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Abstract

Background: Evaluating a candidate marker or developing a model for predicting risk of future conditions is one of
the major goals in medicine. However, model development and assessment for a time-to-event outcome may be
complicated in the presence of competing risks. In this manuscript, we propose a local and a global estimators of
cause-specific AUC for right-censored survival times in the presence of competing risks.

Methods: The local estimator - cause-specific weighted mean rank (cWMR) - is a local average of time-specific
observed cause-specific AUCs within a neighborhood of given time t. The global estimator - cause-specific fractional
polynomials (cFPL) - is based on modelling the cause-specific AUC as a function of t through fractional polynomials.

Results: We investigated the performance of the proposed cWMR and cFPL estimators through simulation studies
and real-life data analysis. The estimators perform well in small samples, have minimal bias and appropriate coverage.

Conclusions: The local estimator cWMR and the global estimator cFPL will provide computationally efficient options
for assessing the prognostic accuracy of markers for time-to-event outcome in the presence of competing risks in
many practical settings.
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Background
In modern evidence-based medicine, decisions on appro-
priate early medical intervention or the choice and timing
of interventions frequently rely on prognostic markers
that are informative for survival outcome. Such marker
can be a single covariate or a risk score where the lat-
ter is estimated from a survival model of the association
between covariates and survival time. For instance, a well-
known Framingham risk score predicts the 10-year risk
of cardiovascular disease [1]. This model often guides
clinicians to identify those at high/low-risk for future car-
diovascular disease. Similar risk models and markers exist
for other diseases, e.g. Gail score for breast cancer [2],
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prostate specific antigen for prostate cancer, kidney donor
risk index (KDRI) of donor for kidney transplant etc. In
liver transplantation study (LT), the side-effects of medi-
cations put the organ recipients at risk for recurrent liver
disease (liver fibrosis) which can lead to graft failure [3].
Liver biopsy is the gold standard for staging, managing
and treating liver fibrosis, and useful in the prognosis of
LT recipients. However, biopsy is often impractical due to
its invasiveness and higher cost. Serum fibrosis markers
such as the fibrosis score 4 (FIB-4), and the nonalcoholic
fatty liver disease fibrosis score (NAFLD) measured one
year after LT have recently been shown to accurately strat-
ify organ recipients who are at high risk from those who
are at low risk of recurrent liver disease [3], [4]. There-
fore, rather than performing biopsy on all patients, these
markers could guide clinicians to start timely treatment
for those high-risk patients while sparing low-risk patients
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from the side effects of biopsy and from the unneces-
sary costs. Before one adopts such markers into clinical
practice, it is crucial to evaluate their prognostic accuracy
i.e. whether markers correctly discriminate subjects who
will subsequently experience the event of interest at or
by time t from those who will not experience any event
by t. The goal of this paper is to develop a method to
estimate time-dependent prognostic accuracy measure of
such marker.
The evaluation of prognostic accuracy of marker

becomes complicated in the presence of competing risks.
Competing risks arise when a subject experiences a ter-
minal event due to one of the multiple mutually exclusive
causes. For example, post-liver transplant, patients may
die due to adverse liver and/or transplant-related out-
comes (e.g. graft failure) while other patients may die
due to competing events (e.g. non-liver causes) before
experiencing liver-related adverse outcomes. This leads to
a competing risks situation because liver-related marker
could predict graft failure or graft related death, but may
not predict non-graft related events. [5]. Here, the scien-
tific question is how well do FIB-4 or NAFLD discrimi-
nate between patients who progress to graft-related death
and those who do not. Understanding whether FIB-4 or
NAFLD is highly predictive for death due to graft fail-
ure but not others could potentially lead to more rational
and cost-effective use of specific medications or treatment
strategies. In order to facilitate the assessment of prognos-
tic accuracy of marker, the goal of this manuscript is to
develop methods to estimate time-dependent prognostic
accuracy of a baseline marker after taking right-censoring
and competing risks into account.
A number of statistical measures have been proposed to

assess the prognostic accuracy of a marker. The Receiver
operating characteristic (ROC) curve and the area under
the ROC curve (AUC) [6] are the most popular measures
of a binary classifier system. ROC curve is a graphical
illustration of the diagnostic ability of a binary classi-
fier system as its discrimination threshold is varied and
AUC provides a global summary of the discriminatory
capacity of the marker. For a survival outcome, the event
status of a subject can change over time and the risk of
developing the event conditional on marker value changes
over the follow-up time. Therefore, the accuracy sum-
maries for evaluating the performance of a marker must
take this time-dependence into account. Time-dependent
ROC methods for survival time [7],[8] classify the sub-
jects as cases or controls depending on their survival
status at or by time t and compare their observed status
with a predicted risk at some or all times. The incident
cases/dynamic controls classification arises [8] when sci-
entific interest focuses on correct classification of subjects
who are still in risk at time t. The incident (I) cases are
those subjects who had an event at t and the dynamic

(D) controls are those who survived through t. Among
the other definitions of time-dependent ROC, cumulative
(C) case and dynamic control definition pair is most com-
mon. In this classification, cumulative cases are defined as
patients having an event within a certain time range, say
[ 0, t]. The I/D version of AUC focuses on incident cases
and is better suited for characterizing the trajectory of
AUC over time, while C/D AUC does not characterize the
evolution of accuracy over time. Another appealing prop-
erty of I/D measure is that the evaluation of the model
at a certain time point t only focuses of the riskset at
the time t and therefore prior events and performance
of the marker does not influence or distort the marker
accuracy at t. As prognostic models aim to predict future,
this property is very appealing when evaluating dynamic
prognostic models.
In this article, we focus on I/D definition of AUC(t),

which is the time-dependent area under the I/D ROC
curve at t andwas introduced in [8]. There has been exten-
sive research in estimating the I/D AUC(t) in the case of
single cause of failure. In [9], a locally weighted mean rank
(WMR) smoothing based on the intermediate concor-
dance measure was proposed. A fractional polynomials
(FPL) estimator based on modeling AUC(t) as a function
of time was proposed in [10]. To evaluate the methods,
the authors in [11] compared different approaches (i.e. [8],
[12], [6]) of estimating the concordance index based on
the AUC(t) by simulation studies. However, the estima-
tion of the AUC(t) at different follow-up time points was
not investigated in that study.
Though competing risks is an important issue in many

practical clinical settings, there is limited research on
estimating the I/D AUC(t) in the presence of compet-
ing risks. When there is only a single cause of fail-
ure, the I/D definition stratifies only the subjects in the
riskset. In the presence of competing risks, I/D defini-
tion further stratifies the subjects who are still at risk
at time t into a single control group and cause-specific
case groups depending on the cause of failure. Estima-
tion of time-dependent measures under competing risks
were discussed in [13] and [14]. In [13] a time-dependent
I/D ROC curve was estimated using a Cox model for
the cause-specific hazards and riskset reweighting of the
marker distribution. This approach is semi-parametric,
indirect, and computationally intensive. First, it requires
correct specification of a conditional hazard regression
model linking the marker to the event time. This approach
provides biased estimate when the monotonicity of asso-
ciation between marker and event time is violated. Sec-
ond, in order to obtain the AUC curve from the ROC,
numerical integration of the ROC curve is required. Fur-
thermore, within an interval around each unique event
time, a Cox model is assumed and the parameters of
the sequence of Cox models are estimated for each
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neighborhood around the unique event times. Therefore,
their approach is also time-consuming. The goal of this
manuscript is to propose non-parametric, direct, intuitive
and scalable methods to estimate the I/D cause-specific
AUC(t) of baseline marker, accounting for censoring and
competing events. The major advantage of our proposed
method over the existing semi-parametric estimator will
be that it requires no specification of a conditional haz-
ard model linking the marker to the event time and hence
robust to model misspecification. In addition, the infer-
ence of this measure can be developed under minimal
assumptions.
The rest of the article is organized as follows. In “Nota

tion” section, we provide the notation. In “Weighted mean
rank estimator of i/D cause-Specific aUC(t) (cWMR)”
and “Fractional polynomial estimator of i/D cause-Spe
cific aUC(t) (cFPL)” sections, we introduce a local and a
global estimators of cause-specific I/D AUC(t) that are
direct, flexible and non-parametric. We report simula-
tion results to illustrate our methodology in “Simulation
study” section. We report a real data example in ‘Applica
tion” section, and put a discussion in “Discussion” section.
We end with conclusion in “Conclusions” section.

Methods
Notation
LetM denote the (baseline) marker that could potentially
be used in predicting the survival time in the presence of
competing risks where a subject can fail due to J mutually
exclusive causes. Note that M can be a single covari-
ate or it could be a risk score that may be calculated
from a survival model (e.g. proportional hazard model).
Let the implicit event times for each of the J causes be
{T (1), . . . ,T (J)}. In the presence of competing risks, only
the time to the occurrence of the first event is poten-
tially observable. Thus, without censoring, one observes
T = min (T (1), . . . ,T (J)) and the failure indicator δ, which
takes value j if T = T (j) (j = 1, . . . J). Define the observed
event time, Z = min(T ,C) where C is the censoring time.
A censored observation has Z = C and this is recorded by
δ = 0. Suppose that there are n subjects in the study. Let
1(.) denote the indicator function. Let Ri(t) = 1{Zi ≥ t}
denote the at-risk indicator for the i-th individual at time
t (i = 1, 2, ..., n). Let Rt = {i : Ri(t) = 1} denote the
subjects that are in the riskset at time t. Among the sub-
jects in Rt , the subjects who had an event from cause j
at t are the j-th cause-specific incident (I) cases: R(j)

1t =
{i : Ti = t, δi = j}. The subjects who did not have an event
by t are the dynamic (D) controls: R0t = {i : Ti > t}. Let
nt be the size of R0t i.e. nt = |R0t| and d(j)

t be the size of
R

(j)
1t , d

(j)
t = |R(j)

1t |.
If there is a single cause of failure (J = 1), the time-

dependent incident/dynamic area under the ROC curve at

time t, I/D AUC(t), is defined as

Pr(Mi > Mk|Ti = t,Tk > t). (1)

This is the time-dependent probability at time t that for a
randomly selected case-control pair (i, k) themarker value
for the incident case is higher than the marker value for
the control.

Time-dependent i/D cause-Specific aUC(t)
In the presence of competing risks, the I case and D con-
trol definition can be extended as cause-specific incident
cases and dynamic controls as follows:

• j -th cause-specific case: T = t, δ = j; j = 1, 2, . . . , J .
• Control: T > t.

The I/D AUC(t) in (1) can be redefined as the j-th I/D
cause-specific AUC(t) and define as

AUC(j)
t = Pr(Mi > Mk | Ti = t, δi = j,Tk > t), (2)

where j = 1, 2, . . . , J . Belowwe propose a local and a global
estimators for the time-dependent cause-specific AUC(t)
curve.

Weighted mean rank estimator of i/D cause-Specific aUC(t)
(cWMR)
A non-parametric estimator of I/D AUC(t) was proposed
in [9] using a nearest neighbor method. This estimator is
a local average of time-specific observed AUCs. While the
method do not address the issue of more than one cause of
failure, natural modification of the approach allows esti-
mation of accuracy in the presence of multiple causes
of failure. To illustrate our proposed method, let A(j)(t)
denote the proportion of (i, k) pairs where subject k has a
lower marker value compared with that of subject i who
experienced failure due to cause j, provided subject k has
longer survival than subject i and define as

A(j)(t) = 1

d(j)
t × nt

∑

i∈R(j)
1t

∑

k∈R0
t

1{Mi > Mk | Ti = t, δi = j,Tk > t}.

Note that, A(j)(t) can be considered as an estimator of
AUC(j)

t in (2). However, typically failure time is measured
in continuous scale and it is reasonable to assume that at a
given time the likelihood of failures due to multiple causes
is negligible. Therefore, there are only few cases experi-
encing the event of interest (e.g. j-th cause) at t and often
d(j)
t = 1. When d(j)

t = 1, A(j)(t) = 1
nt

∑
k∈R0

t
1{Mi > Mk |

Ti = t, δi = j,Tk > t} is the rank of the j-th cause-specific
case marker value among the control markers at time t. In
extreme situations, this quantity could jump from 1 to 0
and back between adjacent time points. Hence, the esti-
mation of AUC(j)

t based on A(j)(t) requires some degree
of smoothing. In this situation, the information within a
neighborhood around t, N (j)

t (hn) = {tk : |t − tk| < hn, δ =
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j} can be used to estimate marker concordance at t. Let
cWMR(j)

t be an j-th cause-specific weighted mean rank
estimator of AUC(j)

t and define as

cWMR(j)
t = 1

|N (j)
t (hn)|

∑

tk∈N (j)
t (hn)

A(j)(tk), (3)

where |N (j)
t (hn)| is the size of N (j)

t (hn). The optimal
bandwidth (hn) balances bias and variance of cWMR(j)

t .
Therefore, to select the bandwidth, we followed the leave-
one-out cross validation approach of [9] and adapted it to
account for competing risks. In addition, we also propose
a variance estimator for cWMR(j)

t based on the assump-
tion of bivariate Normality of the case and control marker
pairs [9]. An additional file shows this in more detail [see
Additional file 1].

Asymptotic properties of cWMR(j)
t :

In order to evaluate the asymptotic behaviours of
cWMR(j)

t , we restrict our attention to a neighborhood
around t and cause j i.e. N (j)

t (hn) = {tk : |t − tk| < hn, δ =
j} with size |N (j)

t (hn)| = m(j)
t . Other causes can be treated

in a similar way. Let Bt denote the number of subjects at
the start of the neighborhood i.e. at time t − hn.

Theorem 1 Let n −
(
Bt + m(j)

t

)
denote the number of

subjects surviving past t + hn. If n −
(
Bt + m(j)

t

)
→ ∞

as n → ∞ and hn → 0 then cWMR(j)
t converges to a

Normal distribution withmean AUC(j)
t +bn(t) and asymp-

totic variance V(j)
n = Var[ cWMR(j)

t ] . Here, bn(t) denotes
the bias and the variance is

V(j)
n = 1

[m(j)
t ]2

{
∑

t(i)∈N (j)
t (hn)

var[ A(j)(t(i))]+
∑

t(i) �=t(k)

cov[ A(j)(t(i)), A(j)(t(k))] }.

The proof of this theorem is provided in Additional file 1.

Estimation of variance of cWMR(j)
t

The variance of cWMR(j)
t , V(j)

n , has components
var[ A(j)(t(i))] and cov[A(j)(t(i)), A(j)(t(k))]. In order to
compute these components, we propose the following
estimators in the spirit of variance calculation of AUC
proposed in [15] and [9]

var[ A(j)(t)]= (
nt − 1
nt

){P(j)
1 (t)−[P(j)

0 (t)]2 } + 1
nt

{P(j)
0 (t)(1 − P(j)

0 (t))}

cov[A(j)(t), A(j)(s)]= 1
nt

[ {P(j)
2 (t, s) − P(j)

2.0(t, s)} + {P(j)
3 (t, s) − P(j)

3.0(t, s)}] .

We estimate P(j)
0 (.),P(j)

1 (.) etc. using a Normal approxi-
mation for the j-th cause-specific case and control mark-
ers after a rank-based Z-score transformation and then

empirically estimating the parameters of the approxi-
mating normal distributions. The detail is provided in
Additional file 1.

Fractional polynomial estimator of i/D cause-Specific
aUC(t) (cFPL)
The authors in [10] proposed a method for modelling I/D
AUC(t) defined in equation (1) in the case of single event
type. Their method directly models AUC(t) as a function
of the event time t through a flexible fractional polyno-
mials model proposed in [16]. We have extended it in the
presence of competing risks as follows.
The AUC(j)

t after transformation with link function η

can be specified as a parametric function of t using frac-
tional polynomials of degree L:

η
(
AUC(j)

t (βj)
)

= βj0 +
L∑

l=1
βjlt(pl), (4)

where for l = 1, 2, ..., L

t(pl) =
{

tpl if pl �= 0
ln(t) if pl = 0,

with p1 ≤ p2 ≤ · · · ≤ pL real-valued powers. As suggested
in [10], we consider the power set p1, . . . , pL in {-2,-1,-
0.5,0,0.5,1,2}, which is flexible enough to accommodate
most applications. The set of regression parameters βj =
(βj0,βj1, . . . ,βj7) is then estimated by optimizing a likeli-
hood function. A logit function considered for η(.) similar
to [10]. Let there are hj number of failures due to cause j in
the study. For each event time {t(H) & δH = j}, there are
two types of random variables

n1(t(H))=
∑

k
1{k : MH >Mk|ZH = t(H), δH = j, k ∈ R0t(H)

},

and

n2(t(H))=
∑

k
1{k : MH ≤Mk|ZH = t(H), δH = j, k ∈ R0t(H)

},

where n1(t(H)) and n2(t(H)) are the number of concordant
and number of discordant pairs, respectively. Note that,
conditional on riskset R0t(H)

, the count n1(t(H)) follows a
Binomial distribution with probability AUC(j)

t(H)
(βj). The

partial-likelihood for j-th cause of failure is

L(βj) =
hj∏

H=1
{AUC(j)

t(H)
(βj)}n1(t(H)){1 − AUC(j)

t(H)
(βj)}n2(t(H))

(5)

Maximizing this partial-likelihood yields the parameter
estimate β̂j of βj. Then, by using (4), we obtain AUC(j)

t (β̂j)
estimate as a smooth function of time t and β̂j. For esti-
mation, we evaluate the score equations that correspond
to the proposed likelihood. The proposed likelihood is
constructed in the spirit of the [10]. However, the main
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difference is that, unlike [10], we have multiple causes of
failure. We can write the log-likelihood in the following
way

l(βj)=
n∑

i=1

n∑

k=1
δij 1{Zk > Zi} {1{Mi > Mk} log(AUC(j)

Zi
(βj))

+ 1{Mi � Mk} log(1 − AUC(j)
Zi

(βj))},
where for j = 1, 2, . . . , J

δij =
{
1, δi = j
0, otherwise. (6)

We estimate β̂j of βj as a solution of score vector
U(βj) = 0. The elements of U(βj) are

d
dβj0

l(βj) =
n∑

i=1

n∑

k=1
δij1(Zk > Zi){1{Mi > Mk}

d
dβj0

AUC(j)
Zi

(βj)

AUC(j)
Zi

(βj)
− 1{Mi � Mk}

d
dβj0

AUC(j)
Zi

(βj)

1 − AUC(j)
Zi

(βj)
},

where
d

dβj0
AUC(j)

Zi
(βj) = AUC(j)

Zi
(βj){1 − AUC(j)

Zi
(βj)}.

Again, for l = 1, 2, .., 7, we get

d
dβjl

l(βj) =
n∑

i=1

n∑

k=1
δij1{Zk > Zi}{1{Mi > Mk}

d
dβjl

AUC(j)
Zi

(βj)

AUC(j)
Zi

(βj)
− 1{Mi � Mk}

d
dβjl

AUC(j)
Zi

(βj)

1 − AUC(j)
Zi

(βj)
},

where
d

dβjl
AUC(j)

Zi
(βj) = Z(pl)

i ×AUC(j)
Zi

(βj){1−AUC(j)
Zi

(βj)}.

In order to make inferences about the proposed estima-
tors of the cause-specific parameters, the major challenge
lies in the fact that the proposed partial-likelihood cannot
be treated as a regular likelihood function. Specifically, the
asymptotic variance of the estimators is not the inverse
of the negative second derivative of the partial-likelihood.
We propose a sandwich variance estimator for the pro-
posed global cause-specific AUC(t) estimator below.

Asymptotic properties of cFPL estimator
In this section, we describe the asymptotic properties of
the model parameter estimators. We state some regularity
conditions in Additional file 1. We summarize the asymp-
totic behavior of the regression parameter estimator in the
following theorem.

Theorem 2 Under the regularity conditions, β̂j con-
verges almost surely to β0j, while

√
n(β̂j − β0j) converges

to a multivariate Normal distribution with mean vector 0
and covariance matrix �−1

j1 �j2�
−1
j1 . Here,

�j1 = E{− d
dβj

fik(βj);β0j},

�j2 = 4 Cov{gik(βj), gik′ (βj);β0j},

where, gik(βj) = (fik(βj) + fki(βj))

2
and

fik(βj) =
∫ τ

0

∫ τ

0
1{t > s}{1{Mi > Mk}

d
dβj

AUC(j)
Zi

(βj)

AUC(j)
Zi

(βj)

− 1{Mi � Mk}
d
dβj

AUC(j)
Zi

(βj)

1 − AUC(j)
Zi

(βj)
}dN (j)

i (s)dN (j)
k (t),

where N (j)
i (τ ) counts number of events due to j-th cause of

failure occurring over [ 0, τ ] . Theorem 2 can be proven in
the spirit of the proof in [10]. However, the main difference
is that, unlike [10], our likelihood construction account
multiple causes of failure. An additional file shows the
proof in more detail [see Additional file 1]. The covariance
can be consistently estimated by �̂−1

j1 �̂j2�̂
−1
j1 , where

�̂j1 = −1
n2

n∑

i=1

n∑

k=1
δij 1{Zk > Zi} d

dβj
{1{Mi > Mk}

d
dβj

AUC(j)
Zi

(β̂j)

AUC(j)
Zi

(β̂j)
− 1{Mi � Mk}

d
dβj

AUC(j)
Zi

(β̂j)

1 − AUC(j)
Zi

(β̂j)
},

and

�̂j2 = 4
n(n − 1)(n − 2)

n∑

i=1

∑

k �=k′ ,k,k′ �=i

gik(β̂j) gik′ (β̂j)
T .

Corollary 1: Under the regularity conditions,
AUC(j)

t (β̂j) is a consistent estimator of AUC(j)
t . Fur-

thermore, it follows that
√
n(AUC(j)

t (β̂j) − AUC(j)
t (β0j))

converges to a Normal distribution with mean 0 and

variance [
d
dβj

η−1(AβjT )]2
βj=β̂j

A�̂−1
j1 �̂j2�̂

−1
j1 AT , where

A = (1, tp1 , tp2 , . . . , tp7).

Results
Simulation study
Extensive simulation studies are conducted in order to
compare the performance of the cWMR, cFPL and semi-
parametric [13] estimators for estimating AUC(j)

t . We
assume two causes of failure (i.e. j = 1, 2) and a base-
line marker M that is correlated with event time of cause
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1, T (1) but not with event time of cause 2, T (2). We con-
sider several parametric combinations under two major
scenarios. For each setting, we generate 500 dataset with
a sample size of n = 500 and for each simulated dataset
200 bootstrap simulations are performed. For each sim-
ulation, we estimate AUC(j)

t at predicted time log(t) =
−1.5,−1.2, . . . , 0.6. We report the average of bootstrap
mean estimate of AUC(j)

t , absolute relative bias (ARB) of
the estimate, average of model based standard error esti-
mate (SE), average of the 500 bootstrap standard errors
(BSE) and the coverage probability of the 90% confidence
intervals (CI) for the estimates.

Scenario 1 We assume (log(T (1)),M) jointly follows a
bivariate Normal distribution (BVN) with correlation ρ

i.e. (log(T (1)),M) ∼ N2(μ1,μ2, σ1, σ2, ρ), where μ1 and
σ1 are mean and standard deviation (SD) of log(T (1)) and
μ2 and σ2 are mean and SD of M. We show the results for
μ1 = 0,μ2 = 0, σ1 = 1, σ2 = 1, and ρ = −0.7. We con-
sider a negative correlation between the marker and the
event time which implies that higher marker value is more
indicative of poor survival outcome and hence it is indica-
tive of shorter event time. We further assume log(T (2)) ∼
N(0, 1) and log(C) ∼ N(0, 1), such that approximately
20% subjects are censored. Since T (2) and M are indepen-
dent, the I/D ROC curve for the competing cause of failure
(i.e. cause 2) lies diagonally on the null ROC curve.

Scenario 2 We focus on a heterogeneous population
where the marginal relationship between M and T (1)

is non-monotone, while M and T (2) are independent.
The heterogeneous population comprised two distinct sub-
groups (G = 0 or 1) and forG = 1, M is also independent of
log(T (1)). The distribution of (log(T (1)),M) follows a mix-
ture of two BVNs. We show the results for two different
parameter combinations:

(a) (log(T (1)),M) ∼
{
N2(−1.5,−1.5, 1, 1, 0), G = 1,
N2(0, 2, 1, 1,−0.8), G = 0.

(b) (log(T (1)),M) ∼

{
N2(−1.5, 2, 1, 1, 0), G = 1
N2(0, 0, 1, 1,−0.8), G = 0.

We assume G ∼ Bernoulli(0.2). Note that the semi-
parametric approach is biased because of violation of
monotonicity in this scenario, and therefore not estimated.
The resulting AUC(j)

t curves mimic the relationship in the
LT data as will be demonstrated later.

In Tables 1, 2, and 3, we summarize the simulation
results for scenarios 1–2 respectively. Table 1 demon-
strates that the estimates of AUC(j)

t is less biased when
derived using cWMR and cFPL compared with the semi-
parametric method. For instance, for cause 1, the ARB

in the estimate of AUC(j)
t for the cWMR is 0.36% corre-

sponding to predicted time log(t) = -1.5. However, for
the semi-parametric approach this is 2.16%. For large
predicted time (i.e. log(t) = 0.9) both the cFPL and the
semi-parametric estimates show large ARB. The boot-
starp standard errors for both cWMR and cFPL methods
are close to their corresponding model-based standard
error estimates. For cWMR, the coverage probabilities
of estimated AUC(j)

t based on 90% estimated confidence
intervals are very close to the nominal value of 0.9 across
all predicted times. When we have sufficient data around
the given predicted times, say -1.5 ≤ log(t) ≤ 0.6, the
coverage probabilities of estimated AUC(j)

t using cFPL are
very close to the nominal value. However, the coverage
probability is much lower than the nominal level when
riskset size is 4 at given time log(t) = 0.9. This is per-
haps the issue of oversmoothing. It could be avoided by
choosing the large predicted times as the 90th percentile
of the observed survival time points [10]. In Tables 2 and
3, we compare the cWMR and cFPL estimates as the semi-
parametric estimator is known to be highly biased under
scenario 2. Note that, in Table 2, the AUC value for cause
1 increases steadily between −1.5 ≤ log(t) ≤ 0 and
then start decreasing. This kind of non-monotone pattern
may be due to violation of monotone relationship between
marker and event time. The estimates of AUC(j)

t for both
cWMR and cFPL are close to their corresponding true
values when the predicted time is small. In these compar-
isons cFPL performs slightly better than cWMR. The cFPL
method yields substantially greater variances for large val-
ues of log(t) compared to the cWMR. For both methods,
the estimated coverage probabilities are very close to the
nominal coverage probability of 90% except for edges.
Overall, our results demonstrate that both cWMR

and cFPL appear to perform well compared to semi-
parametric approach in terms of bias and standard errors.
In addition, in scenario 2 where themonotonicity between
marker and event time is violated, the semi-parametric
approach is known to be biased. However, both our pro-
posed methods perform adequately well.

Application
We demonstrate the proposed methods for estimating
AUC(j)

t using LT data from a retrospective study con-
ducted at the McGill University Health Center [3]. The LT
study included 547 patients who underwent LT between
1991 and 2012 and whomet the criteria: patient with graft
survival >12 months; serum fibrosis biomarkers includ-
ing FIB-4 and NAFLD score available at 1 year after LT;
and a minimum follow-up of 1 year. The study found
that serum fibrosis markers performed well in predicting
death and graft loss in LT recipients. According to the
authors, this is the first study to establish the prognostic
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Table 1 Simulation results for estimation of incident/dynamic cause specific AUC of a single marker in Scenario 1, comparing the
methods cWMR, Semi-parametric and cFPL

cWMR Semi-parametric cFPL

Cause Log(t)
∑i=n

i=1 Ri(t) AUC Mean ARB BSE SE CP Mean ARB BSE CP Mean ARB BSE SE CP

1 -
1.5

407 0.833 0.830 0.36 0.031 0.030 88.0 0.815 2.16 0.046 90.0 0.833 0 0.026 0.028 93.1

-
1.2

347 0.802 0.800 0.25 0.030 0.029 89.0 0.783 2.37 0.050 89.6 0.802 0 0.025 0.027 93.5

-
0.9

272 0.771 0.771 0 0.030 0.029 84.1 0.753 2.33 0.053 89.6 0.771 0 0.026 0.028 92.1

-
0.6

192 0.743 0.743 0 0.032 0.031 87.3 0.727 2.15 0.055 93.4 0.742 0.1 0.030 0.031 91.3

-
0.3

119 0.716 0.719 0.41 0.038 0.036 88.6 0.707 1.25 0.057 90.0 0.716 0 0.036 0.038 93.1

0.0 63 0.693 0.696 0.43 0.048 0.046 86.9 0.684 1.23 0.058 90.2 0.694 0.14 0.053 0.050 92.8

0.3 28 0.672 0.676 0.6 0.071 0.064 89.7 0.670 0.29 0.056 89.0 0.678 0.89 0.094 0.084 93.1

0.6 10 0.654 0.659 0.76 0.126 0.104 86.0 0.653 0.15 0.060 92.6 0.653 0.15 0.211 0.186 87.8

0.9 4 0.639 0.657 2.91 0.189 0.169 89.0 0.578 9.54 0.119 82.1 0.599 6.10 0.353 0.586 75.6

2 -
1.5

407 0.5 0.501 0.2 0.051 0.050 87.3 0.504 0.8 0.082 90.2 0.5 0 0.045 0.049 92.1

-
1.2

347 0.5 0.501 0.2 0.045 0.044 88.5 0.503 0.6 0.078 91.2 0.5 0 0.040 0.042 91.9

-
0.9

272 0.5 0.501 0.2 0.041 0.041 88.8 0.499 0.4 0.075 90.0 0.499 0.2 0.037 0.04 92.1

-
0.6

192 0.5 0.500 0.0 0.042 0.041 89.1 0.501 0.4 0.071 86.8 0.499 0.2 0.041 0.041 90.9

-
0.3

119 0.5 0.499 0.2 0.047 0.045 90.5 0.494 1.2 0.069 90.2 0.498 0.4 0.047 0.049 93.2

0.0 63 0.5 0.499 0.2 0.057 0.054 86.3 0.496 0.8 0.065 91.4 0.498 0.4 0.068 0.061 91.3

0.3 28 0.5 0.499 0.2 0.080 0.073 87.3 0.505 1.0 0.063 90.4 0.496 0.8 0.120 0.107 92.5

0.6 10 0.5 0.500 0.0 0.136 0.111 83.3 0.496 1.6 0.062 89.2 0.498 0.4 0.247 0.223 87.7

0.9 4 0.5 0.499 0.2 0.209 0.191 87.1 0.471 5.8 0.103 92.0 0.495 1.0 0.376 0.497 62.8

Average of bootstrap mean (Mean), average of bootstrap standard errors (BSE), absolute relative bias (ARB), model-based standard error (SE), coverage probability
(CP)(nominal level is 90 percentage) of AUC

value of the fibrosis markers in a large cohort of LT
recipients over a long-term follow-up period. We further
analyzed a subset of the subjects (n = 423) after exclud-
ing subjects with missing outcome and/or marker values.
During the study period, 64 patients who underwent LT
died due to graft-related causes (e.g. graft failure). How-
ever, 62 patients died of causes that are unrelated to their
transplantation (e.g. sepsis, cardiovascular disease, renal,
respiratory failure etc.). Different causes of death led to
a competing risks situation. The research objective is to
evaluate the performance of FIB-4 as amarker to discrimi-
nate between subjects who died due to graft related causes
and those who died of non-graft related causes after the
LT. The top two subplots in Figure 1 show the esti-
mated AUC obtained using cWMR and cFPL methods for
graft-related, non-graft related and all-cause death (con-
sidering both graft and non-graft related death as events

of interest). Irrespective of the methods, the AUC curve
for all-cause mortality is biased compared to the curves
for graft and no-graft related deaths. The magnitude of
bias is downward compared to graft related deaths and
the bias is upward compared to non-graft related deaths.
It indicates that consideration of all-cause mortality as an
event of interest instead of competing risks will result in
biased accuracy estimates. Therefore, it leads us to analyse
the LT data using the methodology proposed here in the
presence of competing risks. Figure 1 also illustrates esti-
mated AUC(j)

t curves with 95% CI for graft and non-graft
related causes using cWMR and cFPL methods. In order
to estimate AUC(j)

t using cWMR, the choice of neighbor-
hood was 1.35 years back and forward. This bandwidth
of 1.35 years is obtained after minimizing the IMSE. The
estimated AUC(j)

t curves of the FIB-4 for the graft related
death sustains a high predictive value (above 0.65 for most



Dey et al. BMCMedical ResearchMethodology          (2020) 20:219 Page 8 of 12

Table 2 Simulation results for estimation of incident/dynamic cause-specific AUC of a single marker in Scenario 2(a), comparing the
methods- cWMR & cFPL

cWMR cFPL

Cause Log(t) AUC Mean ARB BSE SE CP(%) Mean ARB BSE SE CP(%)

1 -1.5 0.535 0.538 0.561 0.061 0.052 83.6 0.534 0.187 0.047 0.051 92.2

-1.2 0.600 0.598 0.333 0.054 0.049 86.0 0.597 0.500 0.043 0.048 93.5

-0.9 0.649 0.643 0.924 0.049 0.047 90.3 0.645 0.616 0.042 0.043 93.5

-0.6 0.680 0.674 0.882 0.047 0.047 90.5 0.678 0.294 0.043 0.046 93.0

-0.3 0.692 0.690 0.289 0.049 0.050 92.7 0.693 0.144 0.052 0.05 89.4

0.0 0.697 0.698 0.143 0.057 0.057 89.2 0.697 0.00 0.080 0.069 92.6

0.3 0.688 0.697 1.308 0.080 0.073 87.0 0.702 2.034 0.139 0.128 92.6

0.6 0.681 0.695 2.056 0.135 0.113 83.0 0.655 3.818 0.284 0.294 83.2

2 -1.5 0.5 0.5000 0.0 0.049 0.052 88.5 0.5005 0.1 0.048 0.052 90.7

-1.2 0.5 0.4999 0.02 0.043 0.046 87.5 0.4988 0.24 0.042 0.044 92.7

-0.9 0.5 0.4974 0.52 0.040 0.043 88.0 0.4979 0.42 0.040 0.044 92.3

-0.6 0.5 0.4976 0.48 0.041 0.044 90.0 0.4975 0.50 0.044 0.044 91.8

-0.3 0.5 0.4985 0.30 0.046 0.049 89.7 0.4973 0.54 0.052 0.054 94.0

0.0 0.5 0.4968 0.64 0.057 0.049 89.9 0.4967 0.66 0.079 0.068 92.1

0.3 0.5 0.4952 0.96 0.080 0.080 87.2 0.4953 0.94 0.143 0.128 94.2

0.6 0.5 0.5011 0.22 0.137 0.124 83.4 0.4969 0.62 0.269 0.289 87.8

Average of bootstrap mean (Mean), average of bootstrap standard errors e relative bias (ARB(%)), model-based standard error (SE), and coverage probability (CP(%))-(nominal
level —90%) of AUC

Table 3 Simulation results for estimation of incident/dynamic cause-specific AUC of a single marker in Scenario 2(b), comparing the
methods- cWMR & cFPL

cWMR cFPL

Cause Log(t) AUC Mean ARB BSE SE CP(%) Mean ARB BSE SE CP(%)

1 -1.5 0.843 0.843 0.0 0.022 0.025 92.0 0.843 0.0 0.017 0.018 93.3

-1.2 0.827 0.830 0.31 0.023 0.026 94.0 0.829 0.245 0.018 0.02 92.3

-0.9 0.807 0.809 0.26 0.025 0.028 93.8 0.810 0.042 0.020 0.021 89.9

-0.6 0.784 0.786 0.25 0.029 0.031 94.8 0.788 0.451 0.025 0.026 93.6

-0.3 0.760 0.765 0.62 0.036 0.038 94.0 0.761 0.162 0.033 0.033 92.9

0.0 0.737 0.747 1.41 0.048 0.049 90.8 0.737 0.016 0.054 0.046 92.7

0.3 0.716 0.727 1.60 0.073 0.70 88.0 0.728 1.66 0.096 0.085 89.7

0.6 0.696 0.710 2.07 0.131 0.110 83.9 0.692 0.46 0.218 0.179 84.6

2 -1.5 0.5 0.5029 0.58 0.049 0.052 88.9 0.5028 0.56 0.048 0.0517 92.3

-1.2 0.5 0.5017 0.34 0.043 0.046 90.0 0.5025 0.50 0.042 0.45 94.3

-0.9 0.5 0.5004 0.08 0.040 0.043 89.9 0.5003 0.06 0.040 0.044 93.7

-0.6 0.5 0.4987 0.26 0.042 0.044 88.7 0.4983 0.34 0.045 0.044 92.1

-0.3 0.5 0.5005 0.10 0.046 0.049 93.1 0.4991 0.178 0.052 0.054 93.5

0.0 0.5 0.5006 0.12 0.057 0.06 90.5 0.5030 0.60 0.080 0.07 92.5

0.3 0.5 0.5043 0.86 0.082 0.081 89.3 0.5039 0.78 0.146 0.126 95.1

0.6 0.5 0.5042 0.84 0.142 0.124 87.5 0.4938 0.62 0.276 0.259 85.0

Average of bootstrap mean (Mean), average of bootstrap standard errors (BSE), absolute relative bias (ARB(%)), model-based standard error (SE) and coverage probability
(CP(%))-(nominal level —90%) of AUC
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of the study duration) irrespective of the estimation proce-
dures. For example, over the first 3 years of follow-up the
estimated AUC(j)

t under cFPL approach ranges between
0.89 to 0.56. This implies that on any day, t, during the first
3 years of follow-up, the probability that a subject after LT
who dies due to graft related causes on day t having a FIB-
4 value greater than a subject who survives beyond day t is
at least 0.56. Overall, AUC(j)

t curve estimated using cFPL
is a smooth function over predicted time while estimated
AUC(j)

t curve of cWMR is less smooth. We could not
find any definitive reasons for the cause-specific AUC(t)
for graft related cause increases between years 3.3 and 8.
However, in reference to results from simulation scenario
2, we observed that if there is any latent (or unobserved)
heterogeneity in the data, the AUC curve shows non-
monotone trend over time. On the other hand, these two
curves for non-graft related death are almost flat around
the horizontal line at AUC(t) = 0.5. Furthermore, 95%
CI’s of the estimates of AUC contain the null value of 0.5
which implies that FIB-4 is non-informative as a prognos-
tic marker for non-graft related events. Therefore, FIB-4
as a baseline marker does not discriminate patients with
non-graft related deaths after LT, which is expected. In
addition, under cFPL method the CIs of the estimates of
AUC(j)

t curves at the tails of the study period are relatively
wider/narrower than that of under cWMR method. The
CIs of the estimates using cFPL are wider in both small
and large predicted times because cFPL may have over-
smoothing issue especially towards the start and end of
the study. Finally, our analysis indicates a better discrim-
ination by FIB-4 for graft related deaths than non-graft
related deaths after LT for most of the study duration.

Discussion
Measures of calibration and discrimination are integral
parts to evaluate prognostic accuracy of a marker. Cal-
ibration indices provide information on how close the
predicted risks are to the observed risks while discrim-
ination indices measure whether markers correctly dis-
criminate subjects who will subsequently experience the
event of interest at or by time t from those who will
not experience any event by t. Calibration measures e.g.
an expected Brier score for competing risks and corre-
sponding estimator were provided in [17]. It measures
the closeness of the observed event status and the model
predicted event probabilities in the presence of compet-
ing risks. Here, we primarily focus on the discrimination
accuracy of marker. The main goal of this manuscript is
to estimate cause-specific AUC(t) of a baseline marker in
the presence of competing risks. During such estimation,
analysts often censor subjects when a competing event
occurs. For instance, the outcome in LT study is time-
to-death attributable to LT-related causes, an analyst may

consider a subject as censored once that subject dies of
causes unrelated to LT. Because subjects who died of non
LT-related causes are not at risk of dying due to LT, censor-
ing these competing risks events (informative censoring)
may lead to distorted risk estimates [5] and subsequently
biased accuracy estimators. Alternatively, some may con-
sider a composite event where deaths attributable to LT
and non-LT deaths are merged together as any adverse
events. In the “Application” section, we mimic this to
our LT data to show the drawback of using a composite
endpoint to demonstrate the importance of considering
competing risks in prognostic accuracy estimation. It is
evident from our results that simply considering a com-
posite event instead of competing events introduces bias
in accuracy estimation. For competing risks analysis, the
influence of covariate can be evaluated in relation to
cause-specific hazard or the sub-distribution hazard of
different causes of failure. For estimating cause-specific
hazard, when a subject experience any event, they are
removed from the subsequent risksets. In contrast, for
estimating sub-distribution hazard [18], a subject who
experiences a competing event is not removed from the
riskset at that time, but rather is censored at the end of the
follow-up.
We propose a local and a global estimators of cause-

specific AUC(t) for right-censored survival time outcome
in the presence of competing risks. In [13], a semi-
parametric approach based on Cox model was suggested
for estimating cause-specific AUC(t). This approach pro-
vides bias estimate when the association between event
time and marker is non-monotone. Also, this is not a one-
step approach for estimating AUC trajectory over time
and it requires longer computation time. In addition, their
method lacks analytical development of the large sam-
ple properties for statistical inference. These motivate us
to propose new estimators for estimating cause-specific
AUC(t). As pointed out earlier, the observed propor-
tion of controls ranked lower than the (cause-specific)
case, generally leads to unstable estimates because it is
based on a single ’case’ subject who had an event of
interest at the specific time. Hence, the estimation of
cause-specific AUC that is based on observed proportions
requires some degree of smoothing. Our proposed esti-
mators implement the degree of smoothing in different
ways. The local estimator - cause-specific weighted mean
rank (cWMR) - is a local average of unsmoothed time
specific observed cause-specific AUCs within a neighbor-
hood of a given time t. cWMR is sensitive to neighborhood
span. The width of the neighbourhood directly influenced
the smoothness of the curves especially towards the end
of the study when size of the riskset gets very small.
We have considered cross-validation approach to choose
optimal neighborhood span. Use of adaptive smoothing
techniques, for example, fixing the number of neighbors
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Fig. 1 Estimates of incident/dynamic cause-specific AUC(t) curves using weighted mean rank (cWMR) and fractional polynomial (cFPL) for Liver
Transplantation data. Plots (a) and (b) illustrate the incident/dynamic AUC(t) curve for all-cause mortality, incident/dynamic cause-specific AUC(t)
curves for graft-related death and non-graft-related death. Plots (a) and (b) are estimated using cWMR and cFPL methods, respectively. Plots (c) and
(d) illustrate the incident/dynamic cause-specific AUC(t) curves for graft-related death with pointwise 95% confidence intervals (CI) using cWMR and
cFPL methods, respectively. Plots (e) and (f ) illustrate the incident/dynamic cause-specific AUC(t) curves for non-graft-related death with pointwise
95% CIs using cWMR and cFPL methods, respectively

instead of a fixed bandwidth may be useful. Instead of
using local average of concordance within a neighborhood
of time, we propose an alternative method based on global

curve fitting approach, cFPL, which estimates the cause-
specific AUC as a function of time through a flexible frac-
tional polynomial function. It expresses the unsmoothed
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intermediate AUCs as a function of fractional polynomi-
als of time and then estimates the coefficients of poly-
nomials through a partial likelihood optimization. cFPL
overcomes the issue of sensitivity to neighborhood span
of cWMR. However, oversmoothing is an issue with cFPL
in both small and large time points. In terms of compu-
tation time, cWMR is computationally efficient compared
to cFPL. We also develop the large sample properties of
both estimators as well as their corresponding analyti-
cal variances. Our simulation study suggests that these
two estimators perform very well compared to the exist-
ing semi-parametric method for measuring cause-specific
AUC. The performance has been evaluated in terms of
absolute relative bias and coverage probability. Between
our two proposed approaches, both estimators show sim-
ilar level of relative bias particularly for small predicted
time in simulation studies. However, for large times the
cFPL estimator shows large bias compared to the cWMR
estimator. In addition, the coverage probability of cFPL
estimator is very different from the nominal coverage
probability particularly at the edges. In LT study, our
goal is to evaluate the performance of FIB-4 as a base-
line biomarker to discriminate between subjects who died
due to graft related causes against those who died of non-
graft related causes after the liver transplantation. Our
analysis indicates a better discrimination of graft related
deaths than non-graft related deaths after LT for most
of the study duration. The estimation methods assume
that the censoring time is independent of the survival
time. It warrants additional research to allow covariate
dependent censoring. Furthermore, in our settings, we
do not consider time-varying marker. However, the pro-
posed methodology is equally applicable to settings where
time-varying marker exist.
Finally, between two estimators, which one is better:

cWMR and cFPL? There is no general answer. The for-
mer is more adaptive to the local changes while the latter
is good for an overall description. Our advice is to per-
form sensitivity analysis in which the choice of estimation
methods vary. Also, for all methods the estimates at the
higher time range are unstable, emphasizing the fact that
one should have a sufficient number of events for esti-
mation of the cause-specific AUC. This problem may be
avoided by choosing a sufficiently wide neighborhood (e.g.
fixing the number of neighbors) when using the cWMR.
For cFPL, we can choose relevant short future time hori-
zon over which we have sufficient cause-specific cases for
numerically stable results.
Our study has some limitations. The first limitation is

related to the bandwidth selection in cWMR approach.
To implement the proposed cWMR estimator in prac-
tice, the appropriate bandwidths must be chosen. In this
manuscript, we have used leave-one-out cross validation
approach [9]. It would be interesting to perform sensitivity

analysis by varying different bandwidth selectors. Next,
our proposed approaches are not applicable when the data
have missing information. However, following a typical
imputation method, our approach could be applied to the
imputed data. Details of the inference and sensitivity to
the imputation methods is yet to be explored. Further-
more, the variance calculation of cFPL estimator is com-
putationally intensive. Future research to explore alternate
methods for efficient computation may be worthwhile.
Moreover, the estimation methods assume that the cen-
soring time is independent of the survival time. Additional
research to allow covariate dependent censoring is war-
ranted. In addition, in our settings, we do not consider
time-varying marker. However, the proposed methodol-
ogy is equally applicable to settings where time-varying
marker exist. This is to be explored in the future.

Conclusions
We developed estimation procedures of estimating time-
dependent prognostic accuracy measures for a right-
censored time-to-event outcome in the presence of com-
peting risks. The proposed methods are non-parametric,
direct and computationally simple that will overcome
the shortcomings of the existing approach. The methods
will provide computationally efficient options for assess-
ing the prognostic accuracy of markers for time-to-event
outcome.
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