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Abstract

Background: Event-related potentials (ERP) data are widely used in brain studies that measure brain responses to
specific stimuli using electroencephalogram (EEG) with multiple electrodes. Previous ERP data analyses haven't
accounted for the structured correlation among observations in ERP data from multiple electrodes, and therefore
ignored the electrode-specific information and variation among the electrodes on the scalp. Our objective was to
evaluate the impact of early adversity on brain connectivity by identifying risk factors and early-stage biomarkers
associated with the ERP responses while properly accounting for structured correlation.

Methods: In this study, we extend a penalized generalized estimating equation (PGEE) method to accommodate
structured correlation of ERPs that accounts for electrode-specific data and to enable group selection, such that
grouped covariates can be evaluated together for their association with brain development in a birth cohort of
urban-dwelling Bangladeshi children. The primary ERP responses of interest in our study are N290 amplitude and the
difference in N290 amplitude.

Results: The selected early-stage biomarkers associated with the N290 responses are representatives of enteric
inflammation (days of diarrhea, MIP1b, retinol binding protein (RBP), Zinc, myeloperoxidase (MPO), calprotectin, and
neopterin), systemic inflammation (IL-5, IL-10, ferritin, C Reactive Protein (CRP)), socioeconomic status (household
expenditure), maternal health (mother height) and sanitation (water treatment).

Conclusions: Our proposed group penalized GEE estimator with structured correlation matrix can properly model
the complex ERP data and simultaneously identify informative biomarkers associated with such brain connectivity.
The selected early-stage biomarkers offer a potential explanation for the adversity of neurocognitive development in
low-income countries and facilitate early identification of infants at risk, as well as potential pathways for intervention.

Trial registration: The related clinical study was retrospectively registered with https://doi.org/ClinicalTrials.gov,
identifier NCT01375647, on June 3, 2011.
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Background

Event-related potentials (ERPs) have been widely used in
studies of perceptual and cognitive development. ERPs
represent the volume-conducted electrical signals gen-
erated by large populations of synchronously activated
neurons activated in response to stimuli. Specifically, with
multiple electrodes on the scalp, ERPs are small parts
of electroencephalogram (EEG) recording of the brain
response elicited to specific stimuli such as viewing pic-
tures or words on the computer screen [1]. As the brain
response to a single stimulus is usually weak or noisy
in the EEG recording of a single trial, an ERP waveform
is actually generated from the aggregated EEG record-
ings over many trials for better brain response measuring
[2, 3]. In general, an ERP waveform consists of a series of
positive and negative voltage deflections, characterized by
the amplitudes of negative- or positive-going peaks or the
latencies to these peaks in milliseconds (ms). For exam-
ple, the N290 component surfaces as a negative deflection
in voltage and with a peak latency between 250 and 350
ms, while the P400 component appears as a positive-going
waveform that peaks between 350 and 450 ms depend-
ing on the age of the child [4—6]. Consequently, ERP data
(amplitudes or latencies) are hierarchical in that there
are multiple ERP measurements for each subject corre-
sponding to multiple treatment or stimulus conditions
and multiple channels (i.e., electrodes), while channels are
further clustered in different regions of the brain. Com-
parisons of brain activities between different treatment
conditions for different channels in different brain regions
are of research interest [7].

In the previous literature, there are a few approaches
to compare ERPs between different stimulus conditions
from multiple channels. One approach is to compare ERPs
between conditions for each channel individually, which
is often subjected to multiple comparison problem. Lage
-Castellanos et al. [8] applied false discovery rate method
and performed a permutation test for comparisons within
each channel and at each time point. Causeur et al. [9]
introduced a dynamic factor model for multiple testing
to account for the dependence among hypotheses. The
second approach is to analyze the data from all chan-
nels simultaneously. One popular tactic is to group the
channels by the brain regions such as frontal, central and
parietal, and then perform Analysis of Variance (ANOVA)
separately for each region, or include region as a factor in
Multivariate Analysis of Variance (MANOVA) for all ERPs
together [10]. Yet another approach is to average the ERPs
over the multiple channels of interest and then compare
conditions using one-way ANOVA. Either way, the chan-
nels within a brain region would be treated the same and
the variations or the correlation structure between indi-
vidual channels would not be accounted for. In fact, ERP
measures do not only vary but also are highly correlated
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among channels. Vossen et al. [11] showed the correlated
structure among ERP data and applied mixed regression
approach. However, they only considered the correlation
among repeated measurements from different conditions
while channels are still modeled separately. To improve
estimation efficiency, a model accounting for both the
individual channel effects and the correlation structure is
highly desired in ERP data analysis.

In addition to evaluating the effect of treatment con-
ditions on the brain response of interest in ERP data,
motivated by our clinical study, we are also interested in
that whether such brain response is attributable to a set
of important clinical risk factors and biomarkers. Since
a large number of risk factors and biomarkers are avail-
able in the clinical study, variable selection using penalized
methods would be preferred for such high-dimensional
data to select the important predictors and estimate their
impacts on the brain response. Many penalized meth-
ods have been developed based on different penalties for
high-dimensional data, such as Least Absolute Shrinkage
and Selection Operator (LASSO) [12], Smoothly Clipped
Absolute Deviation (SCAD) [13], Elastic Net [14] and
Adaptive LASSO [15]. Penalized methods for correlated
data have also been proposed for marginal models [16]
and for mixed effects models [17]. In addition, Wang et al.
[18] proposed penalized generalized estimating equations
(PGEE) for high-dimensional correlated data based on
SCAD penalty. However, these available methods are not
readily applicable to ERP data mainly due to the lack
of consideration of the specific structured correlation
among different channels in ERP data, especially when
both conditions and channels are included. Second, the
SCAD-based PGEE does not allow group variable selec-
tion, which is pivotal in the clinical studies as many risk
factors or biomarkers are clustered or potentially corre-
lated.

In this paper, we extend the PGEE method to a Group
Penalized Generalized Estimating Equations (GPGEE)
that can accommodate a multi-level structured correla-
tion and achieve group-wise variable selection. Thus our
proposed method can be readily applied to test the con-
dition difference in ERP measures and simultaneously
perform group variable selection to identify important
predictors associated with ERP for brain response. To our
knowledge, hierarchical models with complex correlation
structure are rarely used for ERP response analysis in the
ERP research, nor are the regularized regression methods
with penalty. Our modeling development was motivated
by the ERP data from a birth cohort of Bangladeshi chil-
dren, the Performance of Rotavirus and Oral Polio Vac-
cines in Developing Countries (PROVIDE) study. A large
and comprehensive set of non-invasive biomarkers were
developed in the PROVIDE study from fecal and blood
samples [19]. Children in low-resource communities such
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as those in the PROVIDE cohort are exposed to numer-
ous adversities, including malnutrition, infectious dis-
ease exposure, and extreme poverty. In turn, exposure
to early adversity can limit their cognitive developmen-
tal potentials with long lasting effects. Using EEG as a
neuro-imaging tool for cognitive and neural development
assessment, a subset of children in the PROVIDE birth
cohort were measured at 3 years of age for ERP response.
The primary objective of our clinical ERP study was to
evaluate the impact of early adversity on brain connec-
tivity and identify risk factors and biomarkers associated
with the brain response. With the challenges and limita-
tions in ERP research described earlier, the GPGEE model
is developed to achieve the clinical objective.

Our method addresses the following major challenges
in analyzing the ERP data from the PROVIDE study. First,
due to the design of experiment, ERP data are hierar-
chical or multilevel by nature with multiple conditions
and multiple channels for each study subject. Second,
ERP data are highly correlated across channels under
each condition, and across conditions for each channel.
Lots of information would be lost by simply averaging
ERPs over these channels to compare ERPs between con-
ditions. Third, although variable selection methods for
high-dimensional data have been intensively studied [12,
13] and applied in clinical and genetic studies [19-21],
to our knowledge, no variable selection technique has
been applied to ERP data. Further, since many predic-
tors in the high dimensional data are categorized with
multiple levels or potentially correlated, group penalty
needs to be imposed in the variable selection process to
ensure informative predictors and groups can be correctly
selected.

The rest of the paper is organized as follows. In
“Methods” section, we present the models for high-
dimensional correlated data, propose the model specifi-
cally for the structured correlation matrix in ERP data,
expand the PGEE method to allow group penalty, and
derive the algorithm for solving group-penalized estimat-
ing equations. In “Simulations” section, we conduct a
simulation study to compare the relative performance of
our proposed GPGEE with the existing model under sev-
eral scenarios, without and with group penalty, and with
different correlation structures. In “Results” section, we
apply our proposed method to ERP data from the PRO-
VIDE study. Compared to the existing methods such as
regularized regression or PGEE, our proposed method
doesn’t only model the ERP multi-level structure appro-
priately, but also promotes group-wise variable selection.
The simulation results show that our proposed method
outperforms the existing modeling approaches in variable
selection and parameter estimation. Our work would be
one of the pioneering efforts in ERP research to test the
difference in ERPs between conditions while identifying
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important biomarkers associated with ERPs simultane-
ously.

Methods

Clinical data and ERP measurements

The PROVIDE (Performance of Rotavirus and Oral Polio
Vaccines in Developing Countries) study was a random-
ized controlled clinical trial with a 2-by-2 factorial design
to investigate the efficacy of Rotavirus and Oral Polio
Vaccines in Bangladeshi children, conducted between
May 2011 and August 2018 in Dhaka, Bangladesh. The
cohort consisted of 700 children enrolled within 72 hours
of birth after written parental consent and were followed
through twice weekly household visits and regularly
scheduled clinical visits during the first 5 years of life.
Details about the study design, enrollment, surveillance
and biomarker development were described previously
[19, 20, 22, 23]. Children were 36 months old at the time
of neuro-imaging test for cognitive assessment. The study
was approved by the Ethical Review Committee of the
International Centre for Diarrhoeal Disease Research,
Bangladesh (icddrb), and the Institutional Review
Board at Boston Childrens Hospital and the University
of Virginia. This study is reported in line with the Con-
solidated Standards of Reporting Trials (CONSORT)
Statement, and the CONSORT ChecKklist can be found in
Additional file 2.

ERPs were measured in a subset of children at 36
months of age. After data processing and quality check-
ing, 70 children out of 130 had valid data for the final
ERP analysis. Each child was tested with a face oddball
paradigm in which standard (70% of chance) and oddball
(30% of chance) faces were presented in a random order.
This paradigm has been widely employed to examine the
neural correlates of social attention and recognition mem-
ory of faces in children [24—26]. The current study focused
on one ERP component that can be elicited using this
paradigm- the N290 component as the neurocognitive
response. The N290 component is regarded as the pre-
cursor of the adult N170 face-sensitive component and
potentially be generated by the fusiform face and occipi-
tal face areas in children [5, 27, 28]. The N290 amplitude
in response to the two conditions (standard and odd-
ball) in different electrode channels reflects the averaged
synchronous brain activation of large number of neurons
occurring around 290 ms following stimulus onset.

Figure 1 shows that N290 peak amplitudes are different
among 13 channels (see Additional file 1 for the 13 elec-
trode locations) under either condition, suggesting that
modelling the variations among channels would capture
more accurate information than simply taking average
of all channels. Also, the N290 amplitudes are highly
correlated among the 13 channels (Fig. 2 for the corre-
lation plot). Furthermore, ERP response data are more
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matrix will be needed to appropriately characterize the
ERP data structure.

The clinical factors included maternal information
(maternal height, weight, and education), socioeconomic
status, and sanitation and environmental factors such as
water source and water treatment. Biomarker data were
obtained from the fecal and blood samples collected at
early age of life to measure inflammation [19]. We hypoth-
esized that only a small subset of these clinical factors and
biomarkers are associated with the ERP response, thus
the variable selection methods would be suitable in this
investigation.

The PGEE model proposed by Wang et al. [18] for
correlated data is limited in that it can only handle a sim-
ple correlation structure. While the estimator obtained
by PGEE [18] is consistent with any working correlation
matrix, the efficiency of the estimator can be improved
when the specified correlation matrix is closer to the
true matrix. To characterize the ERP correlations between
conditions and among channels, we specify the within-
subject correlation matrix as the Kronecker product of
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the channel correlation matrix and condition correla-
tion matrix. In addition, to enable group variable selec-
tion of the categorized channel variable with 13 levels
in our study, the penalty for individual variable selection
in PGEE is adapted for group selection. Therefore, our
method extends PGEE and prompts an integrated model
for ERP responses such that we can evaluate the differ-
ences between conditions and identify informative clinical
factors and biomarkers simultaneously, while accounting
for the complex correlations among ERPs and allowing
group variable selection.

Proposed model for ERPs

Suppose that there are I subjects, each subject is
placed under J treatments, and K repeated measure-
ments are recorded under each treatment. We use Y
to denote the kth repeated measures under the jth
treatment for the ith subject. By vectorizing Y; =
(Yin, very Yﬂ[(, Yi21> veey Yl'zj(, veey YL']1, veey Y,']]() T, we Consider
group variable selection for a generalized linear model for
the correlated data in Y;:

EX) =wp
g (wix) = X[ B + condition; + channely,
Var (Yii) = ¢v (wi)

Cov(Y;) =V,

where V; denotes the covariance structure and ¢ is an
overdispersion parameter. Without loss of generality, we
assume ¢ = 1 in the rest of the paper.

Structured correlation matrix

For correlated data, a working correlation matrix needs
to be pre-specified in many estimation methods, and
its appropriate specification improves the estimation
efficiency considerably for regression parameters. Some
commonly used correlations, such as unstructured, AR1,
exchangeable, etc., are often adopted in the practice. How-
ever, none of the commonly used correlations can appro-
priately account for the structured correlation for ERP
data. Given that how ERP data were collected, it is nat-
ural to assume that ERP measurements from different
conditions are correlated, and under each of treatment
conditions the correlation structures among the channels
are the same. Thus for the structured covariance matrix,
we adopt a separate correlation for treatment condition
and channel. Letting B; be the covariance matrix for con-
ditions and X; be the covariance matrix for channels,
the structured covariance matrix for each subject is the
Kronecker product of the two matrices, V; = B; ® X;.
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Group selection for GEE

Variable selection for correlated data has been studied
in Wang et al. [18], where penalized generalized esti-
mating equations is adopted for simultaneous model
estimation and variable selection, the SCAD penalty is
used for individual variable selection. However, for many
biomarker studies, predictors are highly correlated and/or
pre-classified into different groups, and variables need to
be selected in groups, as shown in Yuan and Lin [29].
Here we adopt SCAD with group selection and extend
the PGEE to Group Penalized Generalized Estimating
Equations (GPGEE) to select variables for the ERP data.
Suppose covariates {Xl,Xz,...,Xp} are classified into d
groups

(X110 Xap } s oo {Xats oo Xap, } -

. - T T
The corresponding coefficients are § = ( IG - ﬂg ),

where ,BiG is the coefficient vector for group i. For the
group variable selection, we will either select the whole
group of variables or remove the whole group from the
model.

We define the estimating functions as

U(B) =S (B)—nq (B)sign(B),

where

SB) =Y XA BRTIAT(B) (Vi — i ()

i=1
is a vector of estimating functions defining the GEE
[18], R is the estimated working correlation matrix

(Vi= A2 BRTIAT @), q¢ (B) sign (B)
denotes the component wise product with
sign (B) = (sign B1) ..., sign (ﬁp))

and

@ B = (qA (Hﬂful)T"“’q* <HﬁgH1)T) ’

e (] ) = o
penalty vector for group i, and ¢, (0) is the derivative of
the SCAD penalty function imposed on the L;- norm of
the group vector 8.

The notation ¢, (0) is the derivative of the SCAD
penalty,

and

‘1> *1,, denotes the group

@ =ilro<nt@=D10.
QA—{(<)+M(>)}

for 6 > 0 and some a > 2. As suggested in Fan and Li [13],
weleta = 3.7.

Algorithm for GPGEE
Similar to the algorithm proposed in Wang et al. [18], we
apply the Newton-Raphson algorithm combined with the
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minorization-maximization to solve the penalized esti-
mating equations.

By the minorization-maximization algorithm, for a
small € > 0, the penalized estimator 8, approximately
satisfies

~G\ (A Py ,
Suj — nq,, (ﬁn]) sign (ﬂnj) ———=0,j=1,..,p.
€+ lgnj

To solve the above equations, we apply the Newton-
Raphson algorithm as follows,

i = 8+ [ (817) e (7))
<[ (857) e (171) 8171

where
H, (B") = gx,f A (B RTIAT (857 X
E, (ﬂﬁ—l) _ diag | 2 <ﬂ'ﬁ> o (ﬁ,f;’,)
€+ |pm €+ Bup

In practice, we set € = 107° and take fi, the GEE esti-
mator with independence working correlation matrix, as
the initial value of B. The stopping criterion for the itera-
~k+1 ~k
ﬂj — ,Bj ‘ < 107°. In our study,
we use Bayesian information criterion (BIC) developed for
correlated data [30] for selecting the tuning parameter A.

tive algorithm is Zle

Simulations

In this section, we illustrate the numerical strength of our
developed method by comparing it with existing meth-
ods through a simulation study. In our simulation study,
the sample sizes are set at 50 and 100. There are 20 cor-
related measurements and 40 covariates for each subject.
The correlated normal responses are generated from the
model

Y; =X} B + €

where XUT = (xij,l, ...,xij,40)T is a vector of 40 covariates
fori=1,.,50and; = 1,...,20, and

£=2,1111,3,33,3,00,0,0,0,0.1,0.1,1,1,1,0, .., 07

containing 8 groups with every 5 covariates in each group.
For the covariates, we generate x;;; from Bernoulli(0.5)
distribution and the rest from the multivariate normal dis-
tribution with mean 0 and an AR1 covariance matrix with
marginal variance 1 and auto-correlation coefficient 0.5.
The covariance matrix of random errors for each subject
is Vi = B; ® X;, where B; is a 2-by-2 identity matrix
and ¥; is a 10-by-10 AR1 matrix with marginal variance
10 and auto-correlation coefficient 0.9. We compare our
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GPGEE model with PGEE model to illustrate the impor-
tance of incorporating group penalty and using structured
correlations. Five models are evaluated for comparison
in the simulations: original PGEE with AR1 working cor-
relation (Model 1), a modified PGEE incorporated with
our structured correlation (Model 2), our GPGEE with
AR1 working correlation (which is unstructured correla-
tion, Model 3), our GPGEE with structured correlation
but with misspecified working correlation (Model 4) and
our proposed model with both group penalty and correct
structured correlation (Model 5). We assume that the true
group memberships of the covariates to impose the group-
SCAD penalty are known, and divide the covariates into
8 groups. For the structured correlation that is correctly
specified, we use AR1 as working correlation structure for
¥; and assume B, to be unstructured. For the misspecified
structured correlation, we use CS (compound symme-
try) as working correlation structure for ¥; instead. The
selection results are defined as exact-selection when the
selected model is the true model, under-selection when at
least one true covariate is not selected, and all other cases
are defined as over-selection. We also report the mean
squared error (MSE) which is defined as the average of

n 2
H B — ﬂ‘ ’2 and corresponding standard error (SE) defined

as the standard deviation of ‘ ‘ f} — ﬂ} ‘2 from the simulated
datasets. 2

We conduct the simulation by generating 200 datasets
for each sample size, and summarize the percentages
of over-selection, under-selection, exact-selection, and
MSEs (SE) in Table 1, top panel for sample size 50. Our
GPGEE model (Model 5) has the smallest MSE and SE
among the 5 models, and selects the true model for 94.5%
of the simulated datasets, compared to the existing PGEE
model (Model 1) with only 2.5% exact-selection and much
higher MSE. The results further show that without the
pre-specified structured correlation (Model 3), the model
selection is less accurate, and it is more likely to have
higher under-selection and larger MSE (SE), which sug-
gests it is crucial to incorporate the structured correlation
when the data is multi-level by nature. The results also
show the importance of adopting group penalty, espe-
cially to deal with under-selection problem when there
are covariates with smaller coefficients. In addition, if we
capture the multi-level correlation structure correctly but
mis-specify the true correlation for one layer (Model 4),
the method can still be helpful to select the true model
(96% selection rate) though the MSE is larger due to
the mis-specification. Thus, as long as we specify this
multi-level correlation structure, our method is relatively
robust for variable selection against misspecification of
the working correlation structure. When the sample size
is increased 100, the comparsion results remain to be
similar, as shown in Table 1, bottom panel.
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Table 1 Comparison of model selection performance. O for over-selection, U for under-selection and Exact for exact-selection

Model Working correlation matrix (@] U Exact MSE (SE)
Sample size = 50
Model 1: PGEE AR1 15.5% 82.0% 2.5% 047 (0.35)
Model 2: PGEE unstructured ® AR1 19.0% 79.0% 2.0% 0.45(0.33)
Model 3: GPGEE AR1 1.0% 5.5% 93.5% 0.49 (0.25)
Model 4: GPGEE unstructured ® CS 0.0% 4.0% 96.0% 0.37(0.18)
Model 5: GPGEE unstructured ® AR1 2.0% 3.5% 94.5% 0.24(0.13)
Sample size = 100
Model 1: PGEE AR1 11.0% 75.0% 14.0% 0.25(0.16)
Model 2: PGEE unstructured ® AR1 33.5% 53.0% 13.5% 0.16 (0.08)
Model 3: GPGEE AR1 1.5% 2.0% 96.5% 0.18(0.11)
Model 4: GPGEE unstructured @ CS 1.5% 0.5% 98.0% 21(0.12)
Model 5: GPGEE unstructured ® AR1 1.0% 0.5% 98.5% 0.13(0.07)

Results

In the PROVIDE cohort, there were 47 clinical factors and
early-stage biomarkers available for the analysis, including
children’s enteric and systemic inflammatory biomarkers,
nutritional measures, maternal health and socioeconomic
status (SES), and sanitation conditions [19]. Of them, 14
biomarkers are categorical measures, and the rest are
continuous variables. The CRP index is a cumulative num-
ber of times that children experienced elevated CRP level
over the first two years (i.e., being on the top 50% at 6,
18, 40, 53 and 104 weeks), thus measuring the sustained
inflammation burden. For 70 children with ERP measure-
ments, the descriptive statistics of these clinical factors
and biomarkers are summarized in Table 2.

As described earlier, in the ERP study, the children were
shown with the face pictures, 70% of time for the same face
(standard condition) and 30% of time with new different
faces (oddball condition) over 150 trials. Brain activities
were recorded for all electrodes during the observation
of each picture, and ERP components were derived from
multiple trials to measure the electrical activity of the
brain immediately in response to a direct stimulus event
[6]. In this clinical application, the mean peak ampli-
tude of N290 component was used as a clinical example,
which measures the brain response with face processing
around 290 ms, obtained under each treatment condi-
tion from 13 electrodes placed on different locations of
occipital region. The N290 amplitude reflects the syn-
chronous activation of large number of neurons, and large
amplitude is generally deemed to have greater underlying
neuronal activity. It is hypothesized that the N290 ampli-
tude response originates in areas of the brain dedicated to
face processing, such as the occipital face areas and the
inferior temporal cortex (such as the fusiform). In addition
to evaluate the difference in N290 amplitude for neural

activity of face processing between the two conditions, we
aimed to study the association of biomarkers in infancy
with the ERP response in early childhood. Ultimately, we
hope to gain insights on how infant’s health and nutrition
markers affects the development of the brain.

For each child, there are 26 N290 amplitude responses
corresponding to 13 channels under 2 conditions. Those
26 ERP responses are highly correlated with multilevel
correlation structure due to the nature of this experi-
ment, that is, N290 measurements are not only correlated
across channels, but also vary under different treatment
conditions. As shown in Fig. 2, the N290 measurements
among 13 channels (aligned by their locations on the
brain) are highly correlated, and the correlations appear
to be autoregressive in that channels closer to each other
in the brain yield higher correlations than that further
apart. Also, the correlation patterns appear to be differ-
ent between oddball and standard conditions. In addi-
tion, N290 measurements vary considerably across the
13 channels and across conditions as depicted in Fig. 1.
For the special data features, our proposed GPGEE model
described in “Methods” section can properly evaluate
the relationship between biomarkers and N290 response
while accounting for the hierarchical correlation struc-
tures and variations across channels/conditions. To apply
our proposed model, the correlation matrix between con-
ditions for the same channel was assumed to be unstruc-
tured, and that among channels for the same condition to
be autoregressive with order 1 (AR1). The group penalty
was applied to electrode or channel which is a multi-
level categorical covariate with 13 levels. By using 12
dummy variables and grouping them together, we are
able to conduct variable selection for this covariate. The
N290 responses were assumed to be normally distributed
with identity link. For biomarkers and clinical predictors,
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Table 2 Descriptive summary of risk factors and biomarkers in ERP Study (N=70)

Category Risk factor/Biomarker Child age (week) Mean =+ SD or percentage
Myeloperoxidase (MPO) 12 10057.574£9189.827
Calprotectin 12 933.41£679.94
Neopterin 12 2468.82 +£1644.28
Alpha-1 anti-trypsin (ALA) 12 0.88 £0.62
Enteric inflammation Mannitol in urine 12 0015 £0017
24 0.019 £0.018
Lithostathine-1-beta (Reg1B) 6 59.50 +84.59
12 59.89 £72.70
Days of diarrhea 18 6.39 +8.31
Ferritin 6 175.99 £104.08
18 28.60 £25.32
C reactive protein (CRP) index 6, 18,40, 53, 104 251 4+£1.19
Soluble CD14 6 1736.29 £568.87
18 2284.00 £787.66
Endocab lipopolysaccharide (LPS) 6 37.11 £5.57
18 29.75 £71.70
Systemic inflammation Log scale of activin 6 649 +1.13
Interleukin 1 beta (IL1b) 18 37.1% (top 50%)
Interleukin 4 (I1L4) 18 44.3%
Interleukin 5 (IL5) 18 38.6% (top 50%)
Interleukin 6 (IL6) 18 55.7% (top 50%)
Interleukin 7 (IL7) 18 75.7% (top 50%)
Interleukin 10 (IL10) 18 64.3% (top 50%)
Macrophage inflammatory protein 1 Beta (MIP1b) 18 38.6% (top 50%)
Tumor necrosis factor alpha (TNFa) 18 41.4% (top 50%)
Vitamin D 6 28.10+14.26
18 52.85 £22.50
Zinc 6 690.30 +105.64
18 76841 £136.78
Nutritional Retinol binding protein (RBP) 6 28846.90 £11315.83
18 3676230 1542236
Height for age z score (HAZ) Birth -0.95 +0.79
Weight for age z score (WAZ) Birth -1.28 £0.83
Weight for height z score (WHZ) Birth -1.22 £096
Days of exclusive breast milk feeding 18 102.81 £40.06
Monthly household expenditure Enrollment 12112.86 +£6761.06
Maternal health, SES Monthly household income Enrollment 13505.71 +8680.46
Mother height (cm) Enrollment 149.82 +5.74
Mother weight (kg) Enrollment 4933 £10.91
Access to treated water Enrollment 58.6%
Sanitation Access to toilet with a septic tank Enrollment 67.1%
Access to private toilet not shared with neighbors Enrollment 10.0%

Covered drain near home Enrollment 65.7%




Lin et al. BMC Medical Research Methodology (2020) 20:221

prescreening was performed based on their correlations,
and representative predictors were selected for those with
corrections > 0.7. Thus 6 biomarkers were removed,
including IL-4 at week18, IL-6 at week 18, TNFa at week
18, WAZ at birth, WHZ at birth and monthly household
income.

The results of variable selection with our proposed
GPGEE for N290 response were presented in Table 3.
A total of 10 biomarkers were selected using BIC after
adjusting for condition and channel differences. Among
those selected biomarkers, IL-10, RBP, Zinc, Calprotectin,
Neopterin and water treatment were positively associ-
ated with N290 amplitude, while IL-5, MIP1b, MPO and
maternal height have negative effects on the N290. These
results provide some supporting evidence that children’s
health conditions in early childhood indeed are associ-
ated with brain development at 3 years of age. While N290
amplitude measures the strength of the signal of brain
activity for brain connectivity, some researchers have
also focused on studying the change of N290 amplitude
between conditions. The differences in N290 between
oddball and standard conditions reflects how the brain
behaves differently when seeing a new face vs. a familiar
face, and therefore measures the child’s ability to discrim-
inate between a novel and a familiar face. In particular, A
differential response in these ERP components between
the two experimental conditions indicates the detection or
discrimination of the infrequent from the frequent faces
by the brain and reflects some aspect of memory updating
and the efficiency of stimulus processing [26, 31, 32].

When considering the difference in N290 as the out-
come variable, the analysis would be performed similarly
under our GPGEE framework, where the correction struc-
ture is reduced at channel level only. For the difference in
N290 response, 13 biomarkers were selected (Table 4), of
which 8 biomarkers have positive effects and 5 have neg-
ative effects on the N290 difference. Obviously, RBP at
week 6, Zinc, mother height, and water treatment were

Table 3 Risk factors and biomarkers selected for N290 amplitude

Risk factor/Biomarker Effect
IL-5 at week 18 -
IL-10 at week 18 +
MIP1b at week 18 -
RBP at week 6 +
Zinc at week 18 +
MPO at week 12 -
Calprotectin at week 12 +
Neopterin at week 12 +
Mother height -
Water treatment +
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Table 4 Risk factors and biomarkers selected for N290 difference

Risk factor/Biomarker Effect
Days of diarrhea in the first 18 weeks

RBP at week 6 +
RBP at week 18 -
Zinc at week 18 +
Mannitol in urines at week 24 +
LPS at week 18 -
CRP index +
Monthly household expenditure -
Mother weight

Mother height

Reg1B at week 6 +

Gender -

Water treatment -

associated with both N290 amplitude and the difference in
N290, while some biomarkers (Days of diarrhea in the first
18 weeks, RBP at week 18, Mannitol in urines at week 24,
LPS at week 18, CRP index, Monthly household expendi-
ture, Mother weight, Reg1B at week 6, Gender) were only
informative to the difference of N290 between the con-
ditions, indicating that these biomarkers contributing to
a stronger overall brain EEG signal don’t necessarily con-
tribute to a better EEG power, the ability to identify new
faces.

Discussion

The primary objective of our clinical study was to iden-
tify biomarkers in early childhood that could affect chil-
dren’s brain development measured by ERP data at 3
years of age. To our best knowledge, no previous study
has analyzed ERP data under correlated hierarchical data
framework where the correlation structure among both
channels and conditions are accounted for. Many avail-
able statistical methods couldn’t be directly applied here
because of the nature of ERP’s correlation structure. Fur-
ther, group penalty needs to be incorporated in variable
selection for ERP data so the clustered clinical risk fac-
tors and biomarkers can be selected together. Therefore
our proposed group penalized GEE estimator with struc-
tured correlation matrix for ERP data can properly model
the complex ERP response and simultaneously identify
informative biomarkers associated with ERP amplitude
and ERP difference, respectively. Our proposed method
outperforms the existing modeling approaches in the sim-
ulation study. Further, our work would be one of the
pioneering efforts in ERP research to test the condition
difference in ERPs and, simultaneously, to identify impor-
tant covariates associated with ERPs.



Lin et al. BMC Medical Research Methodology (2020) 20:221

In our study, N290 measure was analyzed in the clini-
cal application, but the developed method can be applied
to any other ERP measurements with tasks focusing on
different brain functions. Our clinical findings were lim-
ited by the small sample size, missing data in biomark-
ers, and time lag between collection of biomarkers and
ERP measurement. Nevertheless, our proposed method
emphasizes on the correlation structure among chan-
nels based on their physical locations on the brain, thus
improves the model estimation efficiency for ERP data
analysis. For future work, if data is normally distributed
with identity link function, our proposed method can be
extended further with choices of penalty, such as elas-
tic net, and computing algorithms, such as Fast Itera-
tive Shrinkage-Thresholding Algorithm [33] or Alternat-
ing Direction Method of Multipliers [34], which would
improve the computational time for larger datasets. In
addition, although the ERP responses were considered
as the continuous outcomes, our model is also appli-
cable to other types of response such as categorical or
count response. In addition, the systemic and enteric
inflammation biomarkers identified in this study for their
association with ERPs are similar and consistent with the
previous findings in the cognitive development research
[35].

Conclusions

Using the proposed group penalized GEE, we modeled
the complex ERP data with structured correlation and
identified informative early-stage biomarkers associated
with such brain connectivity. Our findings are clinically
important in understanding early childhood neurocogni-
tive development in low-income countries. Particularly,
the selected early-stage biomarkers offer a potential expla-
nation for the adversity of brain connectivity, which will
facilitate early identification of infants at risk and potential
pathways for effective intervention in the malnourished
children. Our proposed method is not only applicable to
the ERP studies but also to other biomedical studies for
biomarker selection with highly correlated responses.
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