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Abstract

birth year until the 1960s and then accelerated.

focus preventive strategies appropriately.

Background: Use of generalized linear models with continuous, non-linear functions for age, period and cohort
makes it possible to estimate these effects so they are interpretable, reliable and easily displayed graphically. To
demonstrate the methods we use data on the prevalence of obesity among Australian women from two
independent data sources obtained using different study designs.

Methods: We used data from two long-running nationally representative studies: seven cross-sectional Australian
National Health Surveys conducted between 1995 and 2017-18, each involving 6000-8000 women; and the
Australian Longitudinal Study on Women's Health which started in 1996 and involves more than 57,000 women in
four age cohorts who are re-surveyed at three-yearly intervals or annually. Age-period-cohort analysis was
conducted using generalized linear models with splines to describe non-linear continuous effects.

Results: When analysed in the same way both data sets showed similar patterns. Prevalence of obesity increased
with age until late middle age and then declined; increased only slightly across surveys; but increased steadily with

Conclusions: The methods illustrated here make the estimation and visualisation of age, period and cohort effects
accessible and interpretable. Regardless of how the data are collected (from repeated cross-sectional surveys or
longitudinal cohort studies), it is clear that younger generations of Australian women are becoming heavier at
younger ages. Analyses of trends in obesity should include cohort, in addition to age and period, effects in order to
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Background
In many public health contexts, it is important to be able
to distinguish between age, period, and cohort (APC)
effects as drivers of temporal changes. For example, the
introduction of new laws or taxes to reduce tobacco
smoking would be expected to affect smokers in differ-
ent age groups and different generations at the same
time, that is, to produce period effects. In contrast,
adoption of wearable devices to monitor physical activity
might occur first in younger people, that is, a cohort or
generational effect.

There is ample evidence that the prevalence of over-
weight and obesity is increasing globally [1] and there
are growing concerns about the consequences for the
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health of populations and health care costs in the future.
Yet there is conflicting evidence about whether period
or cohort effects predominate. There is evidence that
younger cohorts are heavier than previous generations in
high income countries such as the United States [2],
United Kingdom [3], and Australia [4] as well as some
middle income countries such as China [5]. In Europe,
however, trends in obesity-attributable mortality exhibit
cohort effects in some countries but not others [6].

The distinctions between APC effects in overweight
and obesity are important for two reasons. Firstly, from
the perspective of prevention, measures that may affect
energy intake across a population (such as changes to
the food supply, through industry regulation or taxation,
or interventions such as dietary guidelines and food
labelling) might be expected to produce period effects.
In contrast, if younger people are affected differently
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from older people, due to lifestyle differences or social
pressures, cohort differences will be apparent and health
promotion activities can be targeted accordingly. The
second reason why it is important to understand APC
effects is to forecast future levels of overweight and
obesity and consequential demands on health services. If
all cohorts are assumed to behave similarly over time
and they do not, the predictions will be misleading.

Despite the global increase in body mass index, com-
mentators in some countries have interpreted the avail-
able data as suggesting that the growth of the population
prevalence of overweight and obesity across age groups
has slowed or even that prevalence has stabilized [7, 8].
These differences of opinion may be due, in part, to how
the data are collected and summarized. For example, if
data from repeated cross-sectional surveys are compared
by age and sex, then generational (or birth cohort)
differences may not be apparent. If the same data were
re-arranged in cohort format, generational differences
may be easier to identify. If longitudinal data are avail-
able from people with a wide age range followed over a
long time, it may be possible to distinguish period effects
from cohort differences.

A challenge in estimating the magnitude of APC
effects is the identifiability problem that occurs because
the year of birth, which defines the generation or cohort,
is linearly related to age at any given observation time or
period, as follows: cohort = period — age. To manage this
problem various constraints are typically used in the
analysis, but different constraints can lead to different
results [9]. More recently, hierarchical generalized linear
mixed models have been advocated to manage the iden-
tifiability problem [10], but there remains controversy
about their ability to accurately distinguish APC effects
[11]. Additionally, most published studies of APC effects
in overweight and obesity have used categorical or a
combination of categorical and continuous variables
with a variety of constraints. Use of numerous categor-
ical variables can be problematic because the large num-
ber of parameters to be estimated results in wide
confidence intervals and lack of reliability. Consequently,
the models may produce inconsistent results, for
example between trends in overweight and obesity [12].
However, if the effects are non-linear then second order
effects are identifiable, though constraints are still
needed to obtain interpretable estimates of the whole ef-
fect [13]. An approach to APC modelling that involves
treating all three variables as continuous and using re-
stricted cubic splines to model non-linear patterns, has
considerable advantages. Estimates for the three compo-
nents can be interpreted individually (with suitable con-
straints on estimates for the other components) and they
can be combined to give predicted rates; each of the
components (adjusted for the others) can be depicted
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graphically; modelling can be extended by the addition
of covariates; and the approach can be broadened to
projection of future rates [14, 15].

In this paper we illustrate the analysis of APC effects
using data on the prevalence of obesity among women
in Australia. The prevalence of obesity can reasonably be
assumed to be driven by gradual changes in the popula-
tion, including lifestyles and food supplies. This makes
use of continuous APC terms particularly appropriate.
We use two data sets from large nationally representa-
tive samples analysed separately: repeated cross-sectional
data from the Australian National Health Surveys since
1995 [16, 17]; and longitudinal data from four cohorts of
participants in the Australian Longitudinal Study on
Women’s Health that commenced in 1996 [18, 19].
Firstly, we present four plots commonly used in cancer
epidemiology to explore APC effects [20]. Secondly, we
fit generalized linear models with continuous variables
for each of the APC effects. Finally, using the models,
we show graphs summarising each of the effects and
discuss how these should be interpreted.

Methods

Data sets

The Australian Bureau of Statistics (ABS) has conducted
seven National Health Surveys (NHS) since 1995 [16,
17]. These are nation-wide cross-sectional surveys each
with 6000-8000 female participants aged 18 years and
over. The surveys conducted in 1995, 2007-08, 2011—
12, 2014-15 and 2017-18 included measured heights
and weights, whereas those in 2001 and 2004-05 had
only self-reported heights and weights.

The Australian Longitudinal Study on Women’s
Health (ALSWH) began in 1996 with the recruitment of
more than 47,000 women in three age groups: women
aged 18-23years (born 1973-73, n=14,247), 45-50
years (born 1946-51, n =13,714) and 70-75 years (born
1921-26, n=12,432). These women were randomly
sampled from the database of the Australian universal
health insurance scheme, now called Medicare Australia,
which includes all residents of Australia. Since then, they
have been surveyed on average every 3 years, initially by
mailed questionnaires and more recently with the option
of online completion of the surveys. Details of the study
methods and representativeness of the samples have
been published elsewhere [18]. In 2013, another cohort
of women then aged 18-23 (born 1989-95, n =17,012)
was recruited using a variety of methods and these
women have been surveyed annually using a web-based
questionnaire [19]. At every survey, women are asked to
report their weight and height. Women who were preg-
nant at the time of completing the survey were asked to
report their pre-pregnancy weight (except for the first
three surveys of the 1973-78 cohort where pregnant
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women’s weight was treated as missing). Height and
weight data were collected over the following periods:
1989-95 cohort, 2013-2017; 1973-78 cohort, 1996—
2018; 1946-51 cohort, 1996-2016; 1921-26 cohort,
1996-2011 (because these items were not asked for
these elderly women after that date. Response and
attrition rates for each survey are available at the study
website http://www.alswh.org.au/.

Measures

From both data sources, body mass index (BMI) was cal-
culated as weight (kilograms) divided by the square of
height (metres). The World Health Organization classifi-
cation was used, namely: underweight BMI < 18.5 kg/m?,
normal weight BMI 18.5-24.99 kg/m? overweight BMI
25-29.99 kg/m?, and obese BMI > 30 kg/m?. In this study,
we focus on obesity because other studies have shown that
excess burden on the healthcare system is largely asso-
ciated with obesity rather than overweight [21].

Statistical methods
The prevalence of obesity for each year of age was calcu-
lated for each ALSWH cohort using information pro-
vided by participants at each survey (i.e., each period).
This means that most ALSWH participants contributed
data at multiple periods. Prevalence of obesity from the
NHS was extracted from age-group and sex specific data
in various ABS publications and summary tables [16,
17]. The NHS data were re-arranged using a Lexis
diagram [20] to create synthetic cohorts centred at ages
comparable with the ALSWH cohort surveys.

For each data set the prevalence of obesity was then
presented in four plots:

a) Prevalence by age for different periods;
b) Prevalence by period for different age groups;
c) Prevalence by age for different cohorts;
d) Prevalence by cohort for different age groups.

If plots a) and b) both show parallel curves this sup-
ports an age-period model and if plots ¢) and d) show
parallel curves this supports an age-cohort model [20].

Based on evidence from these plots, APC models were
fitted using the Stata procedure apcfit described by
Rutherford, Lambert and Thompson [14]. This method
uses a generalized linear model framework with age,
period, and cohort treated as continuous variables. The
number of obese people was modelled using a Poisson
distribution with a log link function (to give rate ratios),
an offset given by log(number of people surveyed), and
functions for age, period, and cohort as the explanatory
variables. This model is based on the assumption that
the observations are independent. This is reasonable for
the NHS data which were from new samples at each

Page 3 of 9

survey. But the ALSWH participants contributed re-
peated observations, so the samples at each age and
period/cohort time are not independent; this could lead
to bias, particularly underestimation of variability.

To obtain functions for age, period and cohort re-
stricted cubic splines are used with transformations to
the spline basis vectors for period and cohort terms [20].
Due to the systematic difference between the NHS self-
reported data on height and weight in the 2001 and
2004-5 surveys and the measured data from the other
surveys, we omitted the former from the modelling.

For each data set models were fitted with terms for: age,
period and cohort; age and period; and age and cohort.
Period effects were estimated relative to the reference year
of 2007, the median year for the ALSWH survey data, and
cohort effects were estimated relative to 1951, the median
year of birth for ALSWH participants. Due to the iden-
tifiability problem for first order effects APC models are
over-parameterised, and for the type of models considered
here three constraints are needed [20]. The choice of con-
straints does not affect the model fit but does affect the
estimates and hence the graphical displays of effects. If, as
for obesity, age is a major unmodifiable factor, the age
function is of primary importance. A linear temporal
change, or drift, can be arbitrarily attributed to either the
cohort function or the period function. The age function
can be represented in two ways:

APC: As age-specific rates for a particular period, after
adjustment for cohort effects;

ACP: As age-specific rates for a particular cohort, after
adjustment for the period effect.

For the APC version the drift is included in the period
function. The period function is set to zero for the refer-
ence date and the period effects are relative risks relative
to that date. The cohort function has both the average and
the slope set to zero and represents a residual relative risk
relative to fitted values for age and period effects. This
model shows the cross-sectional age-specific rates at the
reference year and how the pattern varies over time.

For ACP version the drift is included in the cohort
function. The cohort function is set to zero at the refer-
ence birth year and the cohort effects are relative risks
relative to that year. The period function has both the
average and the slope set to zero and represents a re-
sidual relative risk relative to fitted values for age and
cohort effects. The model can be interpreted as showing
the biological or longitudinal effect of age for the refer-
ence cohort and how this differs across cohorts.

Model fit was assessed using the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC)
— smaller absolute values indicate better fit. The log-
likelihood values and degrees of freedom (d.f.) were also
used to calculate the deviance = (- 2 x the difference in
log-likelihood values for the nested models) and obtain p-
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values using the chi-squared distribution. To assess period
and cohort effects the fit of models without each of these
terms (i.e, models with A + C and A + P) was compared
with the fit of the model with A + P + C. The numbers of
knots for the cubic splines were selected using AIC, BIC
and the following principles: parsimony (using as few pa-
rameters as needed to capture the main features but avoid
overfitting); the same number of equally spaced internal
knots for cohort and period effects so these are treated
symmetrically; and the same number of nodes for both
data set, in order to facilitate comparisons.

Results

Prevalence estimates

Prevalence of obesity among women obtained from suc-
cessive National Health Surveys is shown in Fig. 1. Panel
a) (top left) is the usual form of presentation, namely by
age for each survey. Prevalence increased with age and
then declined with the peak shifting to older ages in
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more recent surveys. It is clear that the self-reported
data tend to systematically underestimate obesity making
data from the 2001 and 2004-5 surveys not comparable
with the other surveys, so these data were not included
in the APC modelling. However, the curves in both
panels a) and b) (top right) are somewhat parallel, pro-
viding some evidence of period effects. Similarly panels
¢) (bottom left) and d) (bottom right) are suggestive of
parallel effects for younger cohorts, but not for older
cohorts, suggesting non-linear cohort effects.

Prevalence of obesity among ALSWH participants is
shown in Fig. 2. Panel c) (bottom left) is the usual form of
presentation for longitudinal data. The four cohorts show
distinctively different patterns. The percentage of obese
women in the cohort born in 1989-95 was much higher
when they were aged 18-23 than in the 1973-78 cohort
when they were the same age. The rates of increase in
obesity were greater for women in the two younger co-
horts than for women born in 1946-51, and prevalence in
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the oldest cohort actually declined. These distinctions are
not clear when the data are presented by age for different
surveys as in panel a) (top left). Nevertheless panel a) does
show the non-linear age effect clearly and the curves are
approximately parallel, increasing with successive surveys.
Similarly the curves in panel b) (top right) show increases
with year of survey, suggestive of period effects. Panel d)
(bottom right) illustrates a limitation of these data, namely
that the time span of surveys is far less than the time span
of years of birth.

In summary, the exploratory analyses show very similar
patterns for the two data sets when the data are displayed
in the same way. In both data sets there are strong non-
linear age effects and some evidence of both cohort and
period effects, both also potentially non-linear. To investi-
gate these effects further, APC models were fitted.

Age-period-cohort models
To describe the non-linear age effect five equally spaced
internal knots were selected. For the period and cohort

effects four knots were needed, again reflecting non-
linearity. The fit of the models is shown in Table 1. For
the smaller NHS data set evidence for either a period or
a cohort effect, is weak and not statistically significant,
whereas for the ALSWH data there is strong evidence of
both effects. For both data sets support for a cohort
effect is more pronounced than for a period effect.
Akaike Information Criterion (AIC), smaller values in-
dicate better fit; Bayesian Information Criterion (BIC),
smaller absolute values indicate better fit; log-likelihood
(smaller absolute values indicate better fit); d.f. is degrees
of freedom; deviance = - 2x (difference in log-likelihood
from A + P + C model) approximately has a chi-squared
distribution with d.f. = (difference in d.f. from the A +
P + C model) = 3 in all cases here; p-value for deviance.
The fitted values from the models with age, period and
cohort effects are shown in Fig. 3 for the NHS data and
Fig. 4 for the ALSWH data. Estimates from the NHS data
are less smooth and the confidence intervals are wider due
to fewer observations. Overall, the patterns in Figs. 3 and
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Table 1 Fit statistics for age—period—cohort models

AlC  BIC Log-likelihood df. Deviance p-value

National Health Survey

A+P+C 9185 —40237 - 161516 25

A+C 9.185 —45.158 —164.512 28 5992 0.112

A+P 9.236 —43.229 - 165476 28 7920 0.048
Australian Longitudinal Study on Women's Health

A+P+C 7275 —1565563 —1194.653 319

A+C 7352 —1551528 —1210378 322 31450 <0.001

A+P 7429 —1525734 —1223276 322 57.246 <0.001

4 are very similar. As expected from Table 1, cohort func-
tions (from ACP models) show more pronounced trends
than period functions (from APC models).

In both Figures panels a) (top left) and b) (top right)
show the results relative to the reference year of 2007
obtained from an APC model, and panels c) (bottom
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left) and d) (bottom right) show results relative to the
cohort born in 1951 obtained from the ACP model.
Figure 3 panel a) shows the age pattern that was appar-
ent in the exploratory plots in Fig. 1, with a gradual in-
crease until about age 60 and then a decline. Figure 3
panel b) shows that even when the drift is included in
the period function (the graph on the right) the function
only increased slightly over time (corresponding to Fig.
1 b) if the 2001 and 2004—5 data were omitted). Figure 3
panel c) shows that for women born in 1951 obesity
prevalence increased markedly with age until about 70
and then declined. The graph on the left in Fig. 3 panel
d) shows that the cohort effect (including drift) in-
creased steadily until the 1960s and then accelerated.

In Fig. 4 the same patterns are apparent. For both
Figures comparing panels a) and c) shows how the usual
cross-sectional plot (panel a) from APC models) masks
cohort differences (panel b) from ACP models) and this
may be of practical importance.
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Discussion

Using data from multiple cross-sectional national surveys
and a national longitudinal study of Australian women, we
have shown substantially the same patterns in the preva-
lence of obesity. Obesity increases with age until late mid-
age and then decreases. Successive generations are in-
creasingly obese. There is less evidence of a period effect,
although this should be interpreted cautiously as the time
span of the surveys (about 20 years) is much shorter than
the time span for years of birth (about 70 years).

One particular contribution of this paper is to illus-
trate a method for estimating APC effects, when they
can reasonably be modelled by continuous non-linear
variables, using explicit assumptions to deal with the
non-identifiability problem. Another is to depict the
results of modelling in a manner that facilitates inter-
pretation. The method can be extended to include co-
variates such as sex and ethnicity and interaction terms
[14], and it can be used for projections [15]. Compared

to other approaches, there are fewer parameters to esti-
mate, changes are modelled as smooth functions of time,
and the same number of parameters can be used for
period and cohort effects so they can be directly com-
pared. Additionally, the method is suitable for relatively
sparse data. From the perspective of obesity research,
the value of this approach is greatly enhanced by the
graphical output that summarises the main effects.

Consistency between results obtained by creating syn-
thetic cohort data from multiple cross-sectional survey
data and longitudinal cohort data has been found before
for the US and UK [22, 23]. Similarly, the age pattern we
identified is consistent with previous findings of increas-
ing BMI with age up to about 70 years followed by a
decline [24]. Furthermore, the importance of cohort
differences has been reported in the United States [2],
United Kingdom [3] and Australia [25].

The higher prevalence of obesity in NHS data compared
to the ALSWH data is to be expected. Firstly, the ALSWH



Dobson et al. BMC Medical Research Methodology (2020) 20:16

data are self-reported and, as can be seen from the NHS
data for the 2001 and 2004—5 surveys, prevalence of obes-
ity calculated from self-reported data tends to be lower
than from measured data. A recent report by the ABS
compared measured and self-reported values for heights
and weights and showed the extent of underestimation of
obesity from calculated BMIL: 21.5% vs. 26.8% for women
in 2017-18, with the difference increasing with age of par-
ticipants but not having changed much since 1995 [17].
Other studies have found that self-reported weight is
underestimated by 0.2—3.4 kg and that the overweight and
obese people tend to underestimate weight more than
healthy weight people [26, 27]. In addition, there was
some over-representation of university educated women
in ALSWH at survey 1 and this bias had increased at sur-
vey 6 [28]. We have shown that higher educational attain-
ment is associated with lower initial weight and BMI, and
less weight gain over time [29].

Finally, we have provided evidence of generational
differences in obesity among Australian women. This
makes future predictions especially uncertain, as the
contributions from future generations is unknown, and
population changes are complex due to immigration,
declining fertility and population aging. From a health
promotion perspective, however, the challenge is to halt
the escalation of BMI in successive generations.

Conclusion

The methods used to model age, period and cohort ef-
fects in this paper can provide valuable insights into the
obesity epidemic. Provided they are presented in the
same way (using Lexis diagrams) population data from
repeated cross-sectional surveys or longitudinal cohort
studies can produce consistent results. Using continuous
variables to describe temporal patterns in the prevalence
of obesity, it is clear that the phenomenon varies with
age, across time (period effect) and across generations
(cohort effect). For example, Australian women born in
1989-95 had higher prevalence of obesity than women
born in 1973-78 when they were the same age. The im-
plication of these findings is that preventive strategies
should take account of generational differences (as well
as socioeconomic and other factors).
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