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Abstract

Background: Unstructured data from clinical epidemiological studies can be valuable and easy to obtain. However, it
requires further extraction and processing for data analysis. Doing this manually is labor-intensive, slow and subject to
error. In this study, we propose an automation framework for extracting and processing unstructured data.

Methods: The proposed automation framework consisted of two natural language processing (NLP) based tools for
unstructured text data for medications and reasons for medication use. We first checked spelling using a spell-check
program trained on publicly available knowledge sources and then applied NLP techniques. We mapped medication
names into generic names using vocabulary from publicly available knowledge sources. We used WHO’s Anatomical
Therapeutic Chemical (ATC) classification system to map generic medication names to medication classes. We
processed the reasons for medication with the Lancaster stemmer method and then grouped and mapped to disease
classes based on organ systems. Finally, we demonstrated this automation framework on two data sources for Mylagic
Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): tertiary-based (n = 378) and population-based (n = 664)
samples.

Results: A total of 8681 raw medication records were used for this demonstration. The 1266 distinct medication names
(omitting supplements) were condensed to 89 ATC classification system categories. The 1432 distinct raw reasons for
medication use were condensed to 65 categories via NLP. Compared to completion of the entire process manually,
our automation process reduced the number of the terms requiring manual labor for mapping by 84.4% for
medications and 59.4% for reasons for medication use. Additionally, this process improved the precision of the
mapped results.
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Conclusions: Our automation framework demonstrates the usefulness of NLP strategies even when there is no
established mapping database. For a less established database (e.g., reasons for medication use), the method is easily
modifiable as new knowledge sources for mapping are introduced. The capability to condense large features into
interpretable ones will be valuable for subsequent analytical studies involving techniques such as machine learning
and data mining.

Keywords: Automation, Data extraction, Unstructured data, Medication, Natural language processing, Mylagic
encephalomyelitis/chronic fatigue syndrome (ME/CFS), Co-morbidity, Population, Tertiary

Background
Clinical epidemiological studies commonly involve col-
lection of data via surveys administered to patients and
providers which may be useful for analytical studies such
as identification of medication treatment patterns, dis-
covery of disease subtypes, or analysis of outcome differ-
ences. Extraction of relevant valuable information on
medication usage is difficult because it is often stored in
free text from these epidemiological surveys. For ex-
ample, relevant aspects of medication usage such as
medication names, dosage, mode, frequency and reasons
for taking medications are often stored in free text
and are difficult to extract for subsequent data analyt-
ics efforts. Research studies would typically resort to
cumbersome and time intensive manual data extrac-
tion performed by certified data extractors who are
trained to read unstructured text and assign labels to
them. The protocol performed by a certified extractor
would typically involve extraction of a concept
followed by manual curation.
Due to the unstructured nature of reporting medica-

tions and co-morbid conditions as free text, data from
epidemiological studies may be difficult to readily use in
data analysis. For example, a medication may be stored
with over 10 different representations as unstructured
text, either due to misspelling of the medication name,
usage of a generic or brand name, or usage of an abbre-
viation due to his or her previous training and practices.
Further, sources of inconsistency may result when a
medication is recorded along with dosage information. A
healthcare practitioner may make a record for the medi-
cation ibuprofen as “ibuprofen”, “Advil”, “Extra Strength
Advil”, “ibuprofen 200 mg”.
Previous work has focused on extracting medication

names and disease names from unstructured text in the
form of medical notes. One commonly used natural lan-
guage processing (NLP) framework in the medical do-
main is cTAKES [1], which extracts relevant medical
concepts from unstructured text in clinical notes and
annotates them. There are several examples of NLP for
specific disease related applications, such as the Clinical
Record Interactive Search Comprehensive Data Extrac-
tion (CRIS-CODE) project [2] which aims to extract

relevant concepts related to severe mental illness. Al-
though there is substantial effort in NLP for clinical
notes in electronic health records, there is limited work
on extraction of medical concepts and subsequent map-
ping into interpretable categories, from unstructured
text from epidemiological studies. It should be noted
that there are various drawbacks to existing techniques.
It requires substantial context to infer various properties
of diseases and medications for most of the aforemen-
tioned techniques in text processing. For example,
cTAKES focuses on named entity extraction from free-
form clinical notes and requires model training on
multiple corpuses to extract concepts with adequate
accuracy. In epidemiological or public health studies,
the information on co-morbidities or medications is
frequently unavailable or not collected and thus can-
not be utilized.
It is important to group raw medication names into

categories in order to make subsequent model building
easier and improve interpretability. In cases where medi-
cation data are recorded in a structured format, such as
in electronic health records, medications are typically re-
corded with identification numbers tied to a specific
medication grouping mechanism such as RxNorm [3],
and can thus be grouped and categorized in an auto-
mated fashion. Before medication hierarchies such as the
Anatomical Therapeutic Chemical (ATC) Classification
System [4], and the Medical Subject Headings Pharma-
cological Actions (MeSHPA) [5], it was generally diffi-
cult to perform grouping of medications into categories
following a structured, standardized manner. Presently,
these hierarchies can be used; however, the lack of an
automated process for extracting and grouping medica-
tions stored in free text remains a key limitation. Fur-
thermore, since epidemiological studies often collect
self-reported data from study participants, medication
data may include supplements that the subjects consume
independently of a provider’s prescription. Thus, for
many analytical studies performed on epidemiological
data, it is important to exclude supplements from the
analysis.
Our study aims to propose an end-to-end workflow

for automatic text processing and grouping into
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interpretable categories of smaller dimensionality than
present in the raw form, specifically for medications and
the condition or symptom for which medication is used.
The aggregation of concepts has traditionally been diffi-
cult and time-consuming due to the lack of automated
computational frameworks for mapping specific medica-
tion names into therapeutic classes and condition or
symptom names into disease classes. We extracted
medication names from various ontologies including
RxNorm, Drugs.com [6] and WebMD [7], and subse-
quently mapped the raw medication data names to
higher order categories based upon WHO’s Anatomical
Therapeutic Chemical (ATC) classification system [4].
We also processed the data on conditions or symp-

toms being treated (“reason data”) using a stemming
technique and mapped stems for diseases into higher
order disease categories based on distinct organ systems
involved. A main motivation for grouping conditions or
symptoms via NLP is that there is a lack of well-known
categorical classifications other than Systematized No-
menclature of Medicine (SNOMED) [8]. A limitation of
SNOMED is that it may not be specific enough for
domain-specific problems such as subtyping of specific
diseases. We applied our overall workflow to two data-
sets from studies of myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS) and successfully reduced
the dimensionality of distinct medication and reason
data sets into a smaller, more interpretable feature sets
which may be readily used in data analytics studies.

Objective
This study sought to develop and test an innovative
automation framework based on NLP for processing and
condensing unstructured medical data into interpretable
feature sets for use in data-driven analysis. Specifically,
the study sought to:

1. Propose and implement an automation framework
that leverages NLP methods combined with known
ontologies to uncover interpretable feature sets of
medications and reasons for their use.

2. Demonstrate the efficacy of the automation
framework on two data sources from
epidemiological studies of myalgic
encephalomyelitis/chronic fatigue syndrome (ME/
CFS).

Methods
We first describe the proposed automation framework
for extracting medication information including medica-
tion names and reasons for medication use (conditions
or symptoms). Next, we describe the steps for imple-
menting this automation framework including extracting
and processing text information for further data analysis.

Finally, we briefly describe how the extracted features
can be used in subsequent studies involving analysis of
unstructured text.

Automation framework
The automation framework consists of two NLP-based
tools for extracting medication information from unstruc-
tured text data including medication names and reasons
for medication use. The general workflow is illustrated in
Fig. 1. We process medication names, through a series of
automated steps to yield drug classes where medications
are grouped together because of their similarity. Similarly,
we process reasons for medication use through a series of
steps to yield disease groups where similar diseases are
placed into higher order categories based on organ sys-
tems of involvement. An end-to-end illustration along
with source code with synthetic data can be found in the
Supplementary Information, Additonal file 1 (Fig. A.1).

Processing and mapping of medication names
Below we outline the steps we take to process and map
raw medication names originally represented as unstruc-
tured text. First, we remove any medication entries that
represent supplements (e.g., vitamins, minerals, etc.).
Next, we apply a spell checker to correct the medication
spelling. Finally, we map the “raw” drug names to drug
classes according to the ATC classification system.
For extraction of supplement names, we first create an

aggregated list of common supplements via a web-
crawling algorithm that we applied to several existing
databases: Drugs.com, an online database containing
drug names and higher-level classes, RxList.com [9], a
website containing drug and supplement information in
which names of drugs and supplements are grouped ac-
cording to classes, and the WebMD database, which
contains information for common supplements. Next,
we compare raw medication names against supplement
names in this aggregated list in order to verify classifica-
tion of supplements. For example, our method would
classify medication “Vitamin C” as a supplement, while
it would classify the medication “metoprolol” as a drug.
For any given raw medication name, we compute its
Levenshtein distance [10] against all names in the sup-
plement dictionary. The Levensthein distance for two
strings, a and b, which have length |a| and |b|, respect-
ively, is defined as leva, b (|a|, |b|), where

leva;b i; jð Þ ¼
max i; jð Þ if min i; jð Þ ¼ 0;

min

leva;b i − 1; jð Þ þ 1
leva;b i; j − 1ð Þ þ 1

leva;b i − 1; j − 1ð Þ þ 1 ai≠b jð Þ

8
<

:
otherwise:

8
>><

>>:

1ðai≠b jÞ is the indicator function equal to 0 when ai ≠ bj
and equal to 1 otherwise, and leva, b(i, j) is the distance
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between the first i characters of a and the first j characters
of b. let the Levenshtein ratio be accordingly defined as

aj j þ bj jð Þ − leva;b i; jð Þ
aj j þ bj j

If the raw medication name achieves a Levensthein ra-
tio of greater than 0.85 from any of the supplement
names in the database, then we classify the medication
as a drug and remove the entry from further processing.
We compare the scraped drug names with the raw
medication data using Levenshtein distance, following
the same protocol for comparing raw medication names
as was used for filtering out supplements.
In the next step, common misspellings are corrected

automatically. Similar to the supplement checker, we ag-
gregate a list of drug names crawled from RxList.com
and Drugs.com. We subsequently use the aggregated list
of medications to compare against raw medication
names to correct misspellings.
To perform extraction from the RxNorm database, we

leverage the Representational State Transfer Application
Programming Interface (REST API). A REST API proto-
col in a web application allows for efficient transfer of
data between a computer and web application hosted on
a web server. We wrote scripts in the Python program-
ming language using the Beautiful Soup package [11] in
order to extract drug and supplement information from
Drugs.com and WebMD. Afterwards, we combine the
resulting drug and supplement names into a dictionary
from which we compare the raw data.
We compare scraped drug names to the raw drug

names in the unstructured data using the python-
Levenshtein module, a Python package which compares
similarity of two strings via Levenshtein distance [10].

If any raw drug name in the raw unstructured data
matches a drug name in the drug dictionary with a
Levenshtein ratio of over 0.85 or a Levenshtein distance
of less than 2, we map it to the corresponding drug
name in the drug dictionary. Note that each RxNorm
medication has a unique identifier, known as an Rx Con-
cept Unique Identifier (RxCUI).
The RxNorm REST API allows for us to easily map

medication names to classification systems for different
hierarchies of medication classes, via the RxCUI. In our
framework, we used the REST API to search for medica-
tion RxCUI identification numbers from the RxNorm
database after the RxNorm name was matched to the
raw unstructured text. Afterwards we use the RxCUI
number to map the matched medication name to any
number of additional known hierarchies. Two examples
of medication hierarchies include the ATC classification
system, and the Medical Subject Headings Pharmaco-
logical Actions (MeSHPA) hierarchy. Due to slight dif-
ferences in how different medication hierarchies are
structured, the specific choice of medication hierarchy
to use is dependent upon the goals of the researcher. An
example of the medication term hierarchy from the
ATC classification system is shown in Fig. 2.

Processing and mapping of reasons for medication use
We map the reasons for taking medications (conditions
or symptoms) into categories via a natural language pro-
cessing protocol that contains two main components:
auto-spell correction and stemming. After the reasons
are processed into word stems, we map the word stems
into disease categories based on organ system involved.
Examples of these reasons and their final intended map-
pings are shown in Fig. 3.

Fig. 1 General workflow of data processing for medication and reason entries
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Similar to the processing of medication names, the
auto-spell correction for reasons is conducted by com-
paring individual words against a dictionary (Python
NLTK) and transforming a misspelled word to the dic-
tionary word with highest Levenshtein ratio that is
greater than 0.85. Afterwards, the word is further proc-
essed via stemming and category mapping.
The next step in mapping reasons to disease classes is to

extract word stems from all reasons in all records using
the Lancaster Stemmer. Word stems are smaller subparts
of words, which are often found repeatedly in a wide var-
iety of whole words. For example, the stem “arthr” refers
to the concept of joints. Examples of words that have
“arthr” as a stem include “osteoarthritis”, “rheumatoid
arthritis”, and “arthroplasty”. We used the python package
Natural Language Toolkit [12], which contains a module
for extraction with Lancaster stemmer.
After extracting the word stems corresponding to the

reasons, we manually create a map of common stems to

broader categories of reasons. For example, if the ori-
ginal reason was the string “ulcerative colitis”, the Lan-
caster stemmer would extract the stem “ulc colit”, and
we would manually map the reason category was
“gastrointestinal disorders”. We store this mapping in a
dictionary, a data structure that maps lookup values
(“keys”) to results (“values”). The dictionary allows us to
look up reason categories for any given word stem (i.e.,
looking up the stem “ulc colit” would return the reason
“gastrointestinal disorders”. After creating the initial
mapping of stems to classes, we use the Lancaster stem-
mer to extract stems from each of the reasons in each
data record. For each reason in each record, we compare
the stems to each of the keys in the dictionary. If the
reason associated with any given key closely matches the
raw reason string, we match the raw reason to the rea-
son category in the dictionary. We match the raw reason
to a dictionary key (e.g., word stems) if there is a
Levenshtein distance of less than 2, and a Levenshtein

Fig. 2 An example of ATC codes (level 1–3) for medication acetylsalicylic acid (aspirin)

Fig. 3 Examples of conditions/symptoms in the unstructured text and eventual mapping
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ratio of over 0.85 between the raw reason stem and the
stems in the dictionary. In the final implementation of
the automation framework, we determined the thresholds
for Levenshtein distance and ratio experimentally by
manually trying different cutoffs of Levenshtein distance
and Levenshtein ratio that led to 85% of the matches being
made correctly. After this matching process, we manually
corrected any remaining obvious errors (e.g., a raw reason
mapping to an incorrect reason category due to misspell-
ing of the reason) (see examples in Table 1).
As medications are typically prescribed by providers

and since they typically can be mapped consistently to
an established hierarchy such as the ATC classification
system, the majority of manual curation occurs in the
reason mapping step.
After concepts for medications and conditions or

symptoms for medication use are extracted from the un-
structured text, they may be transformed for use in sub-
sequent data analysis. For example, the medication and
condition classes can be used in analytical studies as
characterization or subtyping of diseases, as well as pre-
dictive modeling studies using machine learning algo-
rithms that use the medication and condition classes as
predictive features.

Data structure and data sources
Any form of unstructured text that contains information
for medications and reasons for medication usage (e.g.,
conditions or symptoms) can be used as input into our
automation framework. Initial raw medications and rea-
sons are stored as unstructured text, and typically con-
tain spelling errors, which were variable across
participants. In Table 2, we show examples of medica-
tions intended to be recorded, alongside their varied rep-
resentations. Note that there may be large variance in
how these are represented due to usage of brand names,
differences in naming conventions between providers, or
errors in spelling. Furthermore, since medications from
epidemiological studies rely on self-reported data, they

often include supplements taken by study subjects.
Often times, these supplement names should be re-
moved if the data are to be used for a subsequent analyt-
ical study.
To show the utility of the proposed automation frame-

work, we demonstrated its application on two data
sources for Mylagic Encephalomyelitis/Chronic Fatigue
Syndrome (ME/CFS): tertiary-based and population-
based samples of 378 and 664 participants, respectively.
The tertiary-based sample came from Stage-1 of the
Multi-site Clinical Assessment of Myalgic Encephalomy-
elitis/Chronic Fatigue Syndrome (MCAM) study across
multiple specialty clinics in USA [13]. The data for the
population-based sample came from the follow-up phase
of the population-based study in Georgia, USA including
CFS, unwell and non-fatigued healthy controls [14]. Both
source studies were approved by the Institutional Review
Boards (IRB) of the Centers for Disease Control and
local IRBs for field work. Assessment of medication in-
formation was one of the objectives for both source
studies. We used a standardized abstraction form to rec-
ord the medication information on medication names
and reasons for medication use. In both of these studies,
medication names and reasons for taking them were re-
corded as free-form text during the data collection
process. For example, a participant may have reported
taking the drug metoprolol for the reason of hyperten-
sion. The raw text collected from the abstraction form
for these two concepts may have been exhibited as
“Metorpolo ER” for metoprolol and “high blood pressure”
for hypertension (see Table 2 for more examples). The
raw text for all medications and reasons for all partici-
pants in these studies were used in the analysis. Please
note that while other information about study partici-
pants were collected as part of the source studies, we
only focused our analysis on the medications and
reasons.”

Results
The tertiary-based sample contained a total of 4858 raw
records for medication information on 378 study sub-
jects with CFS. After removing records corresponding to

Table 1 Example of reason mapping from original unstructured
text to a reason category

Original Word Stems Reason Classes

arthritis arthr arthritis

musculoskeletal musculoskelet joint/musculoskeletal problem

gastritis gastrit gastrointestinal disease

ulcerative colitis ulc colit gastrointestinal disease

asthmatic asthm asthma

diarrhea diarrhe autonomic symptoms

depression depress depression and related disorders

mood anxy anxiety disorders

diabetes diabet diabetes

Table 2 Examples of representations of medications and
reasons captured in unstructured text from a public health
setting

Medications Example representations

Aspirin Aspirin ASA, Aspirin Bayer, Aspirin Generic, ASA

Albuterol Albuteral, Albuteral Nebulizer, Albuteral Inhaler

Metoprolol Metoprold ER, Metoprolo ER

Reason Example representations

Hypertension High blood pressure, HTN, b/p

Arthritis Arthritis (r) hip, arthritic joints, arthritis-anti-inflammatory
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supplements, there were 2500 records remaining, each
of which contains a raw medication and reason for tak-
ing the medication. Of these, there were 802 distinct raw
medications and 596 distinct raw reasons. Using the
automation framework, the distinct medications were
automatically mapped into 65 categories according to
the ATC classification system. After automated map-
ping, 54% of the distinct reasons required manual map-
ping. In total, the automatically and manually mapped
reasons were condensed into 54 categories.
The population-based sample contained a total of

3823 raw records for medication information on 664
study subjects who were classified into CFS, insuffi-
ciently fatigued (ISF), and non-fatigued (NF). The sub-
jects’ statuses were confirmed with a one-day clinic
examination. All medications taken routinely or in the
last 2 weeks of the clinic visit were recorded including
medication name, dosage, mode, frequency, duration
and reason for taking medications. After removing re-
cords corresponding to supplements via the supplement
checker, there were 2810 records remaining. Of these,
there were 907 distinct raw medications and 888 distinct
raw reasons. Using the automation framework, the dis-
tinct medications were automatically mapped into 59
categories according to the ATC classification system.
After automated mapping, 34% of the distinct reasons
required manual mapping. In total, the automatically
and manually mapped reasons were condensed into 91
categories (Table 3).
We mapped medication names into the ATC classifi-

cation system. The ATC system includes drug classifica-
tions at 5 levels: 1) anatomical main group; 2)
therapeutic main group; 3) therapeutic/pharmacologic
subgroup; 4) chemical/therapeutic/pharmacological sub-
group; and 5) chemical substance. We used the RxNorm
REST API to correct any obvious misspellings, map the
medication field to an RxCUI, and then obtain the ATC
codes for the drugs up to the 3rd level, which represents
the therapeutic class of the drug. Note that one drug can

map to multiple ATC codes under this mapping. An ex-
ample for the medication mapping is shown in Fig. 2.
Examples of supplements excluded, as well as misspell-
ings are shown in Table 4. Note that the RxNorm REST
API allowed us to differentiate supplements from drugs.
For this particular demonstration we excluded supple-
ments and only kept drugs for ATC therapeutic class.
An illustration of the most prevalent medications after
mapping, are shown in Fig. 4. An illustration of the most
prevalent reasons after mapping, are shown in Fig. 5.
To demonstrate the time requirement difference, we

measured the amount of time in seconds taken to per-
form an extraction manually for 10 different records,
and compared the average time taken to extract medica-
tion information per record when performed manually,
to the average time taken to extract the information
when using the automation framework. In the manual
method, the raw medication data was viewed in unstruc-
tured text, typos were corrected and the specific drug
name was queried in the ATC database. The class of
medication was obtained manually from the database.
When performed manually, medication records took ap-
proximately 22 s to parse and look up the medication
class. When performed with the automation framework,
a medication record took approximately 2 s to process
and convert to a medication class. This represents an ap-
proximately 91% reduction in time taken to process the
unstructured text and obtain a meaningful medication
feature for use in future data analytics processes.
The automation framework resulted in a significant re-

duction in time taken to perform mapping of raw medi-
cations and reasons into higher-level, interpretable
categories. After removing supplements, the majority of
medications were able to be automatically mapped into
the ATC hierarchy. Combined across both study sam-
ples, there were a total of 1266 unique drugs, of which
1068 were able to be automatically mapped into 89 dis-
tinct drug categories. This represents an 84.4% reduction
in the manual processing that would otherwise be re-
quired to map all drugs into categories. However, map-
ping of reasons required more manual intervention.
Combined across both study samples, there were a total
of 1432 distinct reasons for medication use, of which
850 were automatically mapped into 65 distinct reason
categories. This represents a 59.4% reduction in the
manual processing that would otherwise be required to
map all reasons into categories.

Discussion
The workflow for mapping medications and reasons
which we have proposed is a process that can be re-used
in different scenarios where medication names and rea-
sons are stored as unstructured text. Our technique al-
lows for an automated process of extracting medication

Table 3 Summary of feature set sizes for medications and
reasons after the data processing workflow is applied

# unique occurrences

Population based Tertiary based

Participants 664 378

CFS 140 378

ISF 308 N/A

NF 216 N/A

Medications (raw) 907 802

after mapping 59 65

Reasons (raw) 888 596

after mapping 91 54
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and reason names and subsequently mapping them to
higher order classes. The process can be tuned depend-
ing on the desired level of granularity of medication and
reason features. It is important to note that in our spe-
cific implementation, manual curation of the reasons for

medication usage was used as a follow-on process after
the automation framework was run. For the population-
based sample, there were 194 words generated from the
stemming process (compared to 888 originally), which
were eventually manually curated into 91 different

Table 4 Example of original representations of medication names, potential alternate representation (e.g., misspelling) which are
corrected by the automation framework, and the final medication class assigned via the ATC system

Medication Name Potential Alternate Representation Final Medication Class

Fexofenadine Fexafenedine, fexfenadine antihistamines

Hydrochlorothiazide Hydrochlorothazide, Hydrochlorthiazide diuretics

Metoprolol Metoprolol Succ ER, Metoprolol Tart beta-adrenergic blocking agents

Quinapril Quinipril angiotensin converting enzyme inhibitors

Vitamin B12 Vit B12, vitemin B12 supplement - excluded

Fig. 4 Most common medication categories after the data processing workflow is applied. The horizontal axis represents the number of records
of the medication (across all patients; a patient can have multiple records)
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categories. For the tertiary-based sample, there were 145
words generated from the stemming process (compared
to 596 originally), which were eventually manually cu-
rated into 54 categories. Nonetheless, our automation
framework was able to remove substantial human super-
vision that would have otherwise been required had NLP
not been used to gather word stems. Our automation
framework is instrumental for reducing the time re-
quired to extract features from unstructured text: about
91% reduction in time taken to process the unstructured
text and obtain a meaningful medication feature for use
in future data analytics processes.
While we have demonstrated the data processing

workflow on samples from ME/CFS studies, this method
can be used on studies for any disease in which data are
stored as unstructured text. Furthermore, this process
can also be applied toward analysis of clinical notes,
which are often stored as unstructured text in an un-
structured format. It is important to note that our study

was intended to be an illustration of the general frame-
work for processing free form raw text representing
medications and reasons, rather than a study intended to
draw clinical conclusions about ME/CFS. For that rea-
son, we did not specifically choose a levenshtein thresh-
old that was tuned to representative data but rather used
a common, widely used default threshold. For future
studies that involve downstream hypothesis testing with
the extracted concepts, careful calibration of the
Levenshtein threshold should be performed and a
threshold that is tuned to a desired balance of precision
and recall should be chosen. Such analysis should be
performed using a separate dataset (i.e., of raw medica-
tion and reason strings) representative of the study
dataset.
Using the resulting mappings of medications and rea-

sons, subsequent data analysis including machine learn-
ing methods can be performed. For example, the
medication and reason features can be used in predictive

Fig. 5 Most common reason (co-morbidity) categories after the data processing workflow is applied. The horizontal axis represents the number
of records of the medication (across all patients; a patient can have multiple records)
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models for disease. Alternatively, the features can be
used in unsupervised learning methods to discover sub-
types of disease. Our framework was able to automatic-
ally map 84.4% for medications and 59.4% for reasons
for medication use. The raw medications and reasons
that were unable to mapped automatically typically were
significant misspellings or uncommon representations of
concepts (e.g., uncommon or incorrect abbreviations,
unconventional description of a reason). In such cases,
these terms that require manual mapping may have a
higher level of difficulty for a human to map, compared
to terms that were able to be mapped automatically.
There are many avenues for future work. Future re-

search should address problems specific to clinical do-
mains. For example, the word stemming could be
customized to specific diseases of interest. In our par-
ticular use case, one possible improvement is to devise a
customized stemming method that leverages a matching
algorithm that matches stems for concepts highly rele-
vant to symptoms that may be experienced by patients
with ME/CFS. Such stems could be derived in a custom-
ized manner by a clinician or relevant domain expert. It
is important to note that there are other stemming
methods which could be used, including the Porter and
Snowball (Porter2) methods. The Lancaster stemmer is
more aggressive than the Porter stemmers, resulting in
greater distinction between resulting stemmed words
which allows for more distinctive automated concept
mapping. However, the typically shorter stems resulting
from Lancaster stemmer may be less readily intuitive to
a human reader during the manual mapping phase. In
future work, more in depth analysis of different stem-
ming methods can be considered.
Additionally, improvements can be made to the man-

ual intervention involved in processing medications and
reasons. For example, to reduce the manual time in-
volved a computational method could be devised that
compares the stemmed reasons against concepts in med-
ical ontologies such as the Unified Medical Language
System [15]. It is important to note that there does not
exist a standard widely used methodology for this, and
that careful consideration should be made of the trade-
off between potential time savings and potential errors
from mis-grouped concepts.
Furthermore, extraction and grouping of concepts

could be performed on different data domains, such as
unstructured data for procedures, medical symptoms, or
behavioral properties of individual patients. Public data
source, such as the National Ambulatory Medical Care
Survey (NAMCS) data [16], could potentially leverage
our natural language processing framework.
Our study provides a valuable framework for analyzing

unstructured text, which is commonly excluded from
analysis in many research studies involving machine

learning on healthcare information. In traditional studies
involving structured data sources such as electronic
health record data, medication and diagnosis names are
often stored in structured format and are often already
recorded as a mapped category. For example, diagnoses
are often encoded following the International Classifica-
tion of Diseases (ICD-10) classification and medications
are often encoded following the RxNorm classification
in an electronic health record. Our study introduces a
method that may allow researchers to leverage unstruc-
tured text and extract features for medications and rea-
sons that are as useful as those features which may be
obtained in structured data stores such as electronic
health records. Our study should motivate future work
in automating feature extraction from unstructured
medical text data, especially for targeted domain-specific
applications such as ME/CFS.

Conclusions
Our proposed automation framework demonstrates the
usefulness of NLP strategies even when there is no estab-
lished mapping database. For less established knowledge
data sources (e.g., reasons for medication use), the method
is easily modifiable as new knowledge sources for mapping
are introduced. The ability to condense large features into
interpretable ones will be valuable for subsequent analytical
studies involving techniques such as machine learning and
data mining. Our automation framework via NLP also in-
crease the completeness, timeliness, and accuracy of data
while reducing the level of human (manual) intervention
needed to identify critical data in narrative text. While our
proposed automation framework demonstrated by the
medication information collected from tertiary-based and
population-based samples of ME/CFS, this framework can
be applied to unstructured text medication information col-
lected for patients with other illnesses or diseases a well.
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Additional file 1 Appendix Figure A.1. An end-to-end illustration of
each module of the medication processing (A) and reason processing (B)
algorithms. For each type of input, raw strings are provided as input to
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ules. The final result is a string representing the category. Each module is
labeled accordingly in the code, provided at https://github.com/rchen25/
medication_natural_language_processing.
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