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Abstract

Background: Trials with binary outcomes can be synthesised using within-trial exact likelihood or approximate
normal likelihood in one-stage or two-stage approaches, respectively. The performance of the one-stage and the
two-stage approaches has been documented extensively in the literature. However, little is known about how these
approaches behave in the presence of missing outcome data (MOD), which are ubiquitous in clinical trials. In this
work, we compare the one-stage versus two-stage approach via a pattern-mixture model in the network meta-
analysis using Bayesian methods to handle MOD appropriately.

Methods: We used 29 published networks to empirically compare the two approaches concerning the relative
treatment effects of several competing interventions and the between-trial variance (τ2), while considering the
extent and level of balance of MOD in the included trials. We additionally conducted a simulation study to
compare the competing approaches regarding the bias and width of the 95% credible interval of the (summary)
log odds ratios (OR) and τ2 in the presence of moderate and large MOD.

Results: The empirical study did not reveal any systematic bias between the compared approaches regarding the
log OR, but showed systematically larger uncertainty around the log OR under the one-stage approach for
networks with at least one small trial or low event risk and moderate MOD. For these networks, the simulation
study revealed that the bias in log OR for comparisons with the reference intervention in the network was relatively
higher in the two-stage approach. Contrariwise, the bias in log OR for the remaining comparisons was relatively
higher in the one-stage approach. Overall, bias increased for large MOD. For these networks, the empirical results
revealed slightly higher τ2 estimates under the one-stage approach irrespective of the extent of MOD. The one-
stage approach also led to less precise log OR and τ2 when compared with the two-stage approach for large MOD.

Conclusions: Due to considerable bias in the log ORs overall, especially for large MOD, none of the competing
approaches was superior. Until a more competent model is developed, the researchers may prefer the one-stage
approach to handle MOD, while acknowledging its limitations.

Keywords: Network meta-analysis, Missing outcome data, Pattern-mixture model, Bayesian methods, One-stage
approach, Two-stage approach, Simulation study
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Background
To address aggregate binary missing participant
outcome data (MOD) in pairwise and network meta-
analysis, the researchers usually resort to simple data-
handling approaches, such as exclusion or imputation.
Both approaches are popular due to their simplicity [1–
3], yet notorious for the implausibility of their assump-
tions. A more appropriate approach, both statistically
and conceptually, is to model MOD simultaneously with
the observed outcomes. This approach naturally ac-
counts for the uncertainty due to MOD, and it may also
safeguard against biased results by adjusting the within-
trial results (treatment effect and standard error) for
MOD [4]. Since modelling of MOD does not require any
data manipulation before analysis, it overrides both ex-
clusion and imputation.
The pattern-mixture model is the most commonly

described model in the methodological literature for
pairwise and network meta-analysis to address binary
MOD [4–7]. It consists of two parts: a model for the
outcome conditional on being missing or observed and a
model for the probability of MOD [8]. The pattern-
mixture model incorporates an informative missingness
parameter, which in the case of binary data, is known as
the informative missingness odds ratio (IMOR) param-
eter and quantifies departures from the missing at ran-
dom (MAR) assumption [4, 6, 7, 9]. The IMOR
parameter is defined as the ratio between the odds of an
event among MOD and the odds of an event among
participants completing the trial. The IMOR parameter
is naturally unknown, and we can only make clinically
plausible assumptions for its value. Under the Bayesian
framework, IMOR is commonly assigned a normal prior
distribution in the logarithmic scale with mean and
variance indicating our on average prior belief and
uncertainty about the missingness mechanism,
respectively [4, 6].
The pattern-mixture model can be applied under both

the exact and approximate likelihood methods. The
former (more frequently – but not exclusively – applied
using Bayesian methods) commonly assumes within-trial
binomial distribution, and thus, uses logistic regression
to estimate the within-trial log ORs and their corre-
sponding standard errors in a single step (hereafter the
one-stage pattern-mixture (PM) approach). Under this
approach, the log IMOR is assigned a normal prior dis-
tribution with various options regarding its structure
(e.g. identical, exchangeable, or independent across
trials, trial-specific, intervention-specific) rendering this
approach very appealing and flexible [4, 6]. Under ap-
proximate likelihood methods (hereafter the two-stage
PM approach), initially, log ORs, and standard errors are
calculated in each trial after adjusting for a scenario
about the missingness process (e.g. MAR as a starting

point) – expressed via the mean and variance of log
IMORs. Then, the adjusted log ORs are pooled using
inverse-variance weighting [7, 10].
Albeit being more straightforward to apply, the two-

stage PM approach has several shortcomings inherent to
the within-trial normal approximation assumption. By
fixing the within-trial results to the assumed mean and
variance of log IMOR, the two-stage PM approach does
not allow the observed data to contribute to the estima-
tion of log IMOR to gain further insights on the miss-
ingness process in the collected trials [4]. Furthermore,
the adjusted within-trial treatment effects and variances
– the latter assumed known, although estimated, under
the normal distribution – comprise the dataset for the
second stage of the two-stage PM approach. In the pres-
ence of zero cells, continuity correction is thus required
– a suboptimal approach that has been criticised for
leading to biased results [11, 12]. In a typical systematic
review where large and many studies are not prevalent,
it is hard to justify the within-trial normal approxima-
tion [13, 14]. Consequently, the application of the two-
stage PM approach may implicate the accuracy of
summary results (especially, when the included trials are
small, or the outcome is sparse [15]), and hence, com-
promise the conclusions delivered to the end-users of
systematic reviews.
The advantages of the exact likelihood (one-stage ap-

proach) over the approximate normal likelihood (two-
stage approach) for the synthesis of trials are well-
documented in the literature for pairwise meta-analysis
[16–18] and recently for network meta-analysis (NMA)
[19]. However, little is known of how much the presence
of MOD can challenge the behaviour of these two ap-
proaches. To our knowledge, there are only two
simulation studies on the performance of the pattern-
mixture approach in evidence synthesis of binary out-
come data [5, 20]. However, they have considered
only scenarios that allow for the approximate normal-
ity assumption. In this work, we investigate the impli-
cations of applying the one-stage and two-stage PM
approaches on the relative treatment effects and the
between-trial variance in NMA. In Section “Methods”,
we introduce the one-stage and two-stage PM ap-
proaches for binary MOD in Bayesian random-effects
NMA, and we briefly describe the empirical study.
The results of the empirical study appear in the hom-
onymous section followed by the Section “Simulation
study” where we describe the set-up and the various
scenarios of our simulation study. In Section “Results
of the simulation study”, we present the results of the
simulation study. Discussion of the findings from the
empirical and simulation studies can be found in Sec-
tion “Discussion”, and brief conclusions and recom-
mendations are followed-up in Section “Conclusions.
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Methods
Consider a network of N trials that compare different
sets of interventions regarding a binary outcome, where
ai represents the number of interventions (from now on
called arms) investigated in trial i (i = 1, 2, …, N). In arm
k = 1, 2, …, ai of trial i, roik represents the number of par-
ticipants who experienced the outcome conditional on
the completers (i.e. participants who completed the
trial), mik represents the number of missing participants,
and nik represents the total number of randomised
participants.

One-stage pattern-mixture model
By convention, roik and mik are assumed to follow the
corresponding binomial distributions:

roik � Bin poik ; nik −mik
� �

and mik � Bin qik ; nikð Þ
where poik is the probability of an event conditional on
completers (i.e. nik −mik), and qik is the probability of
MOD in arm k of trial i [4, 6].
Under the pattern-mixture model, the randomised

participants are distinguished to those completing and
those dropping out of the trial early. Within each sub-
group, the participants are further distinguished to those
experiencing and those not experiencing the event.
Then, the underlying probability of an event, pik, can be
written as a function of these subgroups using condi-
tional probabilities [4]:

pik ¼ poik 1 − qikð Þ þ pmikqik ð1Þ
with pmik being the probability of an event conditional on
those dropping out of arm k in trial i. Then, the IMOR
parameter is defined as follows [7]:

δik ¼
pmik= 1 − pmik

� �
poik= 1 − poik

� �
with

log δikð Þ ¼ φik � N ωik ; σ2ik
� �

The relationship between pmik and poik is explained by
the formula of the IMOR parameter:

� if pmik ¼ poik , then δik = 1 (and φik = 0) which suggests
the MAR assumption;

� if pmik > poik , then δik > 1 (and φik > 0) which suggests
a deviation from the MAR assumption and indicates
that the odds of an event given the missing
participants are more likely than the odds of an
event given the completers, and

� if pmik < poik , then δik < 1 (and φik < 0) which also
suggests a deviation from the MAR assumption and
indicates that the odds of an event given the missing

participants are less likely than the odds of an event
given the completers.

In the present work, we considered independent φik to
agree with the structure of φik in the two-stage PM ap-
proach (Section “Two-stage pattern-mixture model”):

φik � N 0; 1ð Þ
where we assume on average MAR in each arm of every
trial. Since the true missingness mechanism is not
known, we consider the MAR assumption to be a rea-
sonably plausible assumption following the recommen-
dations of the relevant literature [4, 7, 9].

Random-effects network meta-analysis model
Then, the logit function with random-effects is applied:

logit pikð Þ ¼ ui þ θik

θik � N μtik ti1 ; τ
2

� �

with ui = logit(pi1) being the log odds of baseline arm
and θik being the log OR of an event between arm k (k ≠
1) and baseline arm in trial i. Index tik indicates the
intervention studied in arm k of trial i, that is, tik ∈ {A, B,
…}. Typically, τ2 is assumed common for all observed
comparisons; this corresponds to a correlation equal to
0.5 between any two θik s (with k ≠ 1) in a multi-arm
trial [21].
Under the consistency assumption (i.e. an agreement

between direct and more than one indirect source of evi-
dence [22]), we can obtain all possible pairwise compari-
sons as linear combinations of the summary log ORs of
the basic parameters (i.e. comparisons with the reference
intervention in the network [23]):

μjl ¼ μjA − μlA

where A is the reference intervention in the network
with a set of interventions T = {A, B,C,…} and j ≠ l ∈ T
∖ {Α} are the non-reference interventions of the network.
Using the basic parameters, we can also obtain several
measures of hierarchy to order the interventions from
the best to worst [24]. However, intervention hierarchy
is out of the scope of the present study.

Two-stage pattern-mixture model
In the first stage, we adjust the within-trial log ORs
using the pattern-mixture model (eq. (1)). In line with
the one-stage PM model, we considered that log IMORs
are on average MAR in each arm of every trial (i.e. ωik =
0), where pi, k corresponds to roik=ðnik −mikÞ . Then, the
log OR of an event between arm k (k ≠ 1) and baseline
arm in trial i is estimated as:
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where the term ‘zero cells’ refers to observing no events in
either arm of a trial. Under the pattern-mixture model,
the within-trial variance of log OR, vik, is partitioned to
the variance due to sampling error and to the variance
arising from φik. In the present work, tο approximate the
variance due to sampling error, we applied Taylor series
(eq. (13) in White et al. [7]), and for the variance due to
φik we used the eq. (16) in White et al. [7] assuming zero
correlation between φik s of the compared arms in each
trial and σ2ik equal to 1. By convention, vik is treated as
known based on the central limit theorem that trials are
sufficiently large so that yik approximates the normal dis-
tribution with variance equal to vik.

Random-effects network meta-analysis model
In the second stage, following the contrast-based param-
eterisation described by Dias et al. [25] (Example 7(a) in
the Appendix, there), in a multi-arm trial, within-trial
log ORs are sampled from the following multivariate
normal distribution:

yi � Nai − 1 θi;Σið Þ

with yi ¼ ðyi2; yi3;…; yiaiÞ
0
and θi ¼ ðθi2; θi3;…; θiaiÞ

0
re-

ferring to all pairwise comparisons with the baseline arm
of trial i and

Σi ¼
vi2

cov yi3; yi2ð Þ
cov yi2; yi3ð Þ

vi3
⋯
⋯

cov yi2; yiai
� �

cov yi3; yiai
� �

⋮ ⋮ ⋱ ⋮
cov yiai ; yi2

� �
cov yiai ; yi3

� �
⋯ viai

0
BB@

1
CCA

being the variance-covariance matrix of trial i with cov(-
yij, yil) = 1/(ni1pi1(1 − pi1)), j ≠ l ∈ {2, 3,…, ai } which is the
variance of log odds of the baseline arm (obtained using
the Delta method). Then, the vector θi of correlated
random-effects in trial i is assumed to follow either a
multivariate normal distribution (eq. (10) in Dias et al.
[25]) or conditional univariate normal distributions on
θik with k > 2 given all other arms from 2 to ai − 1 (eq.
(11) in Dias et al. [25]). Using the consistency equations
(Section “One-stage pattern-mixture model”), we can
obtain the summary log ORs for all possible compari-
sons in the network.
In summary, the one-stage PM approach uses the in-

formation extracted from each arm of every trial as in-
put data (i.e. roik , mik, and nik) and incorporates the
pattern-mixture model (eq. (1)) into the hierarchical
model of NMA. Contrariwise, the two-stage PM ap-
proach uses the estimated within-trial results as input
data (i.e. yik and vik) to perform NMA. These results
have been derived by applying the pattern-mixture
model (eq. (1)) under a specific assumption about φik

(‘on average MAR’ assumption, here) to obtain the pi, k.

Factors that may affect within-trial normality
approximation
We used the database of 29 networks from several
health-related fields considered in previous work [6]. De-
tailed information on the MOD per network can be
found elsewhere [6]. For this study, we considered a
sample size of fewer than 50 participants to represent
small trials, and event risk below 5% to be low. We char-
acterised a network as ‘susceptible’ to within-trial nor-
mality approximation (hereinafter called ‘susceptible’
network) when there was at least one trial with a sample
size less than 50 participants and/ or at least one trial-
arm with observed event risk less than 5%. Otherwise,
the network was characterised as ‘non-susceptible’ to
within-trial normality approximation (hereinafter called
‘non-susceptible’ network). We acknowledge that these
two categorisations of the networks may not be univer-
sally accepted.

Extent and balance of MOD per trial and network
We used the ‘five-and-twenty rule’ by Sacket et al. [26],
which classifies MOD in a trial as resulting in little,
intermediate and serious attrition bias, alongside our
definition of unbalanced MOD [6] to indicate the trial
and networks as having:

� low MOD (i.e. a trial with a percentage of MOD less
than 5; a network with a median percentage of
MOD less than 5);

� moderate and balanced MOD: moderate MOD (i.e.
a trial with a percentage of MOD between 5 and 20;
a network with a median percentage of MOD
between 5 and 20) which are balanced in the
compared arms (i.e. a trial with a difference in the
percentage of MOD in the compared arms up to
6.5; a network with a median difference in the
percentage of MOD in the compared arms up to
6.5);

� moderate and unbalanced MOD: moderate MOD
which are unbalanced in the compared arms (i.e. a
trial with a difference in the percentage of MOD in
the compared arms above 6.5; a network with a
median difference in the percentage of MOD in the
compared arms above 6.5);

� large and balanced MOD: large MOD (i.e. a trial
with a percentage of MOD over 20; a network with
a median percentage of MOD over 20) which are
balanced in the compared arms, and,

� large and unbalanced MOD: large MOD which are
unbalanced in the compared arms.

yik ¼ logit roik= nik −mikð Þ� �
− logit roi1= ni1 −mi1ð Þ� �

logit roik þ 0:5
� �

= nik −mik þ 1ð Þ� �
− logit roi1 þ 0:5

� �
= ni1 −mi1 þ 1ð Þ� ��

; no zero cells
; zero cells
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The ‘percentage of MOD for a trial’ is defined as the
ratio of the number of MOD in all compared arms of
the trial to the total number of randomised participants
in that trial. The ‘median percentage for a network’ re-
fers to the median of the percentage of MOD across all
trials of the network.
Overall, 37% of the 539 trials in our dataset had low

MOD, followed by 30% with moderate and balanced
MOD, 18% with moderate and unbalanced MOD, 9%
with large and unbalanced MOD, and 6% with large and
balanced MOD. Almost half of the networks were classi-
fied as having moderate and balanced MOD (Table 1),
followed by low MOD (41%). Overall, three networks
were found to be more problematic in terms of MOD:
two networks of moderate and unbalanced MOD, and
one network of large and unbalanced MOD. None of the
networks was classified as having large and balanced
MOD.

Characteristics of the analysed networks
Eleven out of 29 networks (38%) were categorised as
‘susceptible’ and 18 as ‘non-susceptible’ (Table 1; Sup-
plementary Table 1, Additional file 1). The former group
included considerably more trials (median: 21, range:
11–104) and therefore, more trials per comparison (me-
dian: 2, range: 1–13) than the latter group (median: 9,
range: 4–15 for trials; median: 1, range: 1–10 for trials
per comparison) (Table 1). Of the 11 ‘susceptible’

networks, the majority (72%) had trials with moderate
and balanced MOD, whereas the majority (55%) of ‘non-
susceptible’ networks had trials with low MOD (Table
1). There were three networks with the most severe
cases of MOD overall: one ‘susceptible’ network with
moderate and unbalanced MOD, one ‘non-susceptible’
network with moderate and unbalanced MOD, and one
‘non-susceptible’ network with large and unbalanced
MOD. The sample size of the trials was moderate overall
(median: 204 and 364 in ‘susceptible’ and ‘non-suscep-
tible’ networks, respectively; Table 1); however, nine of
the ‘susceptible’ networks included at least one trial with
less than 50 participants (Supplementary Table 1, Add-
itional file 1). Median event risk indicated frequent
events in both network categories (median: 0.58 and
0.66 in ‘susceptible’ and ‘non-susceptible’ networks, re-
spectively; Table 1). Four of the ‘susceptible’ networks
included at least one trial with an event risk of less than
5% (Supplementary Table 1, Additional file 1). Nine ‘sus-
ceptible’ networks had at least one trial with zero events
or non-events (median number of zero cells: 1, range: 1–
4; Table 1; Supplementary Table 1, Additional file 1).

Model implementation and presentation of results
Both approaches were implemented in JAGS via the R-
package R2jags [27] (statistical software R, version 3.6.1
[28]). Technical details on the specification of the
models (i.e. prior distributions, convergence inspection,

Table 1 Distribution of several characteristics across networks

Characteristic Susceptible networks1

(n = 11)
Non-susceptible networks1

(n = 18)
All networks
(n = 29)

Total trials per network,
median (minimum, maximum)

21 (11, 104) 9 (4, 15) 13 (4, 104)

Trials per comparison
median (minimum, maximum)

2 (1, 13) 1 (1, 10) 1 (1, 13)

Degree of missing outcome data (%)

Low
median (minimum, maximum)

0.03 (0.00, 0.57) [2]2 0.02 (0.00, 0.24) [10] 0.03 (0.00, 0.57) [12]

Moderate and balanced
median (minimum, maximum)

0.12 (0.00, 0.62) [8] 0.09 (0.00, 0.37) [6] 0.11 (0.00, 0.62) [14]

Moderate and unbalanced
median (minimum, maximum)

0.18 (0.00, 0.45) [1] 0.09 (0.03, 0.27) [1] 0.15 (0.00, 0.45) [2]

Large and unbalanced
median (minimum, maximum)

– 0.30 (0.03, 0.87) [1] 0.30 (0.03, 0.87) [1]

Factors that affect within-trial normal approximation

Trial sample size
median (minimum, maximum)

204 (12, 18,201) 364 (74, 8240) 262 (12, 18,201)

Event risk
median (minimum, maximum)

0.58 (0.00, 1.00) 0.66 (0.12, 0.99) 0.60 (0.00, 1.00)

Number of zero-cells
median (minimum, maximum)

1 (1, 4) [9] – 1 (1, 4) [9]

1A network was ‘susceptible’ to within-trial normality approximation when there was at least one trial with a sample size less than 50 participants and/ or at least
one trial-arm with observed event risk less than 5%
2Brackets indicate the number of networks with the studied characteristic
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number of chains and iterations) can be found in Add-
itional file 1. We created scatterplots to illustrate the
agreement between results from the one-stage versus
two-stage PM approaches for the following three model
parameters: a) posterior mean of within-trial log ORs, b)
posterior mean of NMA log ORs for comparisons with
the reference intervention in each network, and c) the
posterior median of τ2. We compared the approaches
also in terms of the posterior standard deviation of the
parameters mentioned above. An agreement was in-
ferred when the points were aligned with the diagonal
line. To quantify the agreement, we used the concord-
ance correlation coefficient (CCC) [29] via the R-
package epiR [30]. The R-package ggplot2 was used to
draw the scatterplots [31]. The dataset and the code to
perform the empirical study are available online at
https://github.com/LoukiaSpin/One-stage-vs-two-stage-
PM-models.git.

Results of the empirical study
The first panel of Fig. 1 shows the posterior mean and
standard deviation of the within-trial log ORs across the
11 ‘susceptible’ networks (404 points, Fig. 1 a)) and 18
‘non-susceptible’ networks (172 points, Fig. 1 b)) for a
different amount of MOD. The second panel of Fig. 1
presents the posterior mean and standard deviation of
the log ORs for the basic parameters of each ‘susceptible’
(104 points, Fig. 1 a)) and ‘non-susceptible’ network (80
points, Fig. 1 b)), and the third panel illustrates the
posterior median and standard deviation of τ2 in the
‘susceptible’ networks (11 points, Fig. 1 a)) and ‘non-sus-
ceptible’ networks (18 points, Fig. 1 b)) for a different
amount of MOD. Results on the posterior mean of re-
sidual deviance are illustrated in Additional file 1 (Table
S2) to investigate whether each model fits the data satis-
factorily for each network.

Posterior mean or median
For the ‘susceptible’ networks, one-stage and two-stage
PM approaches overall agreed concerning the posterior
mean of within-trial log ORs (CCC: 0.99) and the poster-
ior mean of NMA log ORs (CCC: 0.99) across the differ-
ent scenarios of MOD (Fig. 1 a, first and second panel).
An agreement could also be inferred for the posterior
median of τ2 (CCC: 0.90), except for four networks with
moderate and balanced MOD whose τ2 estimates were
found to be higher under the one-stage PM approach
(Fig. 1 a, third panel). In more detail, from the left to the
right of the plot, the posterior median of τ2 under the
two-stage PM approach was 0.14, 0.26, 0.37, and 0.71
versus 0.20, 0.40, 0.66, and 0.93 under the one-stage PM
approach, respectively. These τ2 estimates corresponded
to moderate statistical heterogeneity (network 14; the
posterior median of τ2 was lower than the third quartile

of the corresponding predictive distribution for τ2) and
large statistical heterogeneity (networks 11, 22, and 27;
the posterior median of τ2 was larger than the third
quartile of the corresponding predictive distributions for
τ2). Note that the remaining ‘susceptible’ networks had
low statistical heterogeneity as the posterior median of
τ2 was lower than the median of the corresponding pre-
dictive distributions for τ2. Therefore, in ‘susceptible’
networks with large statistical heterogeneity, the com-
pared approaches did not agree in the estimation of τ2

as the estimated τ2 tended to be larger under the one-
stage PM approach when compared with the two-stage
PM approach.
Contrariwise, in ‘non-susceptible’ networks, the com-

pared approaches perfectly agreed concerning the pos-
terior mean of within-trial log ORs and the posterior
mean of NMA log ORs across the different scenarios of
MOD (Fig. 1 b, first and second panel). The agreement
was almost perfect for the posterior median of τ2 (CCC:
0.97) apart from one network with moderate and bal-
anced MOD that showed a slightly larger posterior me-
dian of τ2 under the one-stage PM approach (Fig. 1 b,
third panel). Specifically, the τ2 estimates were 0.19 and
0.27 under the two-stage PM approach and one-stage
PM approach, respectively – both estimates indicated
moderate statistical heterogeneity for being lower than
the third quartile of the selected predictive distribution
for τ2.

Posterior standard deviation
In ‘susceptible’ networks, the posterior standard devi-
ation of NMA log ORs was systematically larger under
the one-stage PM approach, especially in networks with
moderate and balanced MOD (Fig. 1 a, second panel).
This was expected as the one-stage PM approach
accounted for the uncertainty in the estimation of all pa-
rameters in the pattern-mixture model (eq. (1)). There-
fore, the uncertainty increased when the available
information was limited; namely, the included trials were
small with low events and substantial MOD. Contrari-
wise, in ‘non-susceptible’ networks, the agreement was
almost perfect for the posterior standard deviation of
NMA log ORs (Fig. 1 B, second panel).
Regarding the posterior standard deviation of τ2, the

agreement was higher in ‘non-susceptible’ networks
overall (CCC: 0.96, 95% confidence interval (CI): 0.91 to
0.99) as compared with the ‘susceptible’ networks (CCC:
0.91, 95% CI: 0.82 to 0.95). In the ‘susceptible’ networks,
the one-stage PM approach resulted in a larger posterior
standard deviation of τ2 for the four networks men-
tioned above (Section “Posterior mean or median”) (Fig.
1 a and b, third panel). Therefore, in ‘susceptible’ net-
works with large statistical heterogeneity, the one-stage
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PM approach tended to estimate τ2 also with larger un-
certainty as compared to the two-stage PM approach.

Simulation study
We simulated 1000 triangle networks of two-arm trials
and three interventions: new intervention, old interven-
tion, and placebo. Our main interest was the comparison
of the former two interventions; however, for complete-
ness, we also presented the results on the basic parame-
ters (i.e. comparisons with placebo). The ultimate goal of
the simulation study was to compare the performance of

the two PM approaches under a setting where the nor-
mality approximation is compromised (i.e. small trials
with low events) while considering the recommended
‘on average MAR’ assumption as a primary analysis to
model informative MOD. In practice, it is more plausible
for MOD to be informative; however, note that we can-
not know the exact missingness mechanism.

Simulation set-up
The simulation set-up was in line with a previous study
on MOD in NMA [5]. Briefly, we assumed a larger

Fig. 1 Scatterplots of the two-stage approach against the one-stage approach with regards to within-trial log OR (first row), NMA log OR (second
row), and common τ2 (third row) in ‘susceptible’ networks (panel a)) and ‘non-susceptible’ networks (panel b)). Different colours indicate the
degree and balance of missing outcome data across 29 networks. Results on the concordance correlation coefficient (CCC) (mean and 95%
confidence interval) appear above each scatterplot. References are found in Additional file 1. NMA, network meta-analysis; log OR, odds ratio in
the logarithmic scale; SD, standard deviation
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beneficial underlying log OR for ‘new intervention versus
placebo’ as compared to ‘old intervention versus placebo’
and we used the consistency equation to obtain the
underlying log OR for ‘new versus old intervention’
(Table 2). To generate the number of events in each arm
of every trial, we considered the data-generating model
of Hartung and Knapp for a random-effects pairwise
meta-analysis [34]. For a brief description of the data-
generating model, the reader can refer to Additional file
1. To obtain the event risks among the completers in
each arm of every trial, we used the linkage function of
Turner et al. [4] (eq. (7), there) that is a function of the
IMOR parameter, the underlying event risks and the
probability of MOD in each arm of every trial.

Simulation scenarios
In the present work, we considered only a ‘typical loop’
with one trial comparing ‘new versus old intervention’,
three trials comparing a ‘new intervention with placebo’,
and four trials comparing an ‘old intervention with pla-
cebo’ [32] (Table 2). The simulation scenarios were con-
structed such that to explore the impact of four key
factors: the sample size of the trials, frequency of events,
the extent of MOD, and degree of τ2. With respect to
sample size, we considered a trial as having a small sam-
ple size if n < 50, and moderate sample size if n > 100,
equally distributed in the compared arms (Table 2). For
event risk at the control arm, a maximum of 15% was
considered to be low, and at least 27% was considered to
be frequent (Table 2). Initially, we considered a max-
imum of 5% as low event risk at the control arm. How-
ever, this scenario resulted in generating networks with
zero events in both arms for the majority of trials, par-
ticularly for the scenario of fewer than 50 participants,
and thus, creating serious convergence issues in both ap-
proaches. We focused on scenarios of unbalanced MOD
with more MOD in the control arm and cases of moder-
ate and large MOD (Table 2). A previous study revealed
that moderate and large MOD (which were unbalanced
in the compared arms) affected the performance of the
one-stage PM approach in terms of the posterior stand-
ard deviation of log OR and τ2 [5]. We considered in-
formative missingness process in all interventions:
IMOR equal to 2 for the new and old interventions (i.e.
the odds of an event given MOD are twice the odds of
an event given the completers) and IMOR equal to 1/2
for placebo. We considered τ2 equal to 0.02 and 0.07 to
reflect small and substantial true statistical heterogen-
eity, respectively. These values correspond to the median
of the predictive log-normal distribution for all-cause
mortality (95% prior interval: 0.001–0.26) and generic
health setting (95% prior interval: 0.002–2.67), respect-
ively [33]. Table 2 illustrates the scenarios considered in
the simulation.

Model implementation and presentation of results
For each of the 16 scenarios (4 factors of two categories),
we performed a Bayesian random-effects NMA with
consistency equations using the one-stage and two-stage
PM approaches to analyse the generated networks. All
analyses were performed under the ‘on average MAR’ as-
sumption as the recommended primary analysis [4, 7, 9,
35, 36]. In line with the empirical study, we considered a
non-informative normal prior distribution with zero
mean and variance equal to 10,000 on all location pa-
rameters for both PM approaches. We assigned a pre-
dictive prior distribution on τ2 that refers to the
improvement of symptoms for pharmacological versus
placebo comparison (median: 0.11, 95% prior interval:
0.01–2.13) and aligns with the beneficial outcome con-
sidered in the simulation study [33]. We preferred this

Table 2 Scenarios for the simulation set-up

Number of trials per comparison

typical loop NO = 1, NP = 3, OP = 4

Trial size (nEi;k ¼ nCi;k ¼ ni in trial i)

< 50 (small) ni~U(12, 39) placebo-controlled trials

ni~U(15, 49) old-controlled trials

> 100 (moderate) ni~U(102, 187) placebo-controlled trials
ni~U(128, 241) old-controlled trials

Initial event rates of the control arm in trial i

low events pC;0i;P � Uð0:05; 0:09Þ placebo-controlled trials

pC;0i;O � Uð0:10; 0:15Þ old-controlled trials

frequent events pC;0i;P � Uð0:27; 0:40Þ placebo-controlled trials

pC;0i;O � Uð0:63; 0:76Þ old-controlled trials

Unbalanced risk of missing outcome data (qEi;k < qCi;k in trial i)

moderate qEi;k � Uð0:05; 0:10Þ, qCi;k � Uð0:11; 0:20Þ
large qEi;k � Uð0:21; 0:30Þ, qCi;k � Uð0:31; 0:40Þ

Missingness mechanisms via log IMOR

informative φi, P~TN(μ = − log (2), σ2 = 1, a = log (1))

φi, k~TN(μ = log (2), σ2 = 1, a = log (1)) k = N, O

Treatment effects

basic parameters LORNP = ln (2), LOROP = ln (1.5)

functional parameter LORNO = LORNP − LOROP (consistency equation)

Common between-trial variance

predictive distribution τ2~LΝ(−3.95, 1.342) (small)
τ2~LΝ(−2.56, 1.742) (substantial)

Note: C Control; E Experimental arm; IMOR Informative missingness odds ratio;
LN Log-normal distribution; LOR Log odds ratio; N New intervention; O Old
intervention; P Placebo; T Truncated normal distribution; U
Uniform distribution
Typical loop as defined by Veroniki et al. [32]
Using predictive log-normal distributions that correspond to all-cause
mortality and generic health setting for small and substantial between-trial
variance, respectively [33]
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prior distribution to a weakly-informative prior distribu-
tion, such as half-normal prior distribution on τ with
variance one (median: 0.67, 95% prior interval: 0.03–
2.24), as the latter compromised the estimation of the
parameters for the scenario of low events (Supplemen-
tary Table 3–6, Additional file 1).
For each scenario, we calculated the bias for (NMA)

log OR as the difference between the posterior mean of
log OR and the underlying log OR. The bias for τ2 was
calculated as the difference between the posterior me-
dian of τ2 and the underlying τ2. The posterior width of
95% credible interval (CrI) for a parameter (log OR or
τ2) was calculated as the difference between the 97.5 and
2.5% percentile of the simulated parameter. The bias of
the posterior mean and the width of the 95% CrIs of log
OR for every comparison are illustrated using dot plots.
The posterior mean and posterior standard deviation of
log ORs are presented in tables in the Additional file 1
(Supplementary Table 7–9). The posterior median and
posterior standard deviation of τ2 alongside the bias and
the width of the 95% CrI are presented in Table 3. Re-
garding the bias and the width of the 95% CrIs of log
OR, we presented only the results for small τ2 as the be-
haviour of the compared approaches was similar under
small and substantial true τ2.
To demonstrate that there is an association between

the within-trial log OR and its standard error, when nor-
mality approximation cannot be defended (i.e. small tri-
als with low events), we used the simulated triangles to
estimate the covariance between the within-trial log OR

and its standard error at the first stage of the two-stage
PM approach. We created a scatterplot for each scenario
where we plotted the estimated within-trial standard
error of log OR against the within-trial log OR, and we
used different colours to illustrate the magnitude of co-
variance. We presented the results for ‘new versus old
intervention’ in the main text and the results for the
comparisons with placebo as Supplementary Figs. 1–2
(Additional file 1).
For each simulation, we used three parallel chains with

different initial values; thinning equal to 10; 80,000 up-
dates; and a burn-in of 20,000 Markov chain Monte
Carlo samples. Simulations and analyses were performed
in R [28]. The dot plots and scatterplots were created
using the R-package ggplot2 [31]. The code and neces-
sary material to generate and analyse the triangles are
available online at https://github.com/LoukiaSpin/One-
stage-vs-two-stage-PM-models.git.

Results of the simulation study
Bias and width of 95% credible interval of log ORs
For the case of a low event and small trial size, we en-
countered small-scale convergence issues for the log OR
of all comparisons under the one-stage PM approach
alone (1 to 4% of simulations whose results were dis-
carded). In both approaches, the absolute bias of the
posterior mean of log OR for ‘new versus old interven-
tion’ was smaller under all scenarios as compared to the
bias of posterior mean of log OR for both basic parame-
ters (Fig. 2). The one-stage PM approach overestimated

Table 3 Posterior median (and 95% CrI) and bias (and width of 95% CrI) for common τ2

small τ2 moderate MOD large MOD

trial size frequency one-stage two-stage one-stage two-stage

small low 0.13 (6 × 10− 3, 2.59)
0.11 (2.58)

0.10 (6 × 10− 3, 1.14)
0.08 (1.13)

0.13 (6 × 10− 3, 3.06)
0.11 (3.06)

0.10 (6 × 10− 3, 1.20)
0.08 (1.19)

moderate low 0.07 (4 × 10− 3, 0.70)
0.05 (0.70)

0.07 (5 × 10− 3, 0.64)
0.05 (0.63)

0.08 (5 × 10− 3, 0.97)
0.07 (0.96)

0.08 (5 × 10− 3, 0.82)
0.06 (0.81)

small frequent 0.09 (5 × 10− 3, 0.94)
0.07 (0.93)

0.08 (5 × 10− 3, 0.83)
0.06 (0.82)

0.09 (5 × 10− 3, 1.04)
0.07 (1.03)

0.09 (6 × 10− 3, 0.91)
0.06 (0.90)

moderate frequent 0.04 (3 × 10− 3, 0.31)
0.02 (0.31)

0.04 (4 × 10− 3, 0.32)
0.02 (0.31)

0.05 (4 × 10− 3, 0.40)
0.03 (0.40)

0.05 (4 × 10− 3, 0.42)
0.03 (0.42)

substantial τ2 moderate MOD large MOD

trial size frequency one-stage two-stage one-stage two-stage

small low 0.13 (6 × 10− 3, 2.52)
0.05 (2.51)

0.10 (6 × 10− 3, 1.16)
0.02 (1.15)

0.14 (6 × 10− 3, 3.29)
0.06 (3.29)

0.10 (6 × 10− 3, 1.21)
0.02 (1.21)

moderate low 0.09 (5 × 10− 3, 1.05)
0.01 (1.05)

0.08 (5 × 10− 3, 0.86)
0.004 (0.85)

0.09 (5 × 10− 3, 1.17)
0.02 (1.17)

0.08 (5 × 10− 3, 0.90)
0.01 (0.89)

small frequent 0.10 (5 × 10− 3, 1.15)
0.02 (1.14)

0.09 (6 × 10− 3, 0.95)
0.01 (0.95)

0.10 (5 × 10− 3, 1.26)
0.02 (1.25)

0.09 (6 × 10− 3, 1.01)
0.01 (1.01)

moderate frequent 0.06 (4 × 10− 3, 0.57)
−0.02 (0.57)

0.05 (4 × 10− 3, 0.56)
− 0.02 (0.56)

0.06 (4 × 10− 3, 0.58)
− 0.02 (0.57)

0.06 (4 × 10− 3, 0.56)
− 0.02 (0.56)

MOD Missing outcome data
Posterior median and 95% CrI (in parenthesis) are provided in the first line of every cell, followed by bias and width of 95% CrI (in parenthesis) in the second line
of every cell
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the posterior mean of log OR for ‘new versus old inter-
vention’ in the presence of small trials with low event
frequency, and notably, for large MOD (Fig. 2). On the
contrary, the bias in the two-stage PM approach was
very low for those scenarios (bias equal to 0.03). In the
remaining scenarios, the bias of the posterior mean of
log OR for ‘new versus old intervention’ was similar in
both approaches.
Interestingly, the posterior mean of the log OR for

both basic parameters was substantially underesti-
mated in both approaches in the presence of large
MOD (Fig. 2). For a low event and small trial size,
both basic parameters had a smaller bias under the
one-stage PM approach. The exception was the case
of large MOD, where the log OR for ‘old intervention
versus placebo’ was slightly more biased under the
one-stage approach (Fig. 2; Supplementary Table 8–9,
Additional file 1). In the remaining scenarios, the bias
of the posterior mean of log OR for the basic

parameters was similar in both models (Fig. 2; Sup-
plementary Table 8–9, Additional file 1).
The relatively high negative bias in the basic parame-

ters under both approaches may be attributed to the re-
sidual bias after considering the MAR assumption to
analyse informative MOD, which were assumed to be
moderate or large in all included trials. To investigate
whether the extent of MOD may indeed explain this ex-
tent of bias, we re-ran the simulation study also consid-
ering low attrition bias (%MOD < 5) in all included
trials. Under this best-case situation, the bias in log OR
of the basic parameters was reduced in both approaches.
Specifically, the bias ranged from − 0.1 (moderate trial
size with frequent events and substantial τ2) to 0.07
(small trials with a low event and small τ2) under the
one-stage PM approach, and from − 0.19 (small trials
with a low event and substantial τ2) to − 0.05 (frequent
events and small τ2) under the two-stage PM approach
(Supplementary Fig. 3, Additional file 1). Therefore,

Fig. 2 Dot plots on the bias of posterior mean of NMA log OR for all pairwise comparisons under one-stage and two-stage approaches while
accounting for the degree of missing outcome data (moderate, large) being unbalanced in the compared arms, the size of trials (small,
moderate), the event frequency (low, frequent) and small τ2. MOD, missing outcome data
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increasing the amount of MOD increased the bias in
both basic parameters, particularly under the two-stage
PM approach. Note that in each network of our data-
base, the percentage of MOD (%MOD) was ranging
from very low levels (indicating low attrition bias;
%MOD < 5) to moderate or large levels (indicating ser-
ious attrition bias; %MOD > 20) across the trials. Thus,
we consider our simulation study to reflect a rather
worst-case situation; in a ‘typical’ network, the bias in
the log OR of the basic parameters would be at lower
levels.
The 95% CrIs of log OR were wider in the one-stage

PM approach for all comparisons – especially, for small
trials with low events, and large MOD (range: 5.79–6.85
under the one-stage PM approach; range: 3.53–4.45
under the two-stage PM approach) (Fig. 3). Under these
scenarios, the available information was limited, and
therefore, both approaches estimated log OR with
greater uncertainty as compared to scenarios with more
information (e.g. moderate trial size and/ or frequent

events). However, since the one-stage PM approach in-
herently treats all parameters of the pattern-mixture
model (eq. (1)) as random variables, the uncertainty
around the estimation of log OR was larger under this
approach in ‘susceptible’ networks with considerable
MOD. Contrariwise, the two-stage PM approach esti-
mated the within-trial log ORs and their standard error
at the first stage (via the pattern-mixture model). There-
fore, the two-stage PM approach ‘disregarded’ the uncer-
tainty in the estimation of the within-trial log ORs at the
second stage leading to spuriously more precise sum-
mary log ORs even in the presence of large MOD.

Ad hoc analysis: association between the within-trial log
OR and its standard error
Figure 4 illustrates a panel of scatterplots on the within-
trial standard error of log OR for ‘new versus old inter-
vention’ (y) against the within-trial log OR for that
comparison (x) for each simulation scenario. For positive
values of x, the covariance between x and y was positive,

Fig. 3 Dot plots on the width of 95% credible interval of NMA log OR for all pairwise comparisons under one-stage and two-stage approaches
while accounting for the degree of missing outcome data (moderate, large) being unbalanced in the compared arms, the size of trials (small,
moderate), the event frequency (low, frequent) and small τ2. MOD, missing outcome data
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and therefore, trials with larger positive x corresponded
to larger y and received smaller weight, whereas trials
with smaller positive x corresponded to smaller y and re-
ceived larger weight. On the contrary, for negative values
of x, the covariance between x and y was negative, and
therefore, bias was upwards for the pooled log OR. This
pattern was observed for trials with small size and/ or
low event frequency, regardless of τ2, and became more
evident for large MOD (Fig. 4). The conclusions were

the same for the comparison of new and old interven-
tion versus placebo (Supplementary Fig. 1–2, Additional
file 1).

Bias and width of 95% credible interval of common τ2

Both approaches achieved convergence in all scenarios
regarding τ2. Under small true τ2, both approaches esti-
mated a similarly low posterior median of τ2 for moder-
ate trial size and frequent events that approached the

Fig. 4 A panel of scatterplots on the within-trial standard error of log OR for ‘new versus old intervention’ (axis y) against the within-trial log OR
for that comparison (axis x) for each simulation scenario. The colour key indicates the magnitude of covariance between the within-trial standard
error of log OR and within-trial log OR for that comparison. MOD, missing outcome data; OR, odds ratio
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truth regardless of the MOD scenario (Table 3). In the
remaining scenarios, both approaches overestimated τ2

similarly for moderate and large MOD, though the bias
was slightly larger under the one-stage PM approach
(from 0.05 to 0.11) as compared to the two-stage PM ap-
proach (from 0.05 to 0.08), especially, for small trials
with a low event. The overestimation may be attributed
to having a small true τ2 which has the same likelihood
as the first quartile of the prior predictive distribution
that we assigned on τ2 in both approaches (equal to
0.02), and thus, τ2 was overestimated.
The conclusions were similar for substantial true τ2

(Table 3). As expected, the posterior median of τ2 was
slightly larger in both approaches in most scenarios
compared to the posterior median of τ2 under small true
τ2. However, bias was lower under substantial true τ2 in
all scenarios as compared to small true τ2. A plausible
explanation may be that the substantial true τ2 was
closer to the median of the prior predictive distribution
for τ2 in both approaches (equal to 0.11), and hence, the
magnitude of overestimation was relatively smaller
under substantial true τ2 than under small true τ2.
Overall, the one-stage PM approach led to wider 95%

CrIs for τ2 as compared to the two-stage PM approach,
especially for small trials with low events (Table 3). As
expected, in both approaches, 95% CrIs for τ2 were
wider under substantial τ2 (range: 0.57–3.29 in the one-
stage PM approach; 0.56–1.21 in the two-stage PM ap-
proach) when compared with small τ2 (range: 0.31–3.06
in the one-stage PM approach; 0.31–1.19 in the two-
stage PM approach) as well as under large MOD (range:
0.40–3.29 in the one-stage PM approach 0.42–1.21 in
the two-stage PM approach) as compared to moderate
MOD (range: 0.31–2.58 in the one-stage PM approach;
0.31–1.15 in the two-stage PM approach). In the case of
moderate trial size with frequent events, both ap-
proaches led to a very similar width of 95% CrI for τ2 re-
gardless of the MOD scenario.

Discussion
We compared the one-stage approach with the two-
stage approach in the presence of MOD via the pattern-
mixture model using Bayesian random-effects NMA. We
performed an empirical and simulation study to investi-
gate the behaviour of NMA log OR and τ2 under moder-
ate or large MOD and design-factors that implicate the
within-trial approximate normality assumption in the
two-stage approach (i.e. sample size and event
frequency).
The empirical study revealed that in the case of ‘sus-

ceptible’ networks with moderate MOD, the posterior
standard deviation of NMA log OR was systematically
larger under the one-stage PM approach. The simulation
study indicated that this behaviour was more evident in

the presence of small trials with low events and exacer-
bated for large MOD. This is a situation where the
available information is limited, and therefore, the
uncertainty around the estimated NMA log OR in-
creases. Our results are in line with Stijnen et al. [17] –
albeit the authors applied binomial-normal and
hypergeometric-normal models in the absence of MOD.
Furthermore, the empirical study did not indicate any

systematic differences in the posterior mean of within-
trial log ORs and NMA log ORs (for the basic parame-
ters) between the compared approaches across the dif-
ferent amounts of MOD. Nevertheless, the simulation
study revealed that in networks of small trials with low
events and large MOD, the one-stage PM approach re-
sulted in a relatively higher positive bias of NMA log OR
for ‘new versus old intervention’ (functional parameter)
as compared to the two-stage PM approach. This behav-
iour may be an artefact of the consistency equation,
which is implicit also for the bias of NMA log OR for
‘new versus old intervention’ (see, Additional file 1). Pre-
senting only the simulation results for the functional pa-
rameters of interest may be misleading if there is
substantial bias in at least one of the basic parameters.
This is because the bias on the functional parameters
may be cancelled out to a great extent through the
consistency equation, especially, in the two-stage PM
approach.
In the presence of large statistical heterogeneity, the

empirical study revealed that the one-stage PM approach
tended to provide a larger estimate of τ2 as compared to
the two-stage PM approach for ‘susceptible’ networks.
This observation also concurred with moderate and bal-
anced MOD. A previous study [5] and the present simu-
lation study did not indicate any implications of the
amount of MOD on the estimation of τ2; though, large
MOD led to greater uncertainty in the estimation of τ2

– we observed this behaviour in our simulation study –
more notably for the one-stage PM approach [5]. How-
ever, our simulation study did not reveal the same large
discrepancy in the compared approaches concerning the
estimation of τ2 in networks of small trials with a low
event and substantial true τ2. A plausible explanation
may be that the substantial true τ2 was much lower than
the estimated τ2 in the empirical study (minimum equal
to 0.20) to be able to capture a larger discrepancy in the
compared approaches. Both true values for τ2 referred to
a ‘typical’ meta-analysis with small or substantial statis-
tical heterogeneity. Therefore, we consider the four net-
works with a large estimation of τ2 under the one-stage
PM approach to representing a rather extreme situation.
The parameter τ2 is a nuisance parameter in the

random-effects model, and it has no intuitive clinical in-
terpretation as opposed to log OR. Nevertheless, τ2 is an
important parameter for the evaluation of the certainty
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of the evidence in the context of inconsistency using the
GRADE framework [37, 38]. The magnitude of τ2 affects
our decision to downgrade (and by how many levels) or
not the evidence for inconsistency: the larger the τ2 the
more likely to downgrade the evidence for the investigated
outcome. Therefore, how much accurately τ2 is estimated
in a model is of critical importance. Our simulation study
revealed that both approaches had a similar behaviour
overall, except for networks of small trials with a low
event where the one-stage PM approach led to a slightly
larger bias in the estimation of τ2. Nonetheless, this should
not be viewed as a reason to prefer the two-stage PM ap-
proach over the one-stage PM approach, because, in such
networks, the two-stage PM approach cannot be reliable
for relying on the normality approximation.
The ignorance of the inherent correlation between the

within-trial log OR and within-trial standard error in con-
junction with considerable MOD also raises concerns for
the credibility of the results from the two-stage PM ap-
proach, particularly, in networks of small trials with low
event frequency [15, 39]. As already illustrated in Fig. 4,
there is a positive association between the within-trial log
OR and its standard error when the within-trial log ORs
are positive. However, there is a negative association when
the within-trial log ORs are negative, and this pattern was
obvious in networks of small trials with a low event. Stij-
nen et al. [17] noted that a positive or negative association
between within-trial log OR and its standard error would
result in a downward or upward bias in log OR, respect-
ively. In our study, this implication was obvious only for
the basic parameters. As we already mentioned, implying
consistency in the bias for the ‘new versus old interven-
tion’ led to smaller (yet positive) bias when compared with
the bias for the basic parameters.
The flexibility of the one-stage PM approach comes at a

high computational cost as it appeared 10-fold more com-
putationally exhaustive compared with the two-stage PM
approach. Not surprisingly, convergence issues occurred
for the estimation of the NMA log OR in the networks of
small trials and low event frequency only under the one-
stage PM approach. The use of continuity correction
seems to aid the convergence of the two-stage PM ap-
proach for the NMA log OR in this particular scenario.
Nevertheless, both approaches share a common limitation:
the assumption of normally distributed random-effects
which, if deemed inappropriate (e.g. there are outlying tri-
als in the synthesised dataset [15]), may compromise the
validity of the results [17]. Using a simulation study to
compare seven models for random-effects meta-analysis
in the frequentist framework, Jackson et al. [18] demon-
strated that both the binomial-normal (one-stage ap-
proach) and normal-normal (two-stage approach) models
performed poorly overall. The authors suggested alterna-
tive model parameterisations (models 4, 6 and 7, there)

especially when the event is low or there is considerable
statistical heterogeneity according to visual inspection of
the forest plot. Extending these models to incorporate the
pattern-mixture model in the Bayesian framework may be
proper alternatives to the current one-stage and two-stage
PM approaches.
We did not perform sensitivity analysis to different as-

sumptions about the missingness mechanisms in the
compared interventions, as we were interested in investi-
gating the performance of the competing models in the
presence of MOD, rather than inferring on the relative
effectiveness of the compared interventions in the stud-
ied networks. We have investigated the performance of
the competing models assuming MAR, which is the rec-
ommended starting point according to the relevant pub-
lished literature [4, 7, 9, 35, 36]. The competing models
will have the same behaviour regarding their perform-
ance under the same assumption of informative missing-
ness. To raise awareness for good practice in the analysis
of MOD, we advise the researchers to systematically
apply a sensitivity analysis to a series of gradually strin-
gent yet clinically plausible scenarios for the missingness
mechanisms in the compared interventions to investigate
whether inferences deviate from the MAR assumption,
the recommended primary analysis.
Furthermore, in the empirical study, we have not per-

formed a sensitivity analysis to different prior distribu-
tions for the between-trial variance, as we are not
interested in the relative effectiveness of the competing
interventions in the analysed networks but in the per-
formance of the competing models. Our simulation
study revealed that the competing models maintained
their performance under the weakly-informative prior
(Tables S3-S5 in Additional file 1). However, the poster-
ior standard deviation increased in both models, when
compared with the results under the predictive prior
(Tables S7-S9 in Additional file 1), particularly for
scenarios that compromised the approximate normal-
ity assumption, as expected. In the Bayesian analysis,
it is a good practice to consider different plausible
prior distributions for the between-trial variance that
align with the type and frequency of the investigated
outcome as well as the intervention-comparison type.
Then, the researchers can investigate the sensitivity of
conclusions from the primary analysis to different
prior distributions for the between-trial variance. The
recently updated NICE Guide to the Methods of
Technology Appraisal provides recommendations for
selecting the appropriate prior distribution for the
between-trial variance in NMA [40].

Conclusions
The two-stage PM approach is straightforward to imple-
ment for having easier parameterisation, no convergence
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issues, and shorter convergence time as compared to the
one-stage PM approach. Nevertheless, the well-known
statistical shortcomings of this approach that relate to its
approximate normal likelihood assumption and the inabil-
ity to learn about the missingness mechanisms (since the
missingness parameter is fixed rather than estimated) ren-
der this approach less appealing overall for the analysis of
MOD. The one-stage PM approach tackles these limita-
tions, and thus, it may be considered as a more appropri-
ate approach. However, the simulation study failed to
demonstrate the one-stage PM approach as superior due
to considerable bias in the NMA log ORs, especially for
large MOD, which can be slightly lower or similar to the
corresponding bias under the competing approach. Until
a more competent model is developed, we advise the re-
searchers to apply the one-stage PM approach to handle
MOD, especially in situations that make the approximate
normality assumption difficult to defend, provided that
the limitations of this approach (as demystified in the
present empirical and simulation study) are fully acknowl-
edged in the discussion of the NMA results.
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