has been estimated to potentially reduce
costs by 69% [6], use ten-fold fewer tests [7] and clearing
20 times the number of people from isolation with the
same number of tests [8]. Note that I will not discuss

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

Correspondence: olbb@fhi.no
1Norwegian Institute of Public Health, Oslo, Norway
2Norwegian University of Life Science, Ås, Norway

Brynildsrud BMC Medical Research Methodology          (2020) 20:196 
https://doi.org/10.1186/s12874-020-01081-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-020-01081-0&domain=pdf
http://orcid.org/0000-0001-7566-4133
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:olbb@fhi.no


pooling of SARS-CoV-2 antibody-based tests, since there
is currently not enough information about how pooling
affects test parameters. However, sample pooling has
been successfully used for seroprevalence studies for
other diseases such as human immunodeficiency virus
(HIV) [9–11].

Methods
I simulated the effect sample pooling had on prevalence
estimates under five different settings for true preva-
lence, p. I started by generating a population of 500,000
individuals and then let each individual have p probabil-
ity of being infected at sampling time. The number of
patient samples collected from the population is denoted
by n, and the number of patient samples that are pooled
into a single well is denoted by k. The total number of
pools are thus n

k , hereby called m. The number of posi-
tive pools in an experiment is termed x. I calculated the
estimated prevalence p̂ at each parameter combination
by replicating the experiment 100,000 times and report
here the 2.5 and 97.5% quantiles of the distribution of p̂.
Explored parameter options:

p∈ 0:001; 0:003; 0:01; 0:03; 1:0f g
n∈ 200; 500; 1000; 1500; 2000; 3000; 5000f g
k∈ 1; 3; 5; 7; 10; 15; 20; 25; 30; 40; 50; 70; 100; 200f g

I considered the specificity (θ) of a PCR-based test to
be 1.0 but include simulations with the value set to 0.99.
Test sensitivity (η) depends on a range of uncontrollable
factors such as virus quantity, sample type, time from
sampling, laboratory standard and the skill of personnel
[12]. There have also been reports of it varying with
pooling level [13]. For the purposes of this study, I
fixed the sensitivity first at 0.95, then at 0.7, irrespect-
ive of the level of pooling. These estimates are rather
low, which would suggest that I am somewhat over-
estimating the uncertainty of p̂ . However, since it is
possible that tests will be carried out under subopti-
mal and non-standardized conditions I prefer to err
on the side of caution.
A central point of pooled testing is that the number of

positive pools, x, divided by the total number of pools,
m, can be used as a proxy to measure the true preva-
lence when the test sensitivity and specificity is known.
Note that the number of positive pools, x, can be
approximated in infinite populations as a stochastic vari-
able subject to a binomial distribution with parameters
m and P, where the latter is the probability that a single
pool will test positive. A positive pool can arise from
two different processes: There can be one or more true
positive samples in the pool, and they are detected, or
there can be no true positive samples in the pool, but

the test gives a false positive result. These two possibil-
ities are represented by the first and second part of the
following equation [14], respectively:

P p; kð Þ ¼ 1 − 1 − pð Þk
� �

ηþ 1 − pð Þk 1 − θð Þ ð1Þ

Closer inspection of the above formula reveals some-
thing disheartening: When p approaches zero, P con-
verges towards 1 − θ. Thus, in low-prevalence scenarios,
and for typical values of test sensitivity and specificity,
most positive test results will be false positives. Never-
theless, with appropriate levels of sample pooling it is
possible to get decent estimates of the true prevalence
because the probability of having no positive samples in
a pool decreases with k.
We can modify eq. 1 for finite populations by re-

placing P with x
m, p with p̂, and then solving for p̂. This

gives us the formula of Cowling et al., 1999 [15], which
is used in the following to calculate p̂ from a single
sample:

p̂ ¼ 1 −
η − x

m

θ þ η − 1

� �1
k

ð2Þ

Note that the formula incorporates the test parameters
and thus gives an unbiased estimate of p̂ even in low-
prevalence settings. In this formula, x is a stochastic
variable with a binomial distribution. It depends on the
number of truly positive samples in a pool, another sto-
chastic variable with a binomial distribution. As a final
layer of complexity, we can take samples from a finite
population. For these reasons I will use Monte Carlo
simulations to get estimates for p̂ rather than evaluating
some closed-form mathematical expression.

An algorithm for patient-level diagnosis
A crucial objective of testing is to identify which
patients have active COVID-19 infections. This in-
formation is not readily apparent from pooled tests,
and in order to get diagnostic results at the patient
level, some samples will need to be retested. The
methodologically simplest algorithm is to consider
all samples from negative pools as true negatives,
but re-test every sample from a positive pool indi-
vidually. This is also called Dorfman’s method [4].
This strategy is estimated to increase testing cap-
abilities by at least 69% [6]. In this work I use an
algorithm that conserves testing resources even
more than this, but which might be more difficult
to implement in practice: I remove all samples from
negative pools, considering them true negatives. All
positive pools are split into two equally large sub-
pools, and then the process is repeated. Positive
patient-level diagnosis is only made from sub-pools

Brynildsrud BMC Medical Research Methodology          (2020) 20:196 Page 2 of 8



Fig. 1 Algorithm used to minimize the number of RT-PCR reactions in pooled sampling. Negative pools regard all constituent patient samples as
negative, whereas positive pools are split in two, and the process repeated. Red circle = Pool testing positive. Grey circle = Pool testing negative.
Red/grey squares = Patient samples in pool, with color indicating diseased/non-diseased status

Fig. 2 Central 95% estimates of p̂ with a test with sensitivity (η) 0.95 and perfect specificity (θ = 1) under different combinations of total number
of samples and level of sample pooling. a: p = 0.001; b: p = 0.003; c: p = 0.01; d: p = 0.03; e: p = 0.10
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of size 1. The algorithm is illustrated in Fig. 1. Note that
this is a sub-optimal version of the generalized binary
splitting (GBS) algorithm presented in the context of
COVID-19 in [16]. My version is sub-optimal in the
number of reactions because I am always running a test
on both sub-pools when a parent pool has tested positive.
It is possible to run an even lower number of reactions by
not testing a sub-pool if the other sub-pool from the same
parent pool has been run first and tested negative. (The
positive result from the parent pool implies that the
second sub-pool must be positive.) However, for practical
reasons such as the ability to run multiple tests simultan-
eously and the fact the tests are imperfect, I have used the
algorithm in Fig. 1. A thorough discussion on group test-
ing algorithms and their merit in testing for SARS-CoV-2
is available in [7].

Results
Estimates of prevalence
In the following, I use simulations to calculate the cen-
tral 95% estimates of p̂ using tests with varying sensitiv-
ity (0.7 and 0.95) and specificity (0.99 and 1.0) (Figs. 2,
3, 4, 5). These estimates are based on the initial pooled
tests only, not the follow-up tests on sub-pools that
allow for patient-level diagnosis. (Including results from
these samples would allow the precision from the pooled
test estimates to approach those of testing individually.)
More samples are associated with a distribution of p̂
more narrowly centered around the true value, while
higher levels of pooling are generally associated with
higher variance in the p̂ estimates. The latter effect is
less pronounced in populations with low prevalence. For
example, if the true population prevalence is 0.001 and a

Fig. 3 Central 95% estimates of p̂ with a test with sensitivity (η) 0.95 and a specificity (θ) of 0.99 under different combinations of total number of
samples and level of sample pooling. a: p = 0.001; b: p = 0.003; c: p = 0.01; d: p = 0.03; e: p = 0.10
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total of 500 samples are taken from the population, the
expected distribution of p̂ is nearly identical whether
samples are run individually (k = 1) or whether they are
run in pools of 25 (Figs. 2 or 4, panel A). Thus, it is pos-
sible to economize lab efforts by reducing the required
number of pools to be run from 500 to 20 (500 divided
by 25) without any significant alteration to the expected
distribution of p̂. At this prevalence and with this pool-
ing level, 40 tests are sufficient to get a correct patient-
level diagnosis for all 500 individuals 97.5% of the time
(Supplementary Table 1). With 5000 total samples, the
central estimates of p̂ vary little between individual sam-
ples (95% interval 0.00021–0.0021) and a pooling level
of 200 (95% interval 0.0022–0.0021). 145 reactions is
enough to get patient-level diagnosis 97.5% of the time,
in other words a reduction in the number of separate
RT-PCR setups by a factor of 34.5. (Supplementary
Table 1).

The situation changes when the test specificity (θ) is
set to 0.99, that is, allowing for false positive test results
(Figs. 3, 5). This could theoretically occur from PCR
cross-reactivity between COVID-19 and other viruses, or
from human errors in the lab. A problem with imperfect
specificity tests are that false positives typically outnum-
ber true positives when the true prevalence is low. This
creates a seemingly paradoxical situation in which higher
levels of sample pooling often leads to prevalence esti-
mates that are more accurate. This is because many
pools test positive without containing a single true posi-
tive sample, leading to inflated estimates of the preva-
lence. When the level of pooling goes up, the probability
that a positive pool contains at least one true positive
sample increases, which increases the total precision.
The trends about appropriate levels of pooling for differ-
ent sample numbers and levels of true population preva-
lence are similar as for the perfect specificity scenario,

Fig. 4 Central 95% estimates of p̂ with a test with sensitivity (η) 0.70 and perfect specificity (θ = 1) under different combinations of total number
of samples and level of sample pooling. a: p = 0.001; b: p = 0.003; c: p = 0.01; d: p = 0.03; e: p = 0.10
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but with imperfect specificity, we have an added incen-
tive for sample pooling in that prevalence estimates are
closer to the true value with higher levels of pooling.
Even with a moderately accurate test (sensitivity 0.7 and
specificity 0.99), when the prevalence is 1%, pooling 50
together lets us diagnose 5000 individuals at the patient-
level with a median of 282 tests, a 17-fold reduction in
the number of tests. This has virtually no influence on
our estimate of p̂ , and no significant effect on the
number of wrongly diagnosed patients, which in both
cases is about 1%.

Discussion
The relationship between true prevalence, total sample
number and level of pooling is not always intuitive.
Some combinations of parameters have serrated patterns
for p̂, which looks like Monte Carlo errors (Figs. 2, 3, 4,
and 5). This is particularly true for the lower sample

counts. However, this is not due to stochasticity, but due
to the discrete nature of each estimate of p̂. That is, p̂ is
not continuous and for small pool sizes miniscule
changes in the number of positive pools can affect the
estimate quite a bit.
For example, if we take 200 samples and go with a

pool size of 100, there are only three potential outcomes:
First, both pools are negative, in which case we believe
the prevalence is 0. Second, one pool is positive and the
other negative, in which case we estimate p̂ as approxi-
mately 0.007 if the test sensitivity is 0.95. Finally, both
pools are positive, in which case the formula of Cowling
et al. does not provide an answer because the fraction of
positive pools is higher than the test sensitivity. This
formula is only intended to be used when the fraction of
positive pools is much lower than the test sensitivity.
In general, very high levels of pooling are not appro-

priate since, depending on the true prevalence, the

Fig. 5 Central 95% estimates of p̂ with a test with sensitivity (η) 0.70 and a specificity (θ) of 0.99 under different combinations of total number of
samples and level of sample pooling. a: p = 0.001; b: p = 0.003; c: p = 0.01; d: p = 0.03; e: p = 0.10
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probability that every single pool has at least one posi-
tive sample approaches 1. (Indicated by “NA” in Supple-
mentary Table 1). In low prevalence settings however, it
can be appropriate to pool hundreds of samples, but the
total number of samples required to get a precise esti-
mate of the prevalence is much higher. Thus, decisions
about the level of pooling need to be informed by the
prior assumptions about prevalence in the population,
and there is a prevalence-dependent sweet spot to be
found in the tradeoff between precision and workload.
It is worth noting that the strategy I have outlined here

does present some logistical challenges. Firstly, samples
must be allocated to pools in a random manner. This
rules out some practical approaches such as sampling a
particular sub-district and pooling these, then sampling
another district the next day. Secondly, binary testing of
sub-pools might be more cumbersome than it’s worth,
in which case Dorfman’s method should be preferred.
Finally, there are major organizational challenges related
to planning and conducting such experiments across
different testing sites and jurisdictions.

Conclusion
Attempts to estimate the true current prevalence of
COVID-19 by PCR tests can benefit from sample pool-
ing strategies. Such strategies have the potential to
greatly reduce the required number of tests with only
slight decreases in the precision of prevalence estimates.
If the prevalence is low, it is generally appropriate to
pool even hundreds of samples, but the total sample
count needs to be high in order to get reasonably precise
estimates of the true prevalence. On the other hand, if
the prevalence is high there is little to be gained by pool-
ing more than 15 samples. Pooling strategies makes it
possible to get patient-level diagnostic information with
only a fraction of the number of tests as individual
testing. For a prevalence of 10%, pooling cut the
required number of tests by about two thirds, while for a
prevalence of 0.1%, the number of required tests could
on average be lowered by a factor of 50.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-01081-0.

Additional file 1 : Supplementary Table 1. Table containing
prevalence estimates and, the estimated required number of tests, and
the expected proportion incorrectly classified patients for all parameter
combinations. Se = sensitivity. Sp = specificity. N = number of samples.
k = pooling level. P = true prevalence. p 2.5%, p 50.0%, p 97.5% = 2.5, 50
and 97.5 quantile of estimated prevalence. T 2.5%, T 50.0%, T 97.5% = 2.5,
50 and 97.5 quantile of estimated number of tests required to get
individual-level diagnoses. E(S) = Expected number of tests saved when
compared to testing individually for this N. E(inc) = Expected percentage
of patients that are diagnosed incorrectly at this parameter combination.
[Excel file].

Additional file 2 : Supplementary document 1. Testing for freedom
from disease and distinguishing a disease-free population from a low-
prevalence one.

Additional file 3 : Figure S1. Testing for freedom of disease with a test
with perfect specificity. The x-axis represents different true levels of p,
and the colored lines represent the number of samples associated with
95% probability of having at least one positive sample at that prevalence
level. For perfect specificity tests this is commonly interpreted as meaning
that we can be 95% certain that the true prevalence is lower. The effects
of sample pooling are explored with different color lines. Panel A: Test
specificity = 1.0; Panel B: Test specificity = 0.99.

Additional file 4 : Figure S2. Using a test with specificity of 0.99 to
discriminate a disease-free population from a population with p = 0.005
with 2743 samples from both populations. Panel A: The expected number
of positive samples from the disease-free and the low-prevalence popula-
tions; Panel B: The probability mass function of the difference in the num-
ber of positive samples between the low-prevalence and the disease-free
population. With 2743 samples from both populations, there is a 5%
probability of getting more positive tests from the disease-free
population.
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