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Abstract

Background: Population segmentation permits the division of a heterogeneous population into relatively
homogenous subgroups. This scoping review aims to summarize the clinical applications of data driven and expert
driven population segmentation among Type 2 diabetes mellitus (T2DM) patients.

Methods: The literature search was conducted in Medline®, Embase®, Scopus® and PsycInfo®. Articles which utilized
expert-based or data-driven population segmentation methodologies for evaluation of outcomes among T2DM
patients were included. Population segmentation variables were grouped into five domains (socio-demographic,
diabetes related, non-diabetes medical related, psychiatric / psychological and health system related variables). A
framework for PopulAtion Segmentation Study design for T2DM patients (PASS-T2DM) was proposed.

Results: Of 155,124 articles screened, 148 articles were included. Expert driven population segmentation approach
was most commonly used, of which judgemental splitting was the main strategy employed (n= 111, 75.0%). Cluster
based analyses (n =37, 25.0%) was the main data driven population segmentation strategies utilized. Socio-
demographic (n =66, 44.6%), diabetes related (n = 54, 36.5%) and non-diabetes medical related (n =18, 12.2%) were
the most used domains. Specifically, patients’ race, age, Hbalc related parameters and depression / anxiety related
variables were most frequently used. Health grouping/profiling (n =71, 48%), assessment of diabetes related
complications (n =57, 38.5%) and non-diabetes metabolic derangements (n =42, 28.4%) were the most frequent
population segmentation objectives of the studies.

Conclusions: Population segmentation has a wide range of clinical applications for evaluating clinical outcomes
among T2DM patients. More studies are required to identify the optimal set of population segmentation framework
for T2DM patients.
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Background

Rationale and objective

The global disease burden for type 2 diabetes mellitus
(T2DM) is rising, with projected healthcare expenditures
incurred by governments worldwide to exceed U.S.$ 2.3
trillion by 2030 [1]. Despite the advent of new drug ther-
apeutics and improvement in diabetic care processes,
the management of T2DM remains suboptimal and it
remains one of the leading causes for non-traumatic
lower extremity amputations, blindness and end-stage
renal disease requiring renal replacement therapy [2].

With the rising prevalence of T2DM and its associated
healthcare costs, the development and delivery of health-
care models from a population health perspective are be-
coming increasingly relevant. Population health refers to
“the health outcomes of a group of individuals, including
the distribution of such outcomes within the group” [3].
Within the field of population health analytics, popula-
tion segmentation forms an important pillar where a
data-driven segregation approach applied to a heteroge-
neous population cohort can generate meaningful and
relatively homogenous sub-groups with similar health-
care needs [4]. This in turn allows healthcare adminis-
trators to navigate large and complex databases
efficiently and synthesize essential patient factors which
contribute to the health related outcome of interest such
as healthcare utilization [5].

There are two distinctive approaches to population
segmentation which are namely expert-driven and data-
driven approaches. The derivation of patient segments
using expert-driven approach is pre-determined by an
expert panel (e.g. judgemental splits or prescribed bin-
ning criteria), while data-driven approaches perform spe-
cialized statistical techniques such as latent class analysis
(LCA) on a dataset to derive the patient segments [6].
An example of an expert-driven framework is the “Brid-
ges to Health” model which divides a patient population
into eight segments comprising of patients without
health issues to dying patients with rapid deterioration
[7]. It has been suggested as an aid to guide the planning
and allocation of healthcare resources tailored for each
patient segment [7]. On the other hand, data-driven ap-
proaches have been used to profile patient segments by
their healthcare utilization and clinical outcomes. An ex-
ample is a study by Yan et al. which utilized LCA to
identify six classes of primary care utilizers with differen-
tial healthcare utilization and mortality [8].

Among T2DM patients, data-driven population seg-
mentation methodologies have also been leveraged to
identify subgroups of patients with differential risk of
diabetes related complications, healthcare utilization and
clinical trajectories in large administrative patient data-
bases [9]. A study by Jiang et al. identified four unique
profiles of patients where patients in the “high morbidity
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/ moderate treatment” group was shown to have the
highest rates of inpatient admissions, all-cause health-
care costs and risk for diabetic nephropathy progression
[10]. Another study by Karpati et al. derived three clus-
ters of patients with differing Hbalc trajectories, where
patients in both increasing and decreasing Hbalc trajec-
tory clusters were to have higher prevalence of micro-
vascular and macrovascular complications [11].

While reviews have summarized the applications of
use-based [10] and healthcare needs based population
segmentation [5] among general patient populations,
there is no review which has evaluated the clinical appli-
cations of population segmentation among T2DM pa-
tients. It is important to note that T2DM patients form
a high-priority target patient population as the compre-
hensive coverage and optimization of diabetes care in-
volve a constellation of psychosocial, economic and
demographical determinants, and requires a multi-
pronged approach ranging from disease maintenance to
prevention of its complications. Notably, care models
designed for T2DM often serve as a model for the man-
agement of other chronic diseases. Coupled with the
high prevalence of T2DM and its implications on the de-
velopment of multi-organ complications, this makes
T2DM patients highly amendable to reap the benefits of
population segmentation so as to optimise patient out-
comes. Hence, we aim to summarize the literature on
the clinical applications of population segmentation
among T2DM patients.

Methods

A scoping review was conducted for studies which ap-
plied the use of population segmentation techniques
among T2DM patients and was reported using the Pre-
ferred Reporting Items for Systematic review and Meta-
Analysis extension for Scoping Reviews (PRISMA-ScR)
checklist [12].

Protocol and registration

The protocol for the search strategy was registered on
Open Science Framework (https://doi.org/10.17605/osf.
io/ay6uc).

Eligibility criteria and information sources

The literature search was performed in Medline’,
Embase®, SCOPUS® and PsycInfo’. We included peer-
reviewed studies in English language which applied data-
driven or expert-driven approaches population segmen-
tation among adult patients (age > 18 years old) with
T2DM. We excluded studies that included patients with
type 1 diabetes mellitus or maturity onset diabetes of the
young, as well as articles that were not in the English
language. Randomized controlled trials, cross-sectional,
case-control, cohort and record linkage studies were
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included. Case studies, case series, meta-analyses and
other reviews were excluded. In situations where the
subtype of diabetic patients studied was not clearly spe-
cified, we contacted the authors of the study for clarifi-
cations. The search was current as of September 2019.
As this review did not include human subjects, institu-
tional review board approval was exempted.

Search, selection of sources of evidence, data charting
process and data items

The search terms included concepts and strategies uti-
lized to segregate patients in population segmentation
which were adapted from a review by Yan et al. [10],
and key T2DM related terms. The details of the full
search strategy are listed in Supplementary File 1. A
pilot exercise for the screening of articles was performed
by two independent reviewers (SJJB and AM) for the
first 200 records (based on title and abstract). Thereafter,
the same reviewers screened the titles and abstracts of
all retrieved articles. After a second pilot exercise to
screen the first 20 full-text articles, the full-texts of iden-
tified articles were evaluated by SJJB and AM independ-
ently for inclusion in the review. All disagreements in
the inclusion process were discussed to reach a consen-
sus. In the event that discrepancies could not be re-
solved, discussion with a third independent reviewer
(YHK) was performed. Hand-searching of references in
included articles was conducted.

The references and abstracts identified from the litera-
ture search were pooled in EndNote X9 software, which
was utilized to remove the duplicated references. The re-
moval of duplicated references was performed using the
automated function in Endnote X9 and manual screen-
ing thereafter. Screening of the title, abstract and full-
text was performed using a standardized Microsoft Excel
spreadsheet which contained checkboxes for each inclu-
sion and exclusion criteria. Conflicts during the screen-
ing process were automatically flagged by the software,
using formulas embedded within the spreadsheet. All
members of the research team involved in the screening
of articles were trained to use the screening form.
Thereafter, data of included articles were extracted inde-
pendently by the two reviewers into a separate standard-
ized Microsoft Excel spreadsheet. This information
included the study’s title, publication year, sample size
and characteristics of patient population, objectives of
population segmentation, variables used for segmenta-
tion of patients, number/categories of patient segments
derived and funding sources. In addition, the funding
sources of included studies were extracted and reported,
as per recommendations from AMSTAR-2 [13]. The full
list of variables collected are reported in Supplementary
Files 2 and 3.
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Critical appraisal of individual sources of evidence
Critical appraisal of the risk of bias for included studies
was not performed as this was not the objective of this
scoping review.

Summary and synthesis of results

Descriptive statistics were used to summarize the char-
acteristics of included studies which encompassed the
study design, population, segmentation methods and
variables used. The results were tabulated or presented
in graphical charts to map the literature. A narrative
summary of the population segmentation methodologies
and variables used was presented. The segmentation
methods identified from each study were mapped into
two key themes - data-driven and expert-driven ap-
proaches [14]. Prescribed binning and judgemental split-
ting are examples of expert-driven population
segmentation strategies. Prescribed binning utilizes a set
of “off-the-shelf” binning rules, which are pre-
determined by experts to divide a patient cohort into
pre-defined segments [14]. On the other hand, judge-
mental splitting segregates patients based on one or
more explanatory variables, which is determined by the
judgement or documented experiences of healthcare
practitioners or experts [14]. With regards to data-
driven strategies, they can be grouped into decision trees
and cluster-based segmentation [14]. Decisions trees
utilize an objective classification strategy where patients
are divided at successive decision nodes containing the
explanatory variables and mimic the extension of
branches in a tree [14]. An example is Breiman’s Classi-
fication and Regression Tree (CART) model which em-
ploys a binary recursive partitioning algorithm on the
covariate space of a patient cohort [15]. Lastly, cluster
based segmentation refer to a group of unsupervised
modelling methods such as k-means and LCA which
seeks to identify homogenous subgroups within a
population.

Variables used for population segmentation were
mapped into five broad domains which encompassed
socio-demographic, diabetes related, non-diabetes med-
ical related, psychological or psychological related and
healthcare systems related variables.

Proposed framework for design of population segmentation
studies for T2DM patients (PASS-T2DM)

A proposed framework, PopulAtion Segmentation Stud-
ies design framework for T2DM patients (PASS-T2DM),
was constructed using population segmentation variables
and outcomes identified from the review. The study de-
sign framework was divided into three phases: 1) Selec-
tion of study design; 2) Selection of population
segmentation outcomes and population segmentation
variables and 3) Evaluation of segments generated. The
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approaches to selection of study designs for population
segmentation studies were divided into data-driven and
expert driven approaches. The advantages and disadvan-
tages of the approaches were listed in Supplementary
File 4. With regards to the population segmentation var-
iables, variables identified were categorized into three
categories which were namely: Category A: important
and accessible variables; Category B: important variables
that are relatively accessible and Category C: important
variables that may not be readily accessible. The deriv-
ation of these categories factored in the level of accessi-
bility and importance of the variables where a variable is
important is determined by its clinical relevance and
need/usefulness in diabetic care as assessed by existing
literature and expert opinion. The relative level of acces-
sibility was determined from a health system perspective.
The selection and assignment of variables to each cat-
egory was discussed among population segmentation ex-
perts (LLL, TCS, JT) and endocrinologist (SBZ) within
the team. All disagreements were resolved via further
discussion to achieve consensus. With regards to the
evaluation of segments generated, important criteria uti-
lized commonly in consumer market segmentation and
a review by Yan et al. was adapted for use [10, 16]. They
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were namely number of patient segments, internal and
external validation, identifiability and interpretability,
substantiality, stability and actionability. (Definitions in
Supplementary File 5).

Data availability statement
All data analyzed in this study are included within the
published article and its supplementary information files.

Results

Selection of sources of evidence

Figure 1 shows the flowchart for inclusion and exclusion
of articles. After the exclusion of duplicated and irrele-
vant articles and, inclusion of 17 articles from hand-
searching, a total of 148 articles were included in this re-
view. The overall percentage of agreement between SJJB
and AM during the screening of articles was 89.2% and
all disagreements were resolved after discussion. De-
tailed information on the characteristics of individual
studies is reported in Supplementary File 4. Thirty-seven
studies (25%) received partial or full funding by private
organizations while 47 studies (31.8%) were not funded.
(Supplementary File 3). The remaining studies (n =64,
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g Records identified through database search (n = 155.124)
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Table 1 Characteristics of included studies (n = 148)
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Table 1 Characteristics of included studies (n = 148) (Continued)

Characteristics of studies N (%) Characteristics of studies N (%)
Year of study Adult diabetics (across all age ranges) 137 (92.6)
Before Year 2000 3(20) Elderly (= 65 years old) 8 (54)
Year 2000-2010 32 (21.6) Young (< 40 years old) 2014
Year 2011-2020 113 (764) Women with singleton pregnancy 1(0.7)

Continent of study Study setting (Healthcare)?
Asia 58 (39.2) Primary 40 (27.0)
Europe 40 (27.0) Tertiary 68 (45.9)
North America 40 (27.0) Mixed 10 (6.8)
Australia 3(20) Not applicable or not specified 30 (20.3)
South America 3 (2.0) Data source
Cross-continents 4(2.7) Primary 70 (47.3)
Country of study Secondary 76 (514)
USA 33 (22.3) Mixed (Primary and Secondary) 2014
China 17 (11.5) @ — There were no studies performed in secondary healthcare settings
Italy 11 (74) .

43.2%) were funded by governmental agencies, profes-
Canada 6 (41) sional organizations and/or research foundations.
Netherlands 6 (4.1)

Korea 6 (4.1) Characteristics of sources of evidence

Singapore 5(34) Table 1 shows the characteristics of the studies included
Australia 320 in the review. Majority of the studies were cor}ductgd
Hong Kong 407) between 2011 and 2019 (n =113, 76.4%) and in Asia

(n =58, 39.2%), Europe (n =40, 27.0%) and North Amer-
Japan 4(27) ica (n =40, 27.0%). Among these continents, the United
Multi-countries 534 States of America (USA) (n=33, 22.3%) [10, 17-47],
Others 48 (324) China (n=17, 11.5%) [48-63] and Italy (n=11, 7.4%)

Study design [64—-73] were the three countries with the highest num-
Cross-sectional study 92 (62.1) ber of studies. The two most common study designs

employed were cross sectional studies (=92, 62.1%)
Cohort study 50 (33.8) . P

and cohort studies (n = 50, 33.8%). Most studies included

Prospective cohort study 210420 fewer than 5000 patients (1 = 101, 68.2%).
Retrospective cohort study 29 (19.5) With regards to the subgroups of T2DM patients stud-
Record linkage study 2(14) ied, adult T2DM patients (without age restriction)
Prospective record linkage study 107) formed the most studied population (7 =137, 92.6%).
Retrospective record linkage study 107 Eight studies (5.4%) focused on elderly "FZDM patients
Randomized controlled trials 407) (=65 years old) [24, 30, 32, 62, 74-77] while two studies
(1.4%) [78, 79] focused on young T2DM patients (<40
Patient population years old). Majority of the studies were conducted in ter-
<500 3729 tiary healthcare settings (1 = 68, 45.9%) and utilized sec-
501-1000 21 (14.2) ondary data sources (1 =76, 51.4%).
1001 = 5000 43 (29.1)
5001 — 10,000 104 Synthesis of results

Population segmentation strategies utilized in studies
10,001-50,000 17 (11.5) . . .. .

Figure 2 shows the details pertaining to population seg-
>0,001-100,000 7 @47) mentation strategies employed. Expert-driven population
100,001-500,000 9(6.1) segmentation was the most common approach utilized
500,000 - 1000,000 2(14) (n =111, 75.0%) where all studies employed judgemental
> 1000,000 107) splits as the main strategy. With regards to data-driven

Type 2 diabetes subgroups

population segmentation studies, cluster-based segmen-
tation was the main strategy used (n=37, 100%), of
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which cluster analysis (=15, 40.5%) and LCA (n=12,
32.4%) were most frequently used.

Segmentation variables used

Table 2 shows the variables used for population segmen-
tation. Across the five main domains of variables uti-
lized, socio-demographic (n = 66, 44.6%), diabetes related
(n =54, 36.4%), non-diabetes medical related (n =18,
12.2%) and psychiatric/psychological related variables
(n =16, 10.8%) were the most frequently utilized across
studies. A total of 85 types of variables from 45 subdo-
mains were utilized as population segmentation vari-
ables. A graphical overview of the common subtypes of
population segmentation variables used was presented in
Fig. 3. Within the domain of socio-demographic related
variables, the use of race/ethnicity (n=17, 11.5%) [23,
25, 36-38, 40, 44, 45, 79-86], patient’s age (n =16,
10.8%) [26, 33, 39, 43, 45, 51, 88-97], gender (n=12,
8.1%) [41, 56, 67, 72, 79, 92, 94, 97-100] and obesity/
weight related (n =7, 4.7%) [17, 49, 58, 59, 102—104] var-
iables were most commonly studied.

Within the domain of diabetes related variables, Hbalc
related (n = 14, 9.5%) [11, 67, 74-76, 103, 118-124, 126],
diabetes related complications (n =13, 8.8%) [10, 26, 30,
50, 54, 57, 68, 127, 129-133] and diabetes treatment re-
lated (n=7, 4.7%) [10, 26, 31, 69, 134—136] variables
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were the most commonly utilized variables for popula-
tion segmentation.

With regards to the domain of non-diabetes medical
related variables, chronic kidney disease (n=6, 4.1%)
[10, 26, 56, 65, 68, 132], hypertension (n =5, 3.4%) [71,
102, 149, 150], and cardiovascular disease related (n = 3,
2.0%) [50, 51, 102]. Pertaining to the domain of psychi-
atric / psychological related variables, depression/anxiety
related (n =9, 6.1%) [21, 27, 29, 35, 42, 46, 154—156] and
other psychiatric disorders/symptoms related (n=5,
3.4%) [22, 35, 42, 62, 131] variables were most com-
monly employed. Lastly for the health systems related
domain, types of healthcare utilization (n =2, 1.4%) [160,
161] and type/specialty of care providers (n=2, 1.4%)
[64, 77] related variables were most frequently used.

Objectives of population segmentation strategies and
number of derived segments

Health grouping/profiling (n =71, 48%), assessment of
differential risk of diabetes related complications (# =57,
38.5%), non-diabetes metabolic derangements (e.g. lipids
and blood pressure) (1 =42, 28.4%) and diabetes control
(n =40, 27.0%) were the most frequent population seg-
mentation objectives of the studies. (Table 3) The num-
ber of patient segments derived ranged from one to ten
segments, of which two to four segments (n=119,

Factor analysis, 1, 1%

Hierarchical cluster analysis, 2,
1%
Latent class growth analysis, 5,
3%

Latent class analysis, 12, 8%

Cluster analysis, 15, 10%

By patients' clinical
characteristics, socio-
demographic and/or economic
attributes, 2, 1%

By patients’ lifestyle habits, 5,
4%

By patients' socio-demographic
and/or economic attributes, 46,
31%

\ Y

Cluster based
Segmentation
25%

2 There were no studies which employed prescribed binning criteria or decision trees for population segmentation of T2DM patients.

Fig. 2 Population segmentation strategies employed in studies (n = 148) *

N
Group-based trajectory
modelling analysis, 1, 1%

Growth Curve Mixture
modelling, 1, 1%

By patients’ clinical
characteristics, 58, 39%

Judgemental
Splitting
75%




Seng et al. BMC Medical Research Methodology (2021) 21:49

80.4%) were most commonly derived number of seg-
ments. (Fig. 4).

PASS-T2DM framework

Figure 5 shows the proposed PASS-T2DM framework,
which comprises of three phases: 1) Selection of study
design; 2) Selection of population segmentation out-
comes and variables and 3) Evaluation of segments gen-
erated. For Phase 2, there is generally no preferred order
for the selection of population segmentation outcomes
and variables. One exception lies in the use of CART
which requires the segmentation outcome to be deter-
mined beforehand. For other methodologies, concurrent
selection of segmentation variables and outcomes may
be performed at the user’s discretion. Examples of com-
monly utilized segmentation outcomes for consideration
include health profiling of patients or assessment of pa-
tients’ differential risk of T2DM related complications.
For segmentation variables that were classified as “Cat-
egory A: important and accessible variables”, these in-
cluded patient’s age, gender, race / ethnicity, Hbalc
levels, diabetes related complications, presence of non-
psychiatric and psychiatric comorbidities. These vari-
ables were selected after careful evaluation of their clin-
ical importance and relative accessibility. Additionally,
they were among the most commonly used segmenta-
tion variables across studies.

Discussion

Summary of evidence

Overall, this scoping review has summarized the clinical
applications of population segmentation strategies
among T2DM patients. To our best knowledge, this is
also the first review which evaluated the clinical applica-
tions of population strategies for T2DM patients and
proposed a framework for the design of population seg-
mentation studies for T2DM patients.

As shown in the review, a multitude of population seg-
mentation strategies encompassing both data-driven and
expert-riven population segmentation approaches have
been utilized among T2DM patients. Importantly, each
methodology carries its inherent advantages and disad-
vantages [10, 14, 16, 163]. The main merit of judgemen-
tal splitting, which is the most studied expert-driven
methodology is its simplicity of use, where a patient
population is divided into segments based on one or
more explanatory variables [14]. Conversely, one of its dis-
advantages is non-objectivity, where the discriminatory
properties of the target variable have not been actively
sought [14]. Furthermore, the use of certain population
segmentation variables may lead to excessive number of
segments, which may have inadequate discriminatory
properties [14]. For cluster based analysis which was the
main data-driven population segmentation analyses
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employed, its chief advantage lies in its ability to manage
multiple types of population segmentation variables,
which can be continuous or categorical in nature [163,
164]. However, certain cluster based analyses techniques
such as hierarchical analyses and k-means cluster analyses
are affected by outliers [163]. In this review, there were no
studies which have utilized decision trees analyses or pre-
scribed binning criteria for the segmentation of T2DM pa-
tients. Future studies should consider the use of these
strategies to evaluate their potential role in segmentation
of T2DM patients. Currently, the optimal population seg-
mentation methodology for T2DM patients has not been
established. As such, researchers should be cognizant of
the advantages and disadvantages of each population
segmentation methodology when selecting an appro-
priate technique for their studies. Additional factors
that should be considered during the selection
process include the type of population segmentation
variables to be used, the properties of the dataset, re-
search questions and level of technical and statistical
expertise of the researchers [165].

With regards to population segmentation variables
used in T2DM studies, 85 sub-groups of variables were
identified in our review. Given the wide array of popula-
tion segmentation variables available, potential computa-
tion challenge exists when processing large number of
segmentation variables and observations during the im-
plementation of population segmentation strategies.
Hence, careful selection and screening of variables needs
to be performed to achieve a balance between number
of patient segments derived and sufficient discriminatory
properties from the derived segments. In the PASS-
T2DM framework, variables which included patient’s
age, gender, race / ethnicity, Hbalc levels, diabetes re-
lated complications, presence of non-psychiatric and
psychiatric comorbidities e.g. hypertension, chronic kid-
ney disease, anxiety and depression were classified as
Category A variables which correspond to variables that
are of high clinical importance and relative accessibility.
Of note, these variables were also the most frequently
utilized segmentation variables across included studies
for the review.

Within the domain of socio-demographic variables,
age is a well-recognized driver of the global rise in dia-
betes [166] and T2DM among older adults have been as-
sociated with increased mortality, poorer functional
status and risk of hospitalisation [167]. On the other end
of the spectrum, there is also a growing epidemic of
early-onset T2DM among young adults, which has been
attributed to complex interplay of lifestyle and genetic
factors such as sedentary lifestyles and obesity [168]. For
example, the SEARCH study showed that the incidence
of T2DM among young people increased by 7.1% be-
tween 2002 and 2003 and 2011-2012 in the United
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Table 2 Variables utilized for population segmentation analyses (N = 148)

Variables N? Selected examples References

Socio-demographic 66

Race and/or ethnicity

Patients’ age

17

16

Young: < 45 years old, Older: > 45 years old

[23, 25, 36-38, 40,
44, 45, 79-87]

[26, 33, 39, 43, 51,
87-97]

Gender 12 [41, 56, 67,72, 79,
92,94, 97-101]
Obesity / weight related 7
- Body mass index / obesity 6 [17,49, 58, 59,
102, 103]
- Waist circumference 1 [59]
- Weight change over time 1 (104]
Lifestyle factors 6
- Level / patterns of physical activity 4 [20, 32, 57, 105]
- Lifestyle patterns 3 Morningness-eveningness, sleep quality, Consumption of food, alcohol  [20, 106, 107]

and cigarettes [106]

Dietary factors / patterns 6 eg.intake of coffee, high fat dietary pattern score [57,108-112]
Education related 4
- Level of literacy 2 [48, 107]
- Level of health literacy 1 18]
- Verbal intelligence 1 Groningen Intelligence Test [113] [113]
Economic related factors 4
- Household income 2 [48, 114]
- Socio-economic status of patients 1 [115]
- Employment status 1 [107]
Smoking 4
- Current smoking status 3 [20, 34, 57]
- Smoking duration 1 [107]
Alcohol consumption 1 [57]
Citizenship (immigrant / non-immigrant) 1 [116]
Living in Northern vs Southern latitudes 1 [117]
Marital status 1 [107]
Diabetes related 54
Hbalc related 14
- Hbalc level 7 [74,76,103, 118~
121]
- Patterns, trends and trajectories 6 [11, 75, 122-125]
- Hbalc variability 2 [125, 126]
Diabetes related complications 13
- Presence of albuminuria 4 [26, 54, 68, 127]
- Presence of complications e.g. 3 [10, 50, 128]
cardiometabolic, microvascular diseases
- Presence of diabetic retinopathy 2 [129, 130]
- Severity of albuminuria 1 (54]
- Presence of diabetic nephropathy 1 [130]
- Severity of diabetic neuropathy 1 [131]
- Severity of diabetic kidney disease 1 [132]
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Table 2 Variables utilized for population segmentation analyses (N = 148) (Continued)

Variables N? Selected examples References
- Severity of diabetes related complications 1 [133]
- Medically attended hypoglycemia 1 [30]
Diabetes treatment related 7
- Types of anti-diabetic agents used 5 [10, 26, 69, 134,
135]
- Dose of anti-diabetic agents 1 [136]
- Adherence to anti-diabetic agents 1 [31]
Other laboratory parameters 5
- Presence / levels of islet cells auto-immune 4 [66, 103, 137, 138]
antibodies levels
- Glucose-dependent insulinotropic 1 [70]
polypepide (GIP) and glucagon like peptide-1
(GLP-1)
Age at T2DM diagnosis 5 [60, 78, 93, 103,
139]
Diabetes related risk factors 5
- Number of risk factors 3 Clinical risk groups [52, 140, 141]
- Total metabolic score 2 [61, 142]
Fasting plasma glucose 3
- Variability of fasting plasma glucose levels 3 [55, 73, 143]
- Mean fasting plasma glucose levels 2 [73,143]
Duration of T2DM 4 [103, 120, 144,
145]
Subtypes of T2DM 1 Ketosis prone T2DM or previously diagnosed T2DM with diabetic [146]
ketoacidosis [146]
Status of T2DM at cancer diagnosis 1 Insulin resistant /insulin sensitive [24] [24]
Characteristics of T2DM 1 Ketosis [134]
Severity of diabetes distress 1 17-item Diabetes Distress Scale scores [147] [147]
Presence of metabolic disorder 1 (10l
Reasons for not participating in diabetes related 1 [148]
progam
Non-diabetes medical related factors 18
Chronic kidney disease 6
- Severity of chronic kidney disease 4 [26, 65, 68, 132]
- Presence of chronic kidney disease 2 [10, 56]
Hypertension related 5
- Blood pressure control, variability 2 [149, 150]
- Presence of hypertension 1 [102]
- Presence of resistance hypertension 1 [71]
- Number of anti-hypertensive agents 1 [71]
Cardiovascular related 3
- Number of cardiovascular risk factors 1 [50]
- Presence of atherosclerosis 1 [51]
- Echocardiographic variables 1 [102]
Physical function status related 2
- Physical functional status 1 [151]
- Frailty 1 [152]
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Table 2 Variables utilized for population segmentation analyses (N = 148) (Continued)

Variables N? Selected examples References
Laboratory related parameters 2

- Blood biochemistries / full blood count 1 [26]

- Low-density lipoprotein (LDL) levels 1 [63]
Comorbidities of patients (overall) 1 [128]
Overall medication usage 1 [26]
Severity of pain 1 [131]
Microaneurysm turnover and for the central 1 [153]
retinal thickness

Psychiatric or psychological related factors 16
Depression or anxiety related 9

- Presence and severity of depression and 3 [42, 154, 155]

anxiety symptoms

- Severity of depression 3 [21, 35, 42]

- Presence of depression 2 [27,156]

- Patterns of depression 1

Persistant depressive symptoms, new depressive symptoms, remitted [29]

depressive symptoms, no or few depressive symptoms [29]

- Severity of anxiety symptoms 1 [46]
Other psychiatric disorders / symptoms related 5
factors

- Presence of sleep disturbance, fatigue 2 [42,131]

- Number of psychiatric conditions 1 [22]

- Severity of psychiatric symptoms 1 Brief Psychiatric Rating Scale score [35]

- Cognitive status 1 [62]
Health related quality of life 3 [118, 131, 157]
Patient perceptions related factors 2

- lliness perception 1 [158]

- Perceived self-efficacy 1 [35]

- Perceived social support 1 [35]
Personality traits differences 1 [159]

Healthcare systems related 6
Type of healthcare utilization 2 [160, 161]
Type or specialty of care provider 2 [64, 77
Hospital admission 1 [53]
Frequency of emergency department 1 [162]

presentation

Abbreviations: N Number of studies

*The number of unique studies were reported for the subtotals within and for each domain (in bold) to avoid double counting of studies

States [169]. Unsurprisingly, studies which have employed
age as a population segmentation variable were able to gen-
erate patient segments with differential risk of diabetes re-
lated complications, diabetes control and cardiovascular
risk profiles [51, 88, 89]. With regards to the role of gender,
sexual dimorphisms related to pathophysiological mecha-
nisms of T2DM and its complications have been gaining
interest in the recent years [170]. Gender differences in the
clinical presentation of T2DM and risk of diabetes related
complications have been postulated to involve a multitude

of biological, cultural, lifestyle, environmental and socio-
economic factors [170]. For example, a study by Logue
et al. showed that diabetic men tend to be diagnosed at an
earlier age and lower body mass index as compared to
women [171]. Conversely, diabetic women tended to have
higher risk of stroke related mortality when compared to
their male counterparts [172]. For ethnicity, it has been im-
plicated in the development of T2DM related lower ex-
tremity amputations and microvascular complications,
where higher rates of these complications have been
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Fig. 3 Overview of variables used in population segmentation
.

Non-diabetes related

« Chronic kidney disease

* Hypertension related

« Cardiovascular related

« Laboratory parameters related

reported among minority ethnic groups [173]. The use of
gender and ethnicity as segmentation variables have simi-
larly generated distinctive patient segments with varying
risk of diabetes related outcomes [25, 67, 80, 98].

With regards to diabetes related variables, Hbalc is a
well-established measure of glycaemic control and has
been shown in the Diabetes Control and Complications
Trial (DCCT) to be quintessential for prevention of dia-
betes related complications [174]. In studies which seg-
mented patients based on Hbalc levels, patients with
poorer glycaemic control were consistently shown to have
increased risk of diabetes related complications [76, 118].
A variant of this measure, Hbalc variability and its rela-
tionship with diabetic complications has been increasingly
studied although there have been conflicting results [175].
While a recent study showed a positive correlation be-
tween increased Hbalc variability and all-cause mortality
[176], a post-hoc analysis from the DCCT trial showed no

association between glycaemic variability and developing
adverse clinical outcomes [177]. Consequently, researchers
who are designing population segmentation studies should
consider the use of Hbalc variability for exploratory pur-
poses until more evidence supporting its use emerges. For
diabetes related complications, their association with mor-
bidity and mortality, as well as their resultant impact on
healthcare resource consumption and economic burden
are well-established and recognized [9]. In studies where
patients were segmented by the presence or severity of
diabetes related complications, distinct patient segments
were derived with differing healthcare utilization, mortal-
ity and morbidity [9, 133].

Pertaining to non-diabetes medical related and psychi-
atric/psychological related domains, the presence of co-
morbidities such as hypertension, chronic kidney disease,
depression and anxiety are common and often result in
additional financial and psychological burden on patients
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Table 3 Objectives of population segmentation

Characteristics of studies N (%)

Objective of segmentation

Health grouping or profiling 71 (48.0)
Assess risk of diabetic related complications across groups 57 (38.5)
Assess non-diabetes metabolic derangements (e.g. lipid, blood pressure) across groups 42 (284)
Assess diabetic control across groups 40 (27.0)
Assess healthcare utilization 17 (11.5)
Assess mortality 16 (10.8)
Assess treatment outcomes 10 (6.8)
Assess quality of life across groups 4(2.7)
Assess psychological symptoms across groups 3(20)
Assess risk of psychological outcomes across groups 320
Asses treatment adherence 3(2.0)
Assess accessibility to providers and healthcare services 1(0.7)
Assess cognitive related outcomes across groups 1(0.7)
Assess physical function across groups 1(0.7)
Assess obesity rates across groups 1(0.7)
Assess pregnancy related outcomes 1(07)

6 - 10 segments, 11,
7%

>10 segments, 2, 1%

5 segments, 16, 11%
2 segments, 51, 35%

4 segments, 36, 24%

3 segments, 32, 22%

Fig. 4 Number of patient segments derived within included studies
S J
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|
Phase 1: Data-driven --  Weigh advantages --- Expert-driven
Selection of and 2
N [ of methods" |
study design
Cluster analysis Decision trees Judgemental splits Prescribed binning criteria”
E.g. E.g. E.g. E.g.
e  k-means e CART e By clinical . ‘Bridges to Health’
. latent class algorithm variables model
analyses . Simple . By demographic . Electronic Frailty Index
decision characteristics
T
Selection of segmentation outcomes
|
Common outcomes (non-exhaustive)
. Health grouping / profiling
Diabetes related / cardiovascular complications
. Diabetes control and treatment outcomes
. Healthcare utilization
. Psychological outcomes (e.g. quality of life)
1
Selection of segmentation variables
Domains Socio-demographic Diabetes related Non-diabetes Psychiatric / Health system based
medical related Psychological
Phase 2:
Selection of
population Category A . Age . Hbalc . Comorbidities Psychiatric -
sel . . Race/ethnicity . Diabetes related (Hypertension, comorbidities (e.g.
gmentation - L N .
. Gender complications chronic kidney anxiety, depression)
] (e.g. diabetic discase,
variables Important and nephropathy) cardiovascular
accessible variables . Fasting plasma disease)
glucose
Category B . Weight / BMI . Use of anti- . Laboratory Presence of . Type of
. Education diabetic agents related psychiatric healthcare
. Income . Duration of parameters (e.g. symptoms (e.g. utilization
. Smoking status T2DM LDL levels) sleep disturbances) . Hospital
Important variables . Alcohol . Age at admissions
that are relatively consumption diagnosis of . Specialty of
accessible T2DM service provider
. Frequency of ED
admissions
Category C . Lifestyle habits . Diabetes . Functional Patient perceptions -
. Dietary habits distress severity status of of illness, self-
patients efficacy, social
. Medication support
Important variables usage Health related
that may not be quality of life
readily accessible Personality trait
differences
Evaluation of segments generated®
Phase 3: .
Evaluation of e Number of patient segments
segments . Internal and external validation
generated . Identifiability / Interpretability
. Substantiality
. Stability
. Actionability

Abbreviations: CART - Classification and Regression Tree, LDL — low density lipoprotein

* — Refer to Supplementary File 4

"~ No prescribed binning criteria tailored specifically for T2DM patients have been designed. Suggested examples were derived from

models used in general patient populations.

¢ — Refer to Supplementary File 5 for definitions

Fig. 5 Population Segmentation Studies design framework for T2DM patients (PASS-T2DM)
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[178]. Notably, these comorbidities may have profound
impacts on the self-care ability of patients. For example,
depression often results in significant impairment of pa-
tients’ functioning and may present as barriers to adher-
ence to lifestyle modifications and treatment regimens
[179]. Managing the healthcare needs of T2DM patients
with varying types of multi-morbidities is challenging
and there is a need for changes in the health system to
meet the needs of these patients. Population segmenta-
tion is a valuable endeavour which can segregate T2DM
patients into more manageable patient segments, to fa-
cilitate the design of targeted interventions.

As seen from this review, population segmentation has a
wide range of clinical applications, ranging from health
group profiling to assessing the differential risk of diabetes
related complications and mortality. This highlights the
versatility of population segmentation and its applications.
With the rising use of electronic health records in big data
analytics, future population segmentation studies may
wish to leverage on the recent advancement in big data by
streamlining and tailoring their study designs to popula-
tion segmentation variables and outcomes which are read-
ily available in the electronic health records or can be
easily incorporated into electronic health records at rou-
tine clinical care touch points between patients and
healthcare providers to reduce the burden placed onto
healthcare professionals [5].

In this review, we identified 148 studies which have uti-
lized data-driven and expert-driven population segmenta-
tion strategies to identify subgroups of T2DM patients
with differential health related outcomes or healthcare
utilization patterns. The main strength of this review was
that the proposed PASS-T2DM framework provides a
simple overview for future researchers to design popula-
tion segmentation studies for T2DM patients.

Limitations

However, users of this framework should also be
cognizant of its potential limitations. The segmentation
variables included within the framework were restricted
to those evaluated across included studies and should
not be regarded as an exhaustive list. Researchers plan-
ning to utilize variables outside the list should evaluate
these variables carefully prior to their inclusion. In
addition, this highlights the need for more studies to ex-
plore the role of other potentially useful population seg-
mentation variables not listed in the framework such as
medication compliance rates. Furthermore, while the
proposed framework in our study had categorized popu-
lation segmentation variables on the basis of their rela-
tive clinical importance and accessibility, the optimal set
and combination of population segmentation variables
which is context specific for the different aims of popu-
lation segmentation remains unclear. Nonetheless, our
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review serves as an important foundation for future re-
searchers to evaluate and determine the optimal set of
population segmentation variables that should be used.
With regards to other limitations related to this review,
the grey literature was not searched, which could have
led to omission of potentially relevant articles. Future re-
views which plan to update this topic should consider
searching grey literature. Another limitation was that
non-English articles as well as studies which included
children or adolescents with T2DM were excluded.
Lastly, a formal assessment of the methodological limita-
tions of the evidence was not performed as it was not
the objective of this study. Nonetheless, researchers con-
ducting future systematic reviews to evaluate specific
population segmentation methodologies should evaluate
the risk of bias of included studies [180]. This will aid in
identifying the optimal combination of population seg-
mentation variables to be used for each methodology.

Conclusion

Population segmentation methodologies via data-driven
or expert-driven approaches are important tools that can
aid policymakers and healthcare administrators in evalu-
ating a wide range of outcomes among different sub-
groups of T2DM patients, ranging from health profiling
to assessing the differential risk of diabetes related com-
plications. While a large number of population segmen-
tation variables have been used in literature, the optimal
combination of population segmentation variables to be
used remains unknown and should be explored in future
studies. The proposed PASS-T2DM framework for the
design of population segmentation studies will serve as
an important guide for researchers to structure and de-
sign population segmentation studies for T2DM patients
until the optimal framework has been established. More
studies are required to explore the role of population
segmentation variables not listed in the framework.
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