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Abstract

Background: The disease burden of SARS-CoV-2 as measured by tests from various localities, and at different time
points present varying estimates of infection and fatality rates. Models based on these acquired data may suffer
from systematic errors and large estimation variances due to the biases associated with testing. An unbiased
randomized testing to estimate the true fatality rate is still missing.

Methods: Here, we characterize the effect of incidental sampling bias in the estimation of epidemic dynamics.
Towards this, we explicitly modeled for sampling bias in an augmented compartment model to predict epidemic
dynamics. We further calculate the bias from differences in disease prediction from biased, and randomized
sampling, proposing a strategy to obtain unbiased estimates.

Results: Our simulations demonstrate that sampling biases in favor of patients with higher disease manifestation
could significantly affect direct estimates of infection and fatality rates calculated from the numbers of confirmed
cases and deaths, and serological testing can partially mitigate these biased estimates.

Conclusions: The augmented compartmental model allows the explicit modeling of different testing policies and
their effects on disease estimates. Our calculations for the dependence of expected confidence on a randomized
sample sizes, show that relatively small sample sizes can provide statistically significant estimates for SARS-CoV-2
related death rates.

Keywords: SARS-CoV-2, Epidemiology, Sampling bias, Covid-19, inaccurate epidemic predictions, overestimation of
COVID death rate
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Background
The spread of SARS-CoV-2 across the world has led
to a significant disease burden with widespread health
impact. Optimally planning and implementing such
interventions is intimately connected with epidemio-
logical disease modeling and requires the estimation
of key metrics such as the speed of infection spread,
recovery and fatality rates, and kinetics related to the
persistence or loss of acquired immunity. Early re-
ports from the World Health Organization (WHO)
stated a case fatality rate of over 3.8% [1] for SARS-
COV-2 as it was first detected in Wuhan, China and
spread across the world. Subsequently, epidemiologi-
cal modeling and projection, with its inherent estima-
tion of infection, recovery, and fatality rates has
become central to various institutional actors dealing
with the management of the epidemic. These studies
and reports are, by necessity, ultimately based on the
reported numbers from tested patients, which were
sampled by public health agencies in the countries
where the virus had started spreading [2–5]. However,
there are wide differences across countries in the
number of people who were tested, the availability of
test kits, as well as the stratification of the population
that were tested. Due to these factors, the infection
[6–8], and case fatality rates (CFR) based on current
SARS-CoV-2 data are difficult to interpret [2–4],
masking the true extent and dynamics of the disease
spread and ensuing fatality.
Caution has been raised with the initial spread of

the pandemic, including by us, regarding the accuracy
of determined fatality rates [9, 10]. The accuracy of
the fatality estimates could be dependent on two po-
tentially important issues addressed in the manuscript:
(1) underlying spread of immunity within the popula-
tion, and (2) ascertainment bias. Reverse transcription
polymerase chain reaction (RT-PCR), the commonly
employed method to confirm the presence of SARS-
CoV-2, only informs about the live status of the virus
in the population, and therefore masks the percentage
of people who contracted the virus and subsequently
resolved the infection by acquired immunity [11].
SARS-CoV-2 is known to induce a detectable anti-
body response following a few days of infection [11–
13], with evidence that this acquired immunity may
also be affected by the prevalence of other respiratory
viruses [14]. Furthermore, even the antibody response
is expected to last temporarily, before memory T cells
are formed and archived, which could clonally expand
and mount a response for similar subsequent infec-
tions [15–17]. An initial report suggested that a larger
cohort of tested populations which were negative for
an active viral load can now be regarded as having
previously contracted the virus [13], but the effect

size found was smaller than could be statistically de-
termined from the error rate of the underlying test.
Apart from a few studies [18, 19], the true fatality
rate of SARS-CoV-2 has not been established, either
in general population or in a stratified subpopula-
tions. This in turn has grave implications for public
health capacity planning and intervention decisions
beyond the next few months.
Secondly, we highlight the bias within the sampling

(testing for SARS-CoV-2 presence), which could po-
tentially alter the estimates of both the infection and
fatality rates. There have been multiple mathematical
studies modeling the kinetics of disease spreading
with and without social distancing interventions [20–
23]. However, these are dependent on model parame-
ters estimated from limited, and likely biased and
non-uniform sampling [24–26]. Indeed, these numbers
vary widely across different countries, resulting in
large variations in suggested mortality rates [23, 27].
Incidentally, these data were collated for the objective
of public health operations, identifying infected indi-
viduals and tracing their contacts etc., and for prepa-
ration of adequate health facilities. However, these
approaches may introduce incidental bias in testing
for individuals presenting with symptoms, rendering
models built on these data vulnerable to systematic
sampling bias. This raises significant concerns regard-
ing the accuracy of the estimates of fatality and mor-
bidity rates, with far reaching consequences on
capacity planning and policy making. Although, ki-
netic modeling studies have attempted to mitigate or
sidestep the effect of sampling bias by various
methods. For example, Verity et al. give estimates for
the infection fatality rates based on testing of foreign
nationals repatriated from China [2]. While this sam-
ple may not have been directly biased with symptom
severity, it is still likely to be highly correlated to age,
health, and placement within social and physical con-
tact networks, and therefore indirectly correlated with
infection status and susceptibility to fatality. There-
fore, it is essential to understand the effect of the
sampling bias in prediction of fatality rates where
sampling bias cannot be avoided (e.g. in hospitals
preferentially testing symptomatic or more severely
affected patients), as well as to use unbiased sampling
to ascertain the true fatality rates by public policy
authorities.
In this work, we (i) present a new model of the epi-

demic dynamics by augmenting the commonly
employed SIRD compartment model (with four dis-
tinct population stratification: S: susceptible, I: in-
fected, R: recovered, D: dead) and explicitly
introducing bias in their sampling; (ii) demonstrate by
model simulation that testing bias could have
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significant effect on the estimation of the infection
and fatality rates; and finally (iii) propose that an
unbiased randomly sampled testing study in a re-
gion with high current fatality presents the best
course to estimate the true fatality rates. Similar
treatment of sampling bias was also presented by
Brunner and Chia [28], concentrating only on esti-
mates of disease spreading. Using our augmented
SIRD model with incorporation of serological test-
ing, we show that estimation of acquired immunity
could partially mitigate the effect of testing bias,
and demonstrate that case fatality rates may under-
estimate infection fatality rates because of the lag
between infection and death. Our calculations indi-
cate that a reasonable unbiased testing sample can
provide high confidence data to test the hypotheses
of different fatality rates.
Together with our augmented compartmental

model, our proposed scheme presents a coherent, sta-
tistically rigorous estimation method to determine in-
fection and fatality rates, which is both cognizant of
the testing bias in favor of the more symptomatic or
severe patients, and given sufficient follow-up time,
resistant to the underestimation bias due to lagging
death counts.

Methods
SIRD model with disease stratification into high and low
symptomatic populations
First, we augment the canonical SIRD model by strat-
ifying the infected population into high (H) and low
(L) symptom populations. The differential equations
for disease progression can be written as

dS
dt

¼ − β
S H þ Lð Þ

N
dH
dt

¼ βq
S H þ Lð Þ

N
− γI

dL
dt

¼ β 1 − qð Þ S H þ Lð Þ
N

− γL

dR
dt

¼ γ 1 − fð ÞH þ Lð Þ
dD
dt

¼ fγH

where S stands for the susceptible population, R for
the recovered population, D for dead, and H + L for
the total infections. β is, according to convention the
infection rate constant, and γ the recovery rate con-
stant, 0 ≤ q ≤ 1, is the fraction of infections that de-
velop the H manifestation of the disease, and 0 ≤ f ≤ 1
is the fraction of the H disease population that dies
from it.

Augmented SIRD model with testing
We go one step further that model the testing for the
infection conducted as part of a surveillance program,
under the following assumptions:

1. Both uninfected and infected individuals can be tested
in a surveillance program, with different probabilities.

2. The amount of surveillance testing capacity is
limited to T tests per unit time (day).

3. Uninfected people who are tested, and test negative
aren’t tested again, unless they show significant
symptoms (H) at some point later.

4. Once an individual has tested positive, they are a confirmed
case, and any further testing etc. as part of the care
program is not counted in this model since such testing will
not change the confirmed case numbers, and isn’t assumed
to come from the surveillance testing capacity.

In total, we have the following states

� SU, the untested susceptible population,
� HU, the untested infected highly symptomatic,
� LU, the untested infected with none or low levels of

symptoms,
� RU, the untested recovered population,
� DU, the population that died from the disease

without being tested
� STn, the susceptible population that has been tested,

and obviously tested negative,
� HTn, the highly symptomatic infected population

that was earlier tested negative during the
susceptible phase (but might be tested in the future
during infection)

� LTn, the low symptom population that was only
tested while susceptible, and therefore tested
negative at that time,

� HTp, the high symptom infected population that was
tested while in the infected stage, and hence tested
positive,

� LTp, the low symptom infected population that was
tested while in the infected stage, and hence tested
positive,

� RTn, the recovered population that was tested in
only the susceptible or recovered stages, and hence
tested negative,

� RTp, the recovered population that was tested in the
infected population, and hence tested positive,

� DTn, the deaths due to the epidemic, that were
tested negative, and

� DTp, the deaths due to the epidemic, that were
tested positive.

The dynamics from the state transitions is written
as
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In addition, the cumulative number of positive and
negative tests can be calculated as

dTp
dt

¼ min HU þ HTn;
b HU þ HTnð ÞT

SU þ LU þ RUð Þ þ b HU þHTnð Þ
� �

þ

min LU ;
LUT

SU þ LU þ RUð Þ þ b HU þHTnð Þ
� �

dTn
dt

¼ min SU þ RU ;
SU þ RUð ÞT

SU þ LU þ RUð Þ þ b HU þHTnð Þ
� �

In case serological tests are done, the cumulative num-
ber of positive and negative tests can be calculated as

dTpSero

dt
¼ min HU þ HTn;

b HU þ HTnð ÞT
SU þ LU þ RUð Þ þ b HU þ HTnð Þ

� �
þ

min LU þ RU ;
LU þ RUð ÞT

SU þ LU þ RUð Þ þ b HU þ HTnð Þ
� �

dTnSero

dt
¼ min SU ;

SUT
SU þ LU þ RUð Þ þ b HU þ HTnð Þ

� �

Schematic, code, and web application to simulate this
model is provided in Supplementary Information 2–4.

Estimates of infection and death rates
Using the testing results, the conventional estimate of
the infection rate as currently being reported would sim-
ply be the fraction of positive test cases found in a time
period dInfection Rate ¼ ΔTp

ΔTp þ ΔTn
;

and the cumulative death rate estimate would be the
calculated from the number of people who died from
the pandemic versus those recovereddDeath Rate ¼ DTp

DTp þ RTp
:

The case fatality rate, as it is being currently being de-
fined is

CFR ¼ DTp

Tp
;

which would change to

CFRSero ¼ DTp

TpSero

if we use serological testing.

dSU
dt

¼ − β
SU LU þ HU þ LTn þ HTn þ LTp þ HTp

� �
N

− min SU ;
SUT

SU þ LU þ RUð Þ þ b HU þ HTnð Þ
� �

dHU

dt
¼ qβ

SU LU þ HU þ LTn þ HTn þ LTp þ HTp
� �

N
−

min HU ;
bHUT

SU þ LU þ RUð Þ þ b HU þ HTnð Þ
� �

− γHU

dLU
dt

¼ 1 − qð Þβ SU LU þ HU þ LTn þ HTn þ LTp þ HTp
� �

N
−

min LU ;
LUT

SU þ LU þ RUð Þ þ b HU þ HTnð Þ
� �

− γLU

dRU

dt
¼ γ 1 − fð ÞHU þ LUð Þ − min RU ;

RUT
SU þ LU þ RUð Þ þ b HU þ HTnð Þ

� �

dDU

dt
¼ γf HU

dSTn
dt

¼ − β
STn LU þ HU þ LTn þ HTn þ LTp þ HTp

� �
N

þ min SU ;
SUT

SU þ LU þ RUð Þ þ b HU þ HTnð Þ
� �

dHTn

dt
¼ qβ

STn LU þ HU þ LTn þ HTn þ LTp þ HTp
� �

N
−

min HTn;
bHTnT

SU þ LU þ RUð Þ þ b HU þ HTnð Þ
� �

− γhTn

dLTn
dt

¼ 1 − qð Þβ STn LU þ HU þ LTn þ HTn þ LTp þ HTp
� �

N
− γLTn

dHTp

dt
¼ min HU þ HTn;

b HU þHTnð ÞT
SU þ LU þ RUð Þ þ b HU þ HTnð Þ

� �
− γHTp

dLTp
dt

¼ min LU ;
LUT

SU þ LU þ RUð Þ þ b HU þ HTnð Þ
� �

− γLTp

dRTn

dt
¼ γ 1 − fð ÞHTn þ LTnð Þ þ min RU ;

RUT
SU þ LU þ RUð Þ þ b HU þ HTnð Þ

� �

dRTp

dt
¼ γ 1 − fð ÞHTp þ LTp

� �
dDTn

dt
¼ fγHTn

dDTp

dt
¼ fγHTp
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Instead, the true infection rate in the population would
simply be the fraction of the population with any kind of
infection

True Infection Rate ¼ Lþ H
N

;

and the true death rate would be simply the total
number of people who died of the disease versus the to-
tal that died or recovered

True Death Rate ¼ D
Dþ R

:

The parameters for the model simulation were based
on early data out of Wuhan, as reported by Li et al. [29],
shown in Table 1.

Calculating the variance of estimates for unbiased
random sampling
Suppose the fraction of population that has contracted SARS-
CoV-2 detectable by a serological test (the infection rate) is p.
In addition, assume that within those with SARS-CoV-2, a frac-
tionm have died or die within the study time-frame. Therefore,
in sampling a random sample of S samples, we expect to find
Sp positive cases, and Spm deaths. In terms of the sampled
numbers, if we find C positive cases out of a total S sample size
and D deaths, the estimates of the infection rate will be p=C/S
and the estimate of mortality rate m=D/C. These are unbiased
estimates, and their conservative, guaranteed confidence interval
can be calculated from the Clopper-Pearson interval [30].

Results
An augmented compartment model to estimate epidemic
dynamics incorporating testing Bias
We considered an augmentation of the currently preva-
lent models of epidemic dynamics to explicitly model
the potential sampling bias within the tested populations
for the specific disease, thus enabling the modeling of re-
ported case numbers and the effects of different testing
strategies. Data possibly suggestive of this effect is pre-
sented in Fig. 1a. The effect of the sampling bias will tend
to decrease with more sampling; in the extreme case of
sampling almost the entire population, once the highly
symptomatic population is saturated with tests, the rest of
the population will start to be sampled at a higher rate,

even if the highly symptomatic are being prioritized.
Countries with higher tests per positive case tend to show
a lower case fatality rate (CFR) (Fig. 1a, SI 1). Indeed, con-
firmatory rigorous estimates of the sampling bias will be
possible from simultaneous unbiased random sampling
studies in parallel with the conventional method of mainly
testing suspected cases and their contacts. A similar effect
is observed longitudinally for the calculated CFRs and
testing in the US (Fig. 1b). Anti-correlation of CFR across
countries with higher sampling in a given period, and with
progressively increased sampling at a given location over
time underline the existence of sampling bias for patients
with high disease manifestation. In this paper, we asked
how such sampling bias might be affecting the prediction
of epidemic dynamics. We therefore explicitly incorpo-
rated the sampling bias by stratifying infected population
into the highly symptomatic and the low symptom/asymp-
tomatic, in the commonly used SIRD model for epidemic
dynamics, with an objective to demonstrate the effect of
sample bias in the reported case numbers and any subse-
quent direct estimates of infection and fatality rate dynam-
ics using simulations.
The most common model used to study epidemic dy-

namics is the SIRD compartment model, from which
many derivatives have been designed. We decided to
choose the simplest SIRD model to test whether directly
incorporating the testing bias could have an effect in the
estimate of patients belonging to a given compartment.
The basic SIRD compartmental model stratifies the pop-
ulation in 4 compartments: Susceptible (S), Infected (I),
Recovered (R), and Dead (D). Movements of subpopula-
tions from one compartment to the other are described
by ordinary differential equations (ODEs). The parame-
ters for each of these ODEs are the rate constants, β, de-
scribing the rate of infection, and γ, describing the rate
of death (Fig. 1c).
In various countries, the initial tests for viral presence

have been biased based on the severity of the disease
manifestation, or weighted towards symptomatic pa-
tients. However, in certain situations, these biases could
be present in other directions too, wherein patients with

Table 1 Parameters used in the model

Parameter Meaning Value Source Notes on calculation from data source

β Transmission rate 1:12� 3:47
3:47þ3:69 days − 1 ¼ 0:543 days − 1 Li et al.

[29]
Calculalated by weighting the
transmission rate by the latency and
infectious periods

γ Disease recovery or resolution rate 1
ð3:69þ3:47Þ days ¼ 1

7:16 days
Li et al.
[29]

Summing up the latency and infectious
period

q Fraction of infected individuals who are
symptomatic (or with more severe
disease)

0.15 Li et al.
[29]

about 86% were undocumented infected

f Fatality rate for individuals with severe/
symptomatic disease

0.02 – Nominal value for illustrative purposes
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more likelihood of death are under-sampled. We there-
fore decided to introduce testing bias by stratifying the
infected population based on the severity of disease

manifestation. Specifically, we further stratified the in-
fected compartment (I) into two other sub-
compartments, H (high) and L (low) referring to the

Fig. 1 An Augmented Compartment Model to Predict Epidemic Dynamics with Testing Bias. a Regression of Case fatality rate, CFR (calculated as
percentage of death in positively identified cases per country) against the percentage of positive cases identified among all tested per country
show a linear regression; Each dot corresponds to a different country; Data obtained from ourworldindata.com for April 18, 2020 (SI 1); Blue line
shows the fitted regression curve; Shaded area show the 95% confidence interval; R2 = 0.3567, p-value = 5.9e-6. b Longitudinal data of the
calculated CFR vs. the total number of individuals tested daily in the US, with the tests performed, deaths reported, and new cases confirmed
smoothed using the 7-day averages. c The basic SIRD compartmental model commonly used to model epidemic dynamics. Ordinary differential
equations describe the movement of the population through the different compartments representing the susceptible, infected, recovered, and
dead stages. The parameters are the rate constants for each term representing the transitions in the differential eq. d The augmented SIRD
model by stratification of the infected population into H and L referring to high, and low manifestation of disease symptoms respectively; The
factor q is the fraction of infected within H; We assume that high manifestation of disease leads to death in a fraction f of the individuals. e A
simplified representation of the model of the testing policy; T tests are available per unit time; Untested alive individuals (U) are randomly
selected in proportion to their numbers, but patients in H are selected with an increased bias b. Further compartments arising due to testing and
movement at different stages are omitted here for clarity; Detailed equations in the Methods section. (e) Fraction f and q determine the true
death rate; Two values with similar death rates chosen for simulations are marked
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high or low symptomatic manifestation of the disease re-
spectively. Although the transition from the S (suscepti-
ble) compartment to the infected (I) is driven by rate
constant β, the factor q describes the fraction of the in-
fected subpopulation with a high symptomatic manifes-
tation of the disease. We assumed that the fraction
within L (low manifestation) die in miniscule rates, and
nearly all deaths occur from the H fraction. This added
sub-compartmentalization is a simple addition to the
model, but we believe that if well-defined stratification
could be measurably identified within the infected (I)
compartment, more sub-compartments should be added.
These fractions could include people with known co-
morbidities with a higher chance of fatality, or those
with measurably high severity of disease manifestation.
We then superimposed upon our augmented compart-

ment model a testing policy (Fig. 1d). We assumed that
T tests are available per unit time (kept constant for
simulations below, but which could itself be a time vary-
ing function based on the availability of testing capabili-
ties over time). The untested, and alive individuals are
assumed to be randomly selected for testing in propor-
tion to their numbers, but those with high disease mani-
festation (H) are selected with an increased bias b. In
addition, patients who were tested as being negative for
viral load at a previous time point, but presenting severe
symptoms at the present time would also be selected
with an increased bias b. The biased testing policy was
implemented by splitting the compartments in our aug-
mented SIRD model for the untested and the tested frac-
tions (Fig. 1e). True death rate would depend upon the
factors q (fraction with high disease manifestation), and f
(fraction dying within the H compartment) (Fig. 1f). De-
tails for the ODEs describing the transition through these
compartments are provided in the Methods section.

Testing Bias strongly affects the direct estimation of
infection rate
We simulated our augmented compartmental model
with testing bias and calculated the infection rate dy-
namics based on an active viral test (based on measure-
ment of viral sequences), as well as based on a
serological test (measuring if antibodies against the virus
have been created, or more accurately directly testing for
a T cell mounted response). In our augmented model,
the estimated infection rate is calculated as a ratio of
those tested positive, and all tested population within a
given time frame. Here, the testing bias is reflected
within the sampling of stratified populations, H and L in
the infected (I) compartment.
We found that testing bias had a profound effect on

the naïve estimation of infection rate based on active vi-
ral test, the most commonly employed tests (Fig. 2a). In
contrast, estimation of the contraction rate was much

less affected by the bias, largely because the immunolog-
ically recovered population as a fraction of the total pop-
ulation increases as time progresses (Fig. 2b). Our
simulation provides a strong argument in favor of sero-
logical testing beyond the obvious argument of their ca-
pability to correctly assign the compartment of
recovered (R) fraction to the population which contracts
the disease but tests negative. That the testing bias could
be substantially mitigated in the estimation of contrac-
tion rate by serological test is a strong argument in favor
of serological testing, although these tests are unlikely to
be available in the initial spread of a new epidemic. Nev-
ertheless, our augmented model will allow estimation of
the effect of biased sampling itself in predicting disease
dynamics, and underlines the importance of unbiased
sampling to predict estimates reflecting reality.

Testing Bias influence true fatality rates and case fatality
rates in time-dependent manner
Since the initial report of case fatality rate of 3.8% from
Wuhan China by WHO, there has been a substantial
variance in the listed death rate among nations. Case fa-
tality rate is calculated as the ratio of number of deaths
measured and number of positive cases [2]. Since death
is a lag indicator, case fatality rate would asymptotically
reach the more conservative death rate, which is the ra-
tio of deaths and a sum of those who died or recovered.
We, therefore, considered the latter death rate and
tested the effect of sampling bias upon its estimation.
We found that sampling bias can linearly affect the esti-
mation of death rate (Fig. 2c). If the fraction of popula-
tion with high manifestation of disease is high (and
therefore the inherent bias of sampling is low), then triv-
ially the effect of bias is somewhat mitigated (Fig. 2d).
Our data underlines the importance of incorporating
bias in testing itself as a key parameter to model epi-
demic dynamics, and characterizes the effect of bias on
key predicted metrics, including death rate, are substan-
tially affected by these biases.
We then tested how testing bias would affect the case

fatality rate (ratio of dead to the number of positive
cases). We found that sampling bias indeed resulted in
large effects in CFR estimates, but crucially, these effects
reduce as the infection reaches its peak, and then am-
plify as the infections subside within the population
(Fig. 2e). When compared to the true death rate, CFR initially
underestimates the death rate, and then overestimates the rate
in a bias dependent manner. CFR, as is calculated here, has
two opposing biases inherent in it. In the initial part of the
pandemic, and for testing biases below a threshold, it underes-
timates the true death rate because the growth of the infec-
tions happens earlier than the growth in the number of death.
In other words, while the pandemic is growing, the number of
deaths always lag, and the number of infections at a particular
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time are some multiplicative factor larger than the corre-
sponding infections that existed when the currently dead were
infected. This leads to estimation of an overly optimistic CFR.
On the other hand, for later and waning stages of the
epidemic, and the testing biases being greater than a
threshold, the CFR leads to an overly pessimistic
number compared to the real death rate. This is due
to a greater prevalence of the severely ill patients
counted among the cases. Indeed, if the fraction of
population with a high disease manifestation (H) are
changed and correspondingly the death rate adjusted
to keep the true death rate the same, then CFR can

underestimate the true death rate for a longer dura-
tion of the pandemic (Fig. 2f). The direction of the
bias in the CFR depends on the pandemic kinetics
(β, γ) and the testing bias.
However, if CFR were to be measured using serological

tests, thereby counting the recovered population as
being previously infected, the effect of bias on estima-
tion of fatality rate is mitigated (Fig. 2g-h). Crucially,
our calculations argue that for all metrics of naïve
estimation of fatality rates, contribution of testing bias
is substantial, and attempts made to measure the bias
itself, and be accounted for.

Fig. 2 Influence of testing (sampling) bias on estimates of disease spread and death rates for symptomatic patients is high for estimation of
infection rate measured by active-viral tests, but mitigated in serological tests for acquired immunity. a The infection rates (fraction of population
with an active infection) estimated from PCR (or sequencing) based strategy to measure active viral load; Red curve shows the true infection rate;
Estimation of infection rates with different biases for H-compartment patients (those with higher disease manifestation) shown in green-black
lines; Also shown are fractions calculated in eqs. b Estimation of contraction rates (fraction of population that has contracted the virus at a
previous time, are either infected or recovered) from a serological test; Red line is true contraction rate; Green-black lines are estimated
contraction rates with different sampling biases for patients with higher disease manifestation. c-d Estimates of death rate (percentage of fatalities
within confirmed recovered and dead patients) from a biased sampling strategy for patients with high disease manifestation at different fractions
(c) 15% of the infected population with 2% death rate obtained from previously published studies, and (d) 50% of the infected population with
.5% death rate; Red lines refer to true death rate and green-black lines refer to biased estimates of death rates. e-f Estimates of case fatality rate
(percentage of confirmed fatalities within positively tested population) from a biased sampling strategy as in C, and D for different fractions of
population in H and L manifestation, as in c, and d. g-h Estimates of case fatality rate measured with serological testing from a biased sampling
strategy for different fraction of populations in H and L manifestation, as in c, and d
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Randomized unbiased serological sampling of widely
infected population is necessary to determine true
fatality rates
Our augmented model demonstrated that sampling bias
could play a significant role in the direct estimates of
both the infection and the fatality rates, and may
partially explain the large variance across the death rates
reported across countries, as well as in epidemic predic-
tion models. A random sampling of a population with a
large infection load could be utilized to estimate the true
infection, recovery, and fatality rates. Here, we provide
calculations for the sample sizes required to gain an ac-
curate estimate of the community infection rates and the
infection fatality rates. In order to minimize the variance
of the infection death rate, the random testing is suggested
to be conducted among a population wherein the infec-
tion is understood to have spread widely. A random

selection of individuals with an unbiased identifier (e.g.
tax ID) will provide estimates without systematic biases;
therefore, the appropriate measure of accuracy need only
be concerned with the variance of the estimates. In the
following, we have chosen to frame this in terms of mostly
confidence intervals and hypothesis testing.
An initial calculation expectedly suggested that with

low infection rates, attaining a 5% error of estimation for
the infection rate would require a moderate sample size.
In contrast, if the real infection rate is higher (closer to
50%), expectedly, a smaller sample set will be sufficient
for an accurate estimate of infection rate (Fig. 3). There-
fore, in the present scenario, an example of an ideal
location where such tests could be performed with a
limited number of sample size (approximately 10,000) is
Germany or India, where the deaths have rapidly
climbed up in July. Crucially, in India, a randomized

Fig. 3 Randomized Testing Strategy for estimation of SARS-CoV-2 infection rate in an area with a high infection rate. a The uncertainty (in terms
of the 95% confidence interval) in the estimate of the fraction of population with SARS-COV-2 (infection rate) with different sample sizes. b The
sample size needed for infection rate 95% confidence interval to be 5%
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testing indicates that a quarter of Delhi’s population may
have already contracted the virus, and a nearly similar
percentage in a much more crowded Mumbai [31, 32].
Estimating the mortality or infection fatality rate re-

quires another probability to be multiplied to the estimate

of infection rate within a sample population. A calculation
of the sample size required for a 95% confidence interval
indicates that even for a potentially highly infected popu-
lation, like in NYC, it may require a very large sample size
to accurately determine the true fatality rate (Fig. 4a). This

Fig. 4 Randomized Testing Strategy and comparison with biased sampling for estimation of fatalities, and for estimate of death rate below a
given percentage in areas with different infection and fatality rate. a 95% Confidence Interval size for the death rate given a sample size (S, x-
axis), infection rate (p, line colors), and the real death rate (m, subplot panel). b Sample sizes needed to reject hypotheses that death rate > than
1, 2, 4, or 5% of the infected population. c Ratio of the CFR calculated from all tests (biased sampling), to the Infection Fatality Rate (IFR)
calculated from CDC’s seroprevalence study in CT. Serosurvey IFR is calculated by estimating the fraction of the state population having
contracted the virus. d Comparison of the CFRs calculated from a hypothetical unbiased random sampling and biased sampling as a function of
the sampling bias. Testing bias could be inferred from unbiased random sampling using this analysis
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may be one reason why countries have resorted to large
sampling to obtain data for true fatality rate. However,
biased and non-random sampling renders these data
difficult to interpret to estimate the fatality rates.
We therefore propose to instead test the hypotheses

that the true fatality rate is higher than a given value,
which would be rejected if the upper limit of the 95%
confidence interval is lower than the said value. Calcu-
lating these sample sizes with the statistically significant
95% confidence interval, we found that a relatively much
smaller sample size would be sufficient to estimate if the
true fatality rate is below or higher than a given percent-
age (Fig. 4b). Our calculations indicate that for a sample
with 50% infection rate, a sample size of 1000 may be
sufficient to identify if fatalities are much lower than 1%,
while for a sample with 25% infection rate, it may be
below 10,000 — a logistically achievable size to deter-
mine a crucial parameter.

Continuous sampling of a selected cohort can provide
useful dynamics on acquirement of immunity
The availability of a serological test, if applied using a
random and unbiased sampling strategy could allow the
identification of a key subset of people who have devel-
oped immunity, but do not carry the infectious disease
burden. However, it is usually not possible to have anti-
body tests available at the onset of a disease, and a rap-
idly spreading pandemic may make it difficult to gear
policies based on an accurate assessment of the
development of herd immunity. In contrast, the recent
development of genomic amplification or sequencing
technologies has made it possible to prepare rapidly de-
ployable tests to assess active infectious loads. We there-
fore propose to use a continuous sampling of a
representative unbiased cohort on a weekly basis to de-
termine the initial onset of infection, the rate of its
spread, development of immunity, and eventually the en-
suing aftermath of the infection. Indeed, as we showed,
for very small infection rate, a larger sample may be re-
quired. However, this concern is easily addressable by
pooled sequencing (NGS), which can be used to deter-
mine rare onset, mutagenesis, and characterization of in-
fections [33–35], and if sufficient signal for infection is
found, then the continuous sampling be used for that
cohort. The dynamics of readout (of active viral load) in
a fixed sample set will allow an accurate estimation of
the development of immunity and its dynamics in a
given population.

Inferring bias from a comparison of biased and unbiased
sampliong
Since the effect of the biased sampling should be appar-
ent in the overestimation of case fatality rates, we com-
pared the CFRs calculated from the total tests with 4

seroprevalence surveys [36] conducted by the CDC in
Connecticut. While these seropravalence surveys were
not truly unbiased, they tested blood samples collected
by diagnostic labs for reasons unrelated to COVID19.
CFRs calculated from total tests were always higher than
the CFRs calculated from the seroprevalence surveys
(Fig. 4c). Finally, we calculated the CFRs that would be
seen by hypothetical unbiased sampling vs those from
biased sampling, as we vary the fraction of high and low
symptomatic populations, while keeping the death rate
of the high symptom population at 20%. Since the fol-
lowup of unbiased tested individuals will allow for esti-
mates of both these death rates and fractions of the
infected populations, we can infer the sampling bias, as
seen in Fig. 4d. Thus, truly unbiased random sampling
with symptoms and outcome tracking of patients can
not only provide accurate estimates of death rates
and disease dynamics, comparing the results to
conventional testing can also provide estimates of the
sampling bias.

Discussion
The wide, and constantly updated, estimates of key met-
rics of the disease, including fatality and recovery rates
associated with SARS-CoV-2 raise important questions
about the quality of our public health scientific inquiry.
Additionally, the effects of the public health and eco-
nomic policies adopted around the world on the socio-
economically and politically vulnerable sections of the
population has so far received insufficient attention. This
is the most severe global health crisis to have inflicted
humanity within this generation, although its true im-
pact has still not been understood completely. Indeed,
even after months of its spread, there is a large variation
in the estimate of infection, recovery, and fatality rates.
Crucially, an accurate estimate of the true dynamics and
infection, recovery, and fatality rates is necessary for the
scientific inquiry into the disease from a systems per-
spective, operations planning and to advocate for an apt
public health policy. We show that direct estimates of
these parameters lack in this respect methodologically.
Testing of the general population has been incidentally
biased towards symptomatic patients, since it is driven
by the desire to identify, contact trace, care for, or safely
isolate vulnerable populations rather than to estimate ac-
curate metrics. This has resulted in the biased sampling
that is not well suited for modeling of the epidemic
and calculation of key metrics. We provide calcula-
tions to ascertain the estimate of bias from indepen-
dent unbiased surveys conducted explicitly for its own
purpose, to provide useful “corrections” to the inaccu-
rate epidemic predictions from the incidentally biased
surveys.
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Conclusions
In this work, we attempted to systematically characterize
the crucial issue of testing bias by incorporating the test-
ing bias within the compartmental model of epidemic
dynamics. Our model also includes tests for active viral load,
as well as for those who have developed immunity, along
with the sampling bias in testing. We believe that our pro-
posed augmentation not only provides a systematic basis to
ascertain the effect of testing policies in estimates of epi-
demic dynamics, but also demonstrates that biased sampling
may substantially influence epidemic projections if metrics
are naïvely calculated only reported case numbers.
Another problem that we demonstrate with the di-

rectly calculated case fatality rates is that the counts of
deaths lag the infection rates, and therefore while the
pandemic is growing, the case fatality rates underesti-
mate the infection fatality rates. While the bias intro-
duced due to this lag is in the opposite direction to that
introduced by the sampling bias, the result only makes
the situation worse. In terms of statistical theory, the
case fatality rate is a large variance, biased estimate with
an unknown direction of bias. In the popular press dis-
cussions, case fatality rate estimates calculated for coun-
tries with proportionately very extensive testing such as
Iceland have been optimistically cited as the true infec-
tion fatality rates [37, 38]. However, as some sources of
systematic errors are mitigated in extensive testing, the
effect of the lagging death counts will proportionately
become more important. Therefore, until we arrive to-
wards the end of the pandemic, these optimistic case fa-
tality rates may be more optimistic than the reality.
Although much data is collected on the number of

cases, the ensuing deaths, and those that have recovered,
the naïve interpretation of fatality and infection rates from
non-uniform sampling across countries may be fraught
with substantial inherent problems. Therefore, we recom-
mend a limited, unbiased, random uniform sampling of
population to test hypotheses of fatality rates. We also
propose a method to continually monitor a static sample
set to estimate the onset, and dynamics of disease spread,
acquired immunity, and ensuing morbidity and fatalities
associated with an infectious spread. As a recent example,
a large number of deaths in New York City could be ex-
plained either by (i) a high fatality rate in a small popula-
tion contracting the virus, or (ii) a rapid spread of the
virus which has resulted in large number of people to de-
velop immunity with a smaller percentage succumbing to
the viral infection. In order to distinguish between the two
widely varying scenarios, the most direct method with the
least amount of statistical assumptions, would be to sero-
logically test a limited, random sample of individuals. This
should occur in addition to any surveillance methods cur-
rently being employed that are independently needed for
targeted medical care and public health interventions.

Disease prediction from the incidentally biased sampling
can then be corrected for by ascertaining the extent of bias
from fatality rates independently derived from unbiased
sampling.
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