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Abstract

Background: Semi-competing risks arise when interest lies in the time-to-event for some non-terminal event, the
observation of which is subject to some terminal event. One approach to assessing the impact of covariates on
semi-competing risks data is through the illness-death model with shared frailty, where hazard regression models are
used to model the effect of covariates on the endpoints. The shared frailty term, which can be viewed as an
individual-specific random effect, acknowledges dependence between the events that is not accounted for by
covariates. Although methods exist for fitting such a model to right-censored semi-competing risks data, there is
currently a gap in the literature for fitting such models when a flexible baseline hazard specification is desired and the
data are left-truncated, for example when time is on the age scale. We provide a modeling framework and openly
available code for implementation.

Methods: We specified the model and the likelihood function that accounts for left-truncated data, and provided an
approach to estimation and inference via maximum likelihood. Our model was fully parametric, specifying baseline
hazards via Weibull or B-splines. Using simulated data we examined the operating characteristics of the
implementation in terms of bias and coverage. We applied our methods to a dataset of 33,117 Kaiser Permanente
Northern California members aged 65 or older examining the relationship between educational level (categorized as:
high school or less; trade school, some college or college graduate; post-graduate) and incident dementia and death.

Results: A simulation study showed that our implementation provided regression parameter estimates with
negligible bias and good coverage. In our data application, we found higher levels of education are associated with a
lower risk of incident dementia, after adjusting for sex and race/ethnicity.

Conclusions: As illustrated by our analysis of Kaiser data, our proposed modeling framework allows the analyst to
assess the impact of covariates on semi-competing risks data, such as incident dementia and death, while accounting
for dependence between the outcomes when data are left-truncated, as is common in studies of aging and dementia.
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Background
Semi-competing risks refers to the setting where interest
lies in the time-to-event for some so-called non-terminal
event, the observation of which is subject to some ter-
minal event [1]. In contrast to standard competing risks,
where each of the outcomes under consideration is typi-
cally terminal (e.g. death due to some cause or another), in
the semi-competing risks setting it is possible to observe
both events on the same study unit, so that there is at least
partial information on their joint distribution [1, 2]. Take
as an example the study of dementia among the elderly
[3], a complex neurocognitive condition that is estimated
to affect nearly 6 million individuals aged 65 and older
in the US [4], a number that has been projected increase
to 13.9 million by 2060 [5]. It is known that the risk
of death is higher among those who are diagnosed with
dementia [6]. As such, studies seeking to investigate risk
factors for dementia must contend with death as a com-
peting risk, which precludes the subsequent observation
of dementia. However, it is possible to observe both out-
comes among individuals who die following a diagnosis of
dementia. This information can potentially increase effi-
ciency of results and be used to assess the dependence
between the nonterminal and terminal events.
Towards the analysis of semi-competing risks data, the

statistical literature has focused on three broad frame-
works that seek to exploit the joint information on the
time to the non-terminal event and the time to the ter-
minal event [7]: those based on copulas [1, 8–10]; those
framed from the perspective of causal inference [11, 12];
and, those based on the illness-death multi-state model
[2, 13–16]. In this paper, we focus on the last of these
approaches, for which the philosophical underpinning
is that patients begin in some initial state at time zero
and may transition into the non-terminal and/or termi-
nal state [14, 16–18]. Analyses typically proceed through
the development of models for transition-specific hazard
functions (which dictate the rate at which patients expe-
rience the events), often with the use of subject-specific
frailties, which can be viewed as individual-specific ran-
dom effects that acknowledge the heterogeneity across
individuals that is not accounted for by covariates
[19, 20]. Moreover, the shared frailty accounts for depen-
dence between the nonterminal and terminal events,
which can be quantified from an estimable frailty variance
parameter.
In the analysis of time-to-event outcomes, data are sub-

ject to left-truncation or delayed entry when subjects are
enrolled into a study after the time origin of interest. Left-
truncation is common in the study of aging and dementia,
where the age scale is commonly taken to be the time scale
[21–23]. In this setting, sampling is biased toward longer
follow-up times since patients are typically only included
in the study if they are dementia-free at study entry. The

analysis of left-truncated time-to-event data should apply
statistical methods that account for this bias. Although
current methods exist for analyzing left-truncated semi-
competing risks data via a standard illness-death model
(without a shared frailty) [24, 25] and have been applied
to Alzheimer’s disease [26–29], to our knowledge, there
are no published methods in the literature for fitting an
illness-death model with shared frailty to left-truncated
semi-competing risks data. The purpose of this paper is
to fill this gap by providing a modeling framework and
openly available code for implementation.
In this paper, we provide methods for fitting an

illness-death model with shared frailty to left-truncated
semi-competing risks data. In “Methods” section, we
present the model specification (“Model specification:
Illness-death model” section), methods for estimation
and inference (“Estimation and inference” section), a
brief simulation study (“Simulation study” section), and
an analysis of data from Kaiser Permanente North-
ern California examining the relationship between
educational level and incident dementia and death
(“Assessing the impact of education level on incident
dementia in a large US cohort” section). We present
results in “Results” section. We conclude with a discus-
sion in “Discussion” section and conclusions in “Conclu-
sions” section.

Methods
Model specification: Illness-death model
Semi-competing risks refers to the setting where interest
lies in a nonterminal event that is subject to dependent
censoring by a terminal event [1]. This paper focuses
on modeling semi-competing risks data using the illness-
deathmultistate model, where in the study of dementia we
take the nonterminal and terminal events to be dementia
diagnosis and death. Figure 1 illustrates the possible indi-
vidual trajectories following time of study accrual. Let T1
and T2 denote the nonterminal and terminal event times,
respectively, following a well-defined time origin. Follow-
ing the multistate modeling literature, the illness-death
model is characterized by the transition hazards:

λ1(t1) = lim
�→0

P(T1 ∈[ t1, t1 + �)|T1 (1)

≥ t1,T2 ≥ t1)/�, for t1 > 0
λ2(t2) = lim

�→0
P(T2 ∈[ t2, t2 + �)|T1 (2)

≥ t2,T2 ≥ t2)/�, for t2 > 0
λ3(t2|T1 = t1) = lim

�→0
P(T2 ∈[ t2, t2 + �)|T1 (3)

= t1,T2 ≥ t2)/�, for 0 < t1 < t2.

Although a variety of hazard regression models can be
adopted, including Cox-type multiplicative hazard regres-
sion models [30], additive models [31] and accelerated
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Fig. 1 Schematic of an illness-death model

failure time models [32], this paper assumes the first
of these which is prevalent in the multistate modeling
literature:

λ1(t1|X1) = γ · λ1,0(t1) exp{β1X1}, (4)
for t1 > 0

λ2(t2|X2) = γ · λ2,0(t2) exp{β2X2}, (5)
for t2 > 0

λ3(t2|T1= t1,X3) = γ · λ3,0(t2|T1= t1) exp{β3X3}, (6)
for 0 < t1 < t2,

where λk,0(·) are baseline hazard functions and βk are log-
hazard ratio regression parameters, for k = 1, 2, 3. We
allow for two common specifications of λ3,0(t2|T1 = t1), a
Markov model defined by λ3,0(t2|T1 = t1) = λ3,0(t2) or a
semi-Markov (‘clock-reset’) model defined by λ3,0(t2|T1 =
t1) = λ3,0(t2 − t1). In each of expressions (4)-(6), γ is a
common subject-specific frailty with mean 1.0 and vari-
ance θ , which serves two related purposes. First, similar
to a random intercept in a generalized linear mixed model
[33], the frailties serve to accommodate between-subject
heterogeneity that is not accounted for by the covari-
ates included in the linear predictors. Second, the frailty
induces dependence between the non-terminal and ter-
minal events since a patient with frailty larger than one
will be at higher risk of both the nonterminal and ter-
minal events than the population average (conditional on
covariates).
To complete the specification of the model, the baseline

hazard functions and frailty distribution must be speci-
fied. For the latter, we adopt a Gamma distribution, which
is commonly used because closed-form expressions for
the marginal likelihood contributions can be obtained. It
is important to note that although the shared frailty term
can only account for or represent positive dependence
between the hazard functions [20], it is possible to have

negative correlation between the hazard functions cor-
responding to T1 and T2, e.g. if λ1,0(t) is monotonically
increasing and λ2,0(t) is monotonically decreasing.
The baseline hazard functions can be specified para-

metrically [34], semi-parametrically [15, 26], or non-
parametrically [2]. In this paper, we consider Weibull
baseline hazards of the form λk,0(t) = αkκktαk−1, for
k = 1, 2, 3, which are commonly used in survival analysis,
and flexible B-spline baseline hazard functions that satisfy
log λ(t) = B(t), where B(t) is a polynomial B-spline func-
tion of degree d with unique knots at t0 < t1 < · · · <

tK < tK+1 and defined for t ∈[ t0, tK+1]. For continuous
time-to-event outcomes with support on the positive real
line, we let t0 = 0 and tK+1 to be the largest follow-up
time. Note that the B-spline function B(t) is paramet-
rically defined as a linear combination of B-spline basis
functions Bb,d(t) of degree d,

B(t) =
K+d∑

b=0
ηbBb,d(t),

where ηb are parameters, known as control points, and the
B-spline basis functions are defined for t ∈[ t0, tK+1] [35].

Estimation and inference
Observed data
Let Ti1 and Ti2 denote the nonterminal and terminal
event times and Xi a vector of patient-specific covari-
ates that includes Xi1, Xi2 and Xi3 for individual i used in
(4)-(6). We assume that the observed data are subject to
right-censoring and left-truncation. Let Ci and Li denote
the right-censoring and left-truncation times which we
assume are independent of Ti1 and Ti2 conditional on Xi.
Note that we assume the convention of Xu and colleagues
[2], by setting T1 = ∞ for individuals who experience the
terminal event in the absence of the nonterminal event.
In the analysis of dementia on the age scale, where the
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nonterminal and terminal events are dementia diagno-
sis and death and the left-truncation time is study entry,
prevalent dementia cases are typically excluded from the
analysis since the primary outcome of interest is demen-
tia [27], i.e. we require that Ti1 > Li. The observed data
for the ith individual is Di = {Li,Yi1, δi1,Yi2, δi2,Xi}, where
Yi1 = min (Ti1,Ti2,Ci) with nonterminal event indica-
tor δi1 = I {Ti1 ≤ min (Ti2,Ci)}, Yi2 = min (Ti2,Ci) with
terminal event indicator δi2 = I {Ti2 ≤ Ci}, and Li < Yi1.

Likelihood
Towards developing a form of the likelihood, we first
present the joint density, (T1,T2), in the absence of left-
truncation below [15, 25]:

gT1,T2(t1, t1|X)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1(t1|X)λ3(t2|t1,X)S1(t1|X)S2(t1|X)S3(t2|t1,X),
for 0 < t1 ≤ t2
λ2(t2|X)S1(t2|X)S2(t2|X),
for 0 < t2 ≤ t1 = ∞,

(7)

where Sk(t|X) = exp
{
− ∫ t

0 λk(u|X) du
}
, for k = 1, 2,

and either S3(t2|t1,X) = exp
{
− ∫ t2

t1 λ3(u|t1,X) du
}
if a

Markov model is assumed for λ3(·) or S3(t2|t1,X) =
exp

{
− ∫ t2−t1

0 λ3(u|t1,X) du
}
if a semi-Markov model is

assumed.
Under the assumption of independent truncation, the

joint density of left-truncated semi-competing risks data,
(L,T1,T2), is:

fT1,T2,L(t1, t2, l|X) = fT1,T2,L(t1, t2, l|L < T1,X)

= gT1,T2(t1, t2|X)gL(l)
P(L < T1|X)

I(l < t1)

= gT1,T2(t1, t2|X)gL(l)∫
ST1(l|X)gL(l) dl

I(l < t1)

= gT1,T2(t1, t2|X)I(l < t1)
ST1(l|X)

· ST1(l|X)gL(l)∫
ST1(l|X)gL(l) dl

, (8)

which is a product of the conditional density of (T1,T2)
given L and the marginal density of L [24, 25, 36] in (8),
where gT1,T2 is given in (7), gL(·) is the density function
corresponding to L and ST1(t|X) = P(T1 > t|X) =
S1(t|X)S2(t|X). When the distribution of left-truncation
times is unknown, the maximum likelihood estimate
can be obtained from the conditional likelihood, ignor-
ing the marginal likelihood of the left-truncation times
[24, 25, 36, 37].
Based on the observed data, Di, there are four possible

data scenarios and thus likelihood contributions corre-
sponding to the distinct combinations of the nonterminal
and terminal event indicators, δ1 and δ2. Using (7) and

the conditional likelihood expression (on the left) in (8),
the observed data likelihood for model parameters φ =
(ξ1, ξ2, ξ3,β1,β2,β3, θ), where ξk are the baseline hazard
parameters and βk are the vectors of regression coeffi-
cients for transition k = 1, 2, 3 and θ is the Gamma frailty
variance, is

L(φ)

=
n∏

i=1

[
f1(Yi1,Yi2|Xi)

δi1δi2 · f2(Yi1,Yi2|Xi)
δi1(1−δi2)

·f3(Yi1,Yi2|Xi)
(1−δi1)δi2 · f4(Yi1,Yi2|Xi)

(1−δi1)(1−δi2)
]

where

fk(Yi1,Yi2|Xi) =
∫

fk(Yi1,Yi2|Xi, γi)f (γi) ∂γi,

for k = 1, . . . , 4, (9)

and
f1(Yi1,Yi2|Xi, γi) = λ1(Yi1|Xi, γi)λ3(Yi2|Xi, γi)S1(Yi1|Xi, γi)

S2(Yi1|Xi, γi)S3(Yi2|Yi1,Xi, γi)/
[ S1(Li|Xi, γi)S2(Li|Xi, γi)]

f2(Yi1,Yi2|Xi, γi) = λ1(Yi1|Xi, γi)S1(Yi1|Xi, γi)
S2(Yi1|Xi, γi)S3(Yi2|Yi1,Xi, γi)/
[ S1(Li|Xi, γi)S2(Li|Xi, γi)]

f3(Yi1,Yi2|Xi, γi) = λ2(Yi2|Xi, γi)S1(Yi2|Xi, γi)
S2(Yi2|Xi, γi)/[ S1(Li|Xi, γi)S2(Li|Xi, γi)]

f4(Yi1,Yi2|Xi, γi) = S1(Yi1|Xi, γi)S2(Yi1|Xi, γi)/
[ S1(Li|Xi, γi)S2(Li|Xi, γi)]

Since the individual-specific frailty terms, γi, are not
observed, we marginalize the likelihood with respect to
γi. Detailed derivations of the marginal likelihood compo-
nents in (9) are included in Section A of the Additional
file 1.

Estimation and inference
We will use maximum likelihood for estimation and
inference of model parameters using the marginal log-
likelihood in Section A of the Additional file 1 [38]. Let
U(φ) = ∂/∂φ

(
logL(φ)

)
denote the score function. Using

standard arguments, under certain regularity conditions
and a correctly specified model, the maximum likelihood
estimator of φ, denoted φ̂, is the solution to U(φ) = 0
and is consistent for the true φ0 as n −→ ∞. In addi-
tion,

√
n(φ̂ − φ0) −→d MVN(0, �) as n −→ ∞, where

� = I(φ0)−1 is the inverse of the expected information
matrix:

I(φ0) = −E
[

∂2

∂φ2 log L(φ)

]∣∣∣∣
φ=φ0

.

Var[φ̂] can be estimated via the inverse of the observed
information matrix.
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From our experience fitting the proposed model, opti-
mization of the log-likelihood requires careful consider-
ation of the numerical optimization algorithm used and
the choice of starting values. For modeling fitting, we used
a quasi-Newton non-linear numerical optimization algo-
rithm [39] as implemented in the optim function in R
[40] to maximize the log-likelihood. For Weibull baseline
hazard models, starting values for the non-linear opti-
mization were generated by fitting the univariate Weibull
regression models for each transition (4)-(6). For B-spline
parameterizations of the baseline hazard functions, we
used the bSpline function in the splines2 pack-
age [41] in R [40] to generate B-spline basis functions
and obtained starting values for hazard parameters as
follows: fit univariate Cox models for each transition
hazard model; smoothed the estimated cumulative base-
line hazard functions using linear interpolation; obtained
smoothed baseline hazards function via numerical differ-
entiation followed by loess; and found the control points
that minimized the distance between the smoothed log-
hazard functions and B-spline functions by least squares.
The frailty variance θ was initialized to value 0.5.

Simulation study
We performed a set of simulations to investigate the oper-
ating characteristics (e.g., bias and coverage) of the model
implementation for bothWeibull and B-spline parameter-
izations of the baseline hazard functions.
Data were generated from the model (4)-(6) assum-

ing Weibull baseline hazard functions using simID from
the SemiCompRisks package [42, 43] in R [40]. We
set model parameters to those obtained from fitting the
model to dementia data, where the nonterminal and ter-
minal events were dementia diagnosis and death, the
origin was age 65, the left-truncation time was study entry,
and a dichotomous variable was included as a covari-
ate in all three regression models. The baseline hazard
and frailty parameter values used in the simulations were:
logα1 = 1.05, log κ1 = −9.98, logα2 = 1.15, log κ2 =
−10.01, logα3 = 0.92, log κ3 = −5.92, and log θ = −1.39.
The dichotomous covariate was drawn from a Bernoulli
distribution with probability 0.57 and the regression coef-
ficients for the three transitions were β1 = −0.03, β2 =
−0.33 and β3 = −0.11. Age at study entry was drawn
from a uniform distribution with range between 65 and 78
years. We administratively censored at age 95 years.
Based on these set parameters, we simulated R = 1, 000

datasets of sample size n = 5, 000. For each simulated
dataset, we fit both the model with Weibull and B-spline
baseline hazard functions. For the fitted Weibull mod-
els, we reported the: mean of the parameter estimates;
mean of the estimated analytical standard errors; stan-
dard deviation of the distribution of parameter estimates
(empirical standard error); and the coverage probability

(the proportion of Wald-based 95% confidence intervals
that contained the true parameter). For the fitted B-spline-
based models, we reported the operating characteristics
listed for the Weibull-based fitted models for the regres-
sion and frailty parameters only. To assess the B-spline
fit of the transition baseline hazard functions, for each of
the three transitions, we plotted the estimated baseline
hazards from the fitted models, which we compared to
the true baseline hazard. We also compared the estimated
baseline hazard functions to kernel smoothed Nelson-
Aalen baseline hazard estimates obtained from fitting sep-
arate Cox models to each transition using the coxphHaz
function from the biostat3 package [44] in R [40]. Note
that the univariate Coxmodels for the 1- and 2-transitions
accounted for left-truncation and the Cox model on the
3-transition was performed only among those who expe-
rienced the nonterminal event. To quantify the difference
between the true baseline hazard function and those esti-
mated from the B-splinemodel and the smoothedNelson-
Aalen, we calculated the median of the integrated squared
error [26].

Assessing the impact of education level on incident
dementia in a large US cohort
We applied the methodological approach presented in
“Model specification: Illness-death model” and “Estima-
tion and inference” sections to data from Kaiser Perma-
nente Northern California (KPNC) where the goal of the
analysis was to examine the association of education level
on incident dementia. The initial analytic cohort con-
sisted of 36,134 individuals who were at least 65 years
old, dementia-free by 1997 and KPNCmembers as of Jan-
uary 1, 1996 (the earliest date when electronic medical
records were reliably available defined as study entry) and
participated in the Multiphasic Health Checkups which
began in the 1960s and continued through 1996 during
which information on participant educational attainment
was captured. We categorized the exposure of educational
attainment level based on the highest level of completion
in the following groups: elementary or high school; trade
degree, any college or college graduate; and post-graduate
study. We focused the analyses on the four most prevalent
race/ethnic subgroups, which were White, Black, Asian
and Latinx, resulting in a final analytic dataset comprised
of 33,117 KPNC members.
We incorporated the strong force of mortality (of all

causes) of individuals aged 65 or greater in the analysis
via the illness-death model in (1)-(3), where the non-
terminal event of interest was incident dementia diag-
nosis and the terminal event was death. We assumed
the semi-Markov or ‘clock-reset’ approach for the 3-
transition model (dementia → death). Follow-up was
administratively censored at the earliest of age 90 or end
of study defined by September 30, 2017. In our primary
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analysis, we used a shared frailty to account for the depen-
dence between incident dementia and death that is not
accounted for by covariates. We assumed that time was
on the age scale, starting at age 65, and thus left-truncated
since members were not followed before age 65. For this
time origin, left-truncation was accounted for using the
approach in “Estimation and inference” section, assum-
ing B-spline parameterizations of the transition baseline
hazard functions. When B-spline baseline hazards are
assumed, model fitting requires the specification of the
internal knots (number and placement) and polynomial
degree of the B-spline function. We fit a suite of mod-
els that varied the number of internal knots (we con-
sidered 1, 2 or 3 knots), which were placed at equally
spaced percentiles of the observed event times, and varied
the B-spline polynomial degree (linear, quadratic, cubic).
The final model was chosen based on the largest log-
likelihood. Time was scaled by a factor of five so that
the interpretation of hazard ratios are in terms of 5-year
increments. We controlled for sex (reference group: male)
and race/ethnicity (reference group: White) in all hazard
transition models via covariate adjustment.
In sensitivity analyses, we fit models: 1) without a

shared frailty; 2) that defined study entry as the time ori-
gin (which we refer to as time-on-study models); and 3)
assumed Weibull baseline hazard functions. When the
origin was taken to be study entry, for the 1- and 2-
transition hazard models we adjusted for age at study
entry (centered at age 65); for the 3−transition hazard
model, we adjusted for age at dementia (centered at the
cohort mean which was 83 years). These models were fit
using the SemiCompRisks package in R [42].
Note that this was an electronic medical record (EMR)-

based study. KPNC is an integrated health care deliv-
ery system of approximately 4.3 million members that
adopted an EMR system as early as 1993. All health-
care utilization, including care visits (inpatient, outpa-
tient (ambulatory), emergency department, telephone and
video visits), pharmacy fills, etc., are captured in the
EMR. Dementia diagnoses and death dates were pulled
from the EMR. Dementia diagnoses were based on

International Classification of Diseases (ICD) codes that
were made during a member visit. Deaths were obtained
from the KPNC mortality linkage file which includes data
from multiple sources (internal reporting, California state
death records, Social Security Administration). Follow-
up was not prescribed within the cohort and could vary
by individual. However, health system utilization is very
high in this population with a median of 97 visits with a
physician during the study period (minimum: 0.003 years,
median: 15.4 years, maximum: 21.2 years). Details regard-
ing the dataset, including outcome definition, exposure
variable and covariates, can be found in the Additional
file 1: Section C.1.

Results
Simulation study
The operating characteristics of the regression estimates
and the frailty parameter are displayed in Table 1. Both
modeling approaches resulted in regression estimates
with little bias and good coverage. For the Weibull-based
model, the estimates of the frailty variance parameter were
slightly underestimated with conservative coverage. For
the B-spline based model, the mean of the frailty vari-
ance parameter was upward downward. The simulation
results for the baseline hazard parameters correspond-
ing to the fitted Weibull-based models are displayed in
Additional file 1: Table B.1 and exhibit negligible bias and
good coverage. In Fig. 2, we display the true baseline haz-
ard functions in red and the estimated baseline hazard
functions from the fitted B-spline-based models in the
left column and the corresponding kernel smooth Nelson-
Aalen estimates from separate univariate Cox models in
the right column. Deviations in the estimated baseline
hazard functions for both approaches are likely due to
data sparsity in the latter half of the follow-up time. The
median integrated squared error comparing each of the
true baseline hazard functions to the estimated base-
line hazard functions over the range of observed event
times are displayed in Fig. 2 and indicate that the B-
spline-based model provides estimates of the baseline
hazard functions that are close to the truth and are

Table 1 Simulation results

Weibull-basedmodel B-spline-basedmodel

Parameter Truth Est. SEa SEe Cover. Est. SEa SEe Cover.

log θ -1.39 -1.56 0.27 0.27 0.99 -0.97 0.30 0.34 0.53

β1 -0.03 -0.02 0.06 0.06 0.95 -0.05 0.07 0.06 0.95

β2 -0.33 -0.33 0.04 0.04 0.95 -0.36 0.05 0.05 0.93

β3 -0.11 -0.10 0.08 0.08 0.95 -0.13 0.09 0.08 0.96

One thousand data sets were generated under a model with Weibull baseline hazard functions described in “Simulation study” section with n = 5, 000 and were fit to
models with Weibull and B-spline parameterized baseline hazard functions. Point estimates and analytical standard errors (SEa) were averaged across estimates. Empirical
standard errors (SEe) correspond to the standard deviation of the parameter sampling distributions. Coverage was calculated as the proportion of estimated 95% Wald-based
confidence intervals that contained the true parameter
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Fig. 2 Simulation results corresponding to 1,000 simulated dataset. Presented are plots of true Weibull-based baseline hazards (red) for the three
transition hazards compared to fitted baseline hazards from the B-spline parameterization and kernel smoothed Nelson-Aalen estimators on three
separate Cox models. Median integrated squared error (ISE) comparing each of the true baseline hazard functions to the estimated baseline hazard
functions are included

comparable, if not slightly better, than the kernel smooth
Nelson-Aalen estimates corresponding to separate Cox
models.

Assessing the impact of education level on incident
dementia in a large US cohort
A description of the semi-competing risks data and demo-
graphic variables used in the applied analysis are pre-
sented in Table 2. Of the 33,117 members in our ana-
lytic dataset, elementary or high school was the highest
level of education in 43% of members, followed by trade
school, some college or a college degree in 40%, and
post-graduate study in 16.7%. More than half (56.6%)

were female and 72.0% were of White race. By the end
of the study, nearly half (47.1%) of members died with-
out a diagnosis of dementia, with 19.1% censored before
dementia or death, 5.0% alive with dementia, and 28.9%
died carrying a diagnosis of dementia. In examining the
outcome prevalences among the three education level
groups, there weremore dementia diagnoses and all-cause
deaths amongmembers in the elementary and high school
group.
The regression estimates from the fitted models are pre-

sented in Table 3 and Table C.1 of the Additional file 1.
Across all models and time origins, increasing education
level was associated with a decreased risk of dementia. In
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Table 2 Description of semi-competing risks data and demographic variables in the analytic cohort from Kaiser Permanente Northern
California

Total
Cens before
dementia or death

Alive with
dementia

Died without
dementia

Died with
dementia

n (%) n (%) n (%) n (%) n (%)

Total 33,117 (100.0) 6,310 (19.1) 1,641 (5.0) 15,593 (47.1) 9,573 (28.9)

Education

Elementary, High School 14,325 (43.3) 2,330 (16.3) 711 (5.0) 6,858 (47.9) 4,426 (30.9)

Trade degree, College 13,273 (40.1) 2,625 (19.8) 666 (5.0) 6,259 (47.2) 3,723 (28.0)

Graduate 5,519 (16.7) 1,355 (24.6) 264 (4.8) 2,476 (44.9) 1,424 (25.8)

Sex

Female 18,748 (56.6) 3,880 (20.7) 1,152 (6.1) 7,918 (42.2) 5,798 (30.9)

Male 14,369 (43.4) 2,430 (16.9) 489 (3.4) 7,675 (53.4) 3,775 (26.3)

Race/ethnicity

White 23,830 (72.0) 4,381 (18.4) 973 (4.1) 11,646 (48.9) 6,830 (28.7)

Black 5,172 (15.6) 881 (17.0) 355 (6.9) 2,237 (43.3) 1,699 (32.8)

Asian 2,327 (7.0) 630 (27.1) 178 (7.6) 981 (42.2) 538 (23.1)

Latinx 1,788 (5.4) 418 (23.4) 135 (7.6) 729 (40.8) 506 (28.3)

the primary analysis (on the age scale with the inclusion
of a shared frailty presented in the first two columns of
Table 3), the estimated hazard ratio (HR) and 95% confi-
dence interval (CI) was 0.87 (0.83, 0.92) comparing those
with a trade degree, some college or a college degree
to those who had an elementary or high school educa-
tion. This protective effect was amplified when comparing
those with post-graduate study to those who had an ele-
mentary or high school education (HR: 0.76, 95% CI:
0.71, 0.81). There was some variation in the estimated
HR across different time origins and models. The hazard
ratio comparing those with post-graduate study to those
who had an elementary or high school education for the
time-on-study model with shared frailty (third column of
Table 3) was closer to the null with value 0.80 and to a
greater degree in the time-on-study model without shared
frailty (last two columns of Table 3) with an estimated HR
of 0.83.
Similarly, across all models and time origins, an edu-

cation level of some college or more compared with a
trade degree or less was associated with a decreased risk
of death, with estimated HR and 95% CI in the pri-
mary model of 0.84 (0.81, 0.88) comparing those with a
trade degree, some college or a college degree to those
who had an elementary or high school education and
0.68 (0.65, 0.72) comparing those with post-graduate edu-
cation to those who had an elementary or high school
education. In our primary model, increased education
level was associated with a reduced risk of death following
dementia diagnosis. However, the time-on-study models
(columns 3, 4, 7 and 8 of Table 3) provide no evidence

of this association with point estimates that suggest an
opposite effect.
In the models with a shared frailty and B-spline baseline

hazard functions (first four columns of Table 3), the esti-
mated frailty variance parameter, θ was 0.41 (0.37, 0.45)
when age was the time scale and 0.25 (0.20, 0.31) for
the time-on-study analysis, suggesting a greater degree
of dependence between time-to-dementia and all-cause
death when age is the time scale. When Weibull base-
line hazards were assumed (presented in Table C.1 of the
Additional file 1), the estimated frailty variance parame-
ter, θ was comparable with value 0.36 (0.32, 0.40) when
age was the time scale. However, the estimated frailty vari-
ance was null for the time-on-study analysis. This finding
is difficult to explain, but an examination of the estimated
baseline hazard functions from the frailty models indicate
differences in the underlying baseline risk assumed in the
various models. Figure 3 presents the estimated baseline
hazard functions under B-spline or Weibull parameter-
izations and a shared frailty term for two time origins:
1) age 65 (age-scale, adjusted for left-truncation), and
2) study entry (time-on-study). After fitting a suite of
models that varied the number of internal knots and the
B-spline polynomial degree, the specification with the
largest log-likelihood was defined by one internal knot
with linear B-splines for the 1- and 2-transitions and two
internals knots with cubic B-splines for the 3-transition.
We observe that the baseline hazard for the 1- and 2-
transitions were similar for the B-spline andWeibull spec-
ifications and increasing over time, more so when time
was on the age scale (left panel) than time-on-study (right
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Table 3 Estimated regression parameters from analyses of Kaiser data based on an illness-death model with B-spline parameterized
baseline hazard functions

With shared frailty Without shared frailty

Years since age 65 Years since study entry Years since age 65 Years since study entry

Parameter HR 95% CI p-value∗ HR 95% CI p-value∗ HR 95% CI p-value∗ HR 95% CI p-value∗

Frailty variance, θ 0.41 (0.37,0.45) <.001 0.25 (0.2,0.31) <.001

Dementia

Trade degree, College 0.87 (0.83,0.92) <.001 0.89 (0.85,0.94) <.001 0.88 (0.84,0.92) <.001 0.91 (0.87,0.95) <.001

Post-graduate 0.76 (0.71,0.81) 0.80 (0.74,0.85) 0.81 (0.76,0.86) 0.83 (0.78,0.88)

Female 1.01 (0.96,1.05) 0.40 1.02 (0.98,1.07) 0.17 1.00 (0.95,1.04) 0.44 1.03 (0.99,1.08) 0.06

Black 1.42 (1.34,1.51) <.001 1.42 (1.34,1.51) <.001 1.31 (1.24,1.38) <.001 1.38 (1.31,1.46) <.001

Asian 0.81 (0.74,0.89) 0.90 (0.82,0.98) 0.80 (0.73,0.87) 0.90 (0.83,0.98)

Latinx 0.99 (0.89,1.09) 1.07 (0.97,1.17) 1.07 (0.98,1.16) 1.06 (0.97,1.16)

Age at study entry 2.03 (1.98,2.08) <.001 1.97 (1.93,2.02) <.001

Death

Trade degree, College 0.84 (0.81,0.88) <.001 0.85 (0.81,0.88) <.001 0.84 (0.81,0.87) <.001 0.88 (0.85,0.92) <.001

Post-graduate 0.68 (0.65,0.72) 0.69 (0.65,0.73) 0.73 (0.69,0.77) 0.75 (0.71,0.79)

Female 0.62 (0.60,0.65) <.001 0.62 (0.60,0.64) <.001 0.62 (0.60,0.65) <.001 0.64 (0.62,0.67) <.001

Black 1.02 (0.96,1.07) <.001 1.05 (0.99,1.11) <.001 1.03 (0.98,1.08) <.001 1.01 (0.96,1.06) <.001

Asian 0.70 (0.65,0.76) 0.77 (0.71,0.83) 0.81 (0.76,0.87) 0.76 (0.70,0.82)

Latinx 0.72 (0.65,0.79) 0.78 (0.71,0.85) 0.76 (0.70,0.82) 0.77 (0.71,0.84)

Age at study entry 1.62 (1.59,1.66) <.001 1.57 (1.55,1.60) <.001

Death following dementia

Trade degree, College 0.90 (0.85,0.96) <.001 1.02 (0.96,1.09) 0.52 0.99 (0.93,1.05) 0.001 1.03 (0.97,1.10) 0.23

Post-graduate 0.77 (0.71,0.84) 1.05 (0.96,1.15) 0.86 (0.79,0.93) 1.07 (0.99,1.16)

Female 0.67 (0.63,0.70) <.001 1.02 (0.95,1.08) 0.31 0.68 (0.64,0.71) <.001 1.01 (0.95,1.07) 0.37

Black 0.86 (0.79,0.92) <.001 1.02 (0.94,1.10) 0.19 0.95 (0.88,1.02) <.001 0.99 (0.92,1.06) 0.90

Asian 0.69 (0.60,0.78) 1.09 (0.97,1.24) 0.69 (0.61,0.78) 1.01 (0.90,1.13)

Latinx 0.74 (0.64,0.84) 1.08 (0.95,1.23) 0.90 (0.80,1.02) 1.00 (0.89,1.13)

Age at dementia 1.01 (0.98,1.03) 0.31 1.00 (0.98,1.03) 0.37

Models were fit with and without a shared frailty term. Two time origins were considered: 1) age 65 (age scale, left-truncated data); and 2) study entry (time-on-study)
*p-value for a categorical variable with k > 2 levels (educational attainment, race/ethnicity) is based on a (k − 1)-degree of freedomWald test of linear hypotheses

panel). For the 3-transition (death following dementia),
the estimated baseline hazard functions were quite differ-
ent for the B-spline andWeibull parameterizations, as the
Weibull can only accommodate baseline hazards of the
form of a power function, while B-splines can approxi-
mate a range of functional forms. For both B-spline and
Weibull parameterizations, the estimated baseline haz-
ard for the 3-transition indicate that the risk of death is
highest shortly after dementia diagnosis, which has been
observed in a study of survival after dementia diagnosis
in five racial/ethnic groups [45]. This is followed by either
decreases then increases (based on the B-spline parame-
terization) or decreases over time (based on the Weibull
parameterization).

Discussion
For the analysis of left-truncated semi-competing risks
data, we have provided methods and software for
fitting an illness-death model with shared frailty
assuming Weibull or B-spline baseline hazards. These
methods were used to estimate the association of edu-
cation level and dementia accounting for the competing
risk of death in a cohort of 33,117 Kaiser Permanente
Northern California members. We found a dose-response
relationship between educational attainment and incident
dementia, with a decreased risk of dementia associated
with increasing levels of education, after adjusting for
sex and race/ethnicity. The impact of education level
and incident dementia is still not well understood, with
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Fig. 3 Estimated baseline hazard functions from analysis of Kaiser data assuming either B-spline or Weibull parameterized baseline hazard functions
and shared frailty term for two time origins: 1) age 65 (age-scale, adjusted for left-truncation), and 2) study entry (time-on-study)

published studies reporting both protective and null
effects [46, 47]. Our study supports that higher education
is associated with a lower risk of dementia in a large US
cohort.
Note that the conclusions drawn for the outcome of

interest (dementia) from the illness-death model with
shared frailty aligned with those from alternative models
that we considered, which omitted the shared frailty or
used study entry as the time origin (as shown in Table 3).
We expect that there will be variation in the estimates
from these models depending on the data at hand, as was
observed in the estimates of education level on the risk of
death following dementia diagnosis in our study.

In our examination of model fitting operating charac-
teristics via simulated data, we found that the regres-
sion parameters were estimated with negligible bias and
good coverage. However, on average the frailty variance
parameter was slightly underestimated for the Weibull
baseline hazard parameterization and overestimated for
the B-spline baseline hazard parameterization. For the
case of the Weibull baseline hazard parameterization, the
coverage was conservative for a sample size 5,000, but
was closer to 95% when the sample size was increased
10,000 (see Table B.2 in the Additional file 1). For the
case of the B-spline baseline hazard parameterization,
the coverage was lower than 95% due to the bias in the
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frailty variance parameter. It is important to note that pri-
mary interest in the methods presented in this paper are
the regression parameters. The frailty, and correspond-
ing frailty variance parameter, allow us to further account
for the dependence between the nonterminal and termi-
nal events beyond covariate adjustment, analogous to a
random effect in a random effects model. Similar to a ran-
dom effects model, the primary interest lies in the mean
outcome model and regression estimates; the variance
parameter of the normally distributed random effects are
typically of secondary interest.
In the analysis of dementia diagnoses such as those

presented in this paper, prevalent cases at study entry
are typically excluded. However, the likelihood in
“Likelihood” section can be easily updated (see Additional
file 1: Section D) to include prevalent nonterminal cases.
Note that in the literature, there are two approaches for
handling prevalent nonterminal cases in the analysis of
left-truncated semi-competing risks data. The approach
we take conditions on the history up to the left trun-
cation time as in [25, 37] so that prevalent nonterminal
cases only contribute to the estimation of λ3. Estima-
tion is straight-forward assuming an illness-death model
with shared frailty since the frailty term, γ , can be eas-
ily integrated out. Alternatively, Saarela and colleagues
[24] provided methods for estimation that conditions on
the left-truncation time only, so that prevalent cases con-
tribute to the estimation of all transition hazards. This
approach is more efficient as it uses more of the data, but
is computationally more intensive as it involves numeri-
cal integration. This approach does not accommodate an
illness-death model with shared frailty well since the inte-
gration of the shared frailty term is not straight-forward.
In our approach to fitting an illness-death model with

shared frailty to left-truncated semi-competing risks data,
we have considered fully-parametric specifications of the
baseline hazard functions, Weibull and B-spline. Both
functional forms are flexible and can approximate a wide
range of baseline hazard functions. At the time of sub-
mission, a pre-print by Gorfine et al. [48] proposed
a semi-parametric approach to the illness-death model
with shared frailty using a pseudo-likelihood approach to
estimating the regression parameters and baseline haz-
ard functions that accommodates left-truncated semi-
competing risks data. While the illness-death model with
shared frailty in this paper was formulated using haz-
ard models that are conditional on the frailty in (4)-(6),
Gorfine et al. [48] focused on marginal Cox hazard mod-
els. This is analogous to the conditional and marginal
approaches to modeling mean outcomes in the pres-
ence of clustering via mixed models [49] and general-
ized estimating equations [50], respectively. Thus our
approaches are complementary, filling a gap in the lit-
erature and allowing the analyst options for fitting an

illness-death model with shared frailty to left-truncated
semi-competing risks data.
One of the reviewers pointed out that dementia diag-

noses may be subject to interval-censoring. To explore
the possibility and/or extent of interval-censoring in the
cohort, we looked at the patterns of inpatient and out-
patient visits (during which dementia might be assessed)
among two groups of members: those who were diag-
nosed with dementia during the study, and those who
died without a dementia diagnosis. The concern is that
long gaps between visits would lead to imprecise demen-
tia diagnosis dates in the former and missed opportuni-
ties for dementia diagnoses in the latter. We found that
among those who were diagnosed with dementia dur-
ing the study, 81% had a visit with a physician within
60 days prior to the diagnosis date in the EMR. For
those who died without a dementia diagnosis, 90% had
a visit within 60 days prior to death. Plots of individual-
level visit patterns over the study period (see Supple-
mentary File Figures C1 and C2) among members of
these two groups illustrate that utilization is high in this
cohort.
Based on these data, we believe that interval-censoring

is not of major concern in our data, as it is in prospec-
tive studies of Alzheimer’s disease or dementia, such as
PAQUID [51, 52] and the Adult Changes in Thought
Study [53, 54], where dementia screening can be years
apart. While analyses of data from those prospective stud-
ies are indeed complicated by interval-censoring, they
were designed for the purpose of understanding inci-
dent dementia with identification of dementia cases based
on a battery of neuropsychological testing and confir-
mation by a neurologist. An EMR-based analysis of a
cohort of high care utilizers may avoid interval-censoring,
however, may capture dementia cases with less rigor.
At KPNC, a similar set of EMR code used to iden-
tify dementia diagnoses was shown to have a sensitiv-
ity of 77% and a specificity of 95% compared with a
consensus dementia diagnosis utilizing a neuropsychi-
atric battery, structured interviews, physical examina-
tion, and medical records review. If interval-censoring
were evident in our data, modeling should be updated
to account for interval-censoring. This can be done by
updating the likelihood function, as in Touraine, et al.
2017 [52]. In the setting of a shared frailty illness-death
model presented in this paper, this is an avenue for future
research.
It is important to mention that we provide meth-

ods for fitting a shared frailty illness-death model
subject to left-truncated data when the covariate of
interest is fixed with time. As one reviewer aptly
pointed out, time-varying covariates may also be of
interest to an analyst. We believe that the model-
ing framework specified in this paper can incorporate
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time-dependent covariates. However, deriving the like-
lihood function for a shared frailty model requires
marginalization (integration) of the frailty term, which
is complicated when time-dependent covariates are
used and, such, beyond the scope of this paper. We
intend to explore the implementation of the pro-
posed extension with time-varying covariates in future
work.

Conclusions
As illustrated by our analysis of Kaiser data, our pro-
posed modeling framework allows the analyst to assess
the impact of covariates on semi-competing risks data,
such as incident dementia and death, while accounting
for dependence between the outcomes when data are left-
truncated, as is common in studies of aging and dementia.
This approach has the potential to be applied to a wide
range of settings beyond the field of aging.
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