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Abstract

Background: Estimation that employs instrumental variables (IV) can reduce or eliminate bias due to confounding.
In observational studies, instruments result from natural experiments such as the effect of clinician preference or
geographic distance on treatment selection. In randomized studies the randomization indicator is typically a valid
instrument, especially if the study is blinded, e.g. no placebo effect. Estimation via instruments is a highly developed
field for linear models but the use of instruments in time-to-event analysis is far from established. Various IV-based
estimators of the hazard ratio (HR) from Cox’s regression models have been proposed.

Methods: We extend IV based estimation of Cox's model beyond proportionality of hazards, and address estimation
of a log-linear time dependent hazard ratio and a piecewise constant HR. We estimate the marginal time-dependent
hazard ratio unlike other approaches that estimate the hazard ratio conditional on the omitted covariates. We use
estimating equations motivated by Martingale representations that resemble the partial likelihood score statistic. We
conducted simulations that include the use of copulas to generate potential times-to-event that have a given
marginal structural time dependent hazard ratio but are dependent on omitted covariates. We compare our approach
to the partial likelihood estimator, and two other IV based approaches. We apply it to estimation of the time
dependent hazard ratio for two vascular interventions.

Results: The method performs well in simulations of a stepwise time-dependent hazard ratio, but illustrates some
bias that increases as the hazard ratio moves away from unity (the value that typically underlies the null hypothesis). It
compares well to other approaches when the hazard ratio is stepwise constant. It also performs well for estimation of
a log-linear hazard ratio where no other instrumental variable approaches exist.

Conclusion: The estimating equations we propose for estimating a time-dependent hazard ratio using an IV perform
well in simulations. We encourage the use of our procedure for time-dependent hazard ratio estimation when
unmeasured confounding is a concern and a suitable instrumental variable exists.
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Background

Confounding is a threat to all observational studies. The
factors that influence the outcome of interest may also
influence the selection of treatment. In randomized stud-
ies, intention-to-treat estimators are generally consistent
estimators of the intention-to-treat effect but are not con-
sistent estimators of the treatment effect. Instrumental
variables (IV) influence treatment choice but otherwise
have no effect on the outcome (exclusion restriction) and
are independent of any other causes of the outcome (ran-
domization assumption).

Estimation of treatment effects using instrumental vari-
ables for outcomes subject to right censoring has received
the attention of many applied and several theoretical stud-
ies. Stukel et al. [1] proposed an ad-hoc estimator of the
hazard ratio (HR) based on a linear model. MacKenzie
et al. [2] proposed a hazard ratio estimator that assumes
omitted covariates have an additive effect on the hazard
. Tchetgen et al. [3] proposed an estimator of an additive
hazards model based on two stage residual inclusion. They
also argue that if the survival curve is close to unity (e.g.
above 80%) for most of the followup that their additive
hazards approach can be used as a good approximation of
the multiplicative hazards approach. Li et al. [4] proposed
a consistent estimator of a treatment satisfying an additive
hazard model. Martinussen et al. [5] derived a consistent
estimator for a structural Cox model. Martinez-Camblor
et al. [6] identified the role of frailties in estimation of the
hazard ratio via the two-stage residual inclusion algorithm
if the treatment and omitted covariate jointly satisfy a Cox
model. Wang et al. [7] derived an estimator of the marginal
hazard ratio using a binary instrument.

The proportionality of hazards is a key assumption in
estimation of the hazard ratio. Many test statistics have
been proposed to test this assumption and estimate the
hazard ratio as a function of time. The most simple
approach to moving beyond proportionality of hazards
is a piecewise constant function. The next most sim-
ple is a linear function of time. In this paper we extend
the IV based estimator of the HR we proposed in 2014
MacKenzie et al. [2] beyond proportionality of hazards.
We propose a method of estimating the HR as a time-
dependent function. We address two cases, (a) a piecewise
constant HR and (b) a log-linear time dependent hazard
ratio. We conduct Monte Carlo simulations that include
the use of copulas to generate potential times-to-event.
We demonstrate this method for time-dependent hazard
ratio estimation to compare the effect of two vascular
interventions on survival.

Methods

Marginal structural Cox proportional hazards model
MacKenzie et al. [2] implemented a Cox proportional
hazards model for the effect of treatment on the
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time-to-event that is marginal with respect to any omit-
ted covariate. The term marginal is used to mean that
if the treatment is applied independently of the omitted
covariate, the distribution of the time-to-event condition-
ing only on the treatment satisfies a Cox PH model, which
we now elaborate on.

Let {S,} be the survival curve of the potential outcomes
(time-to-event) if subjects receive level x of the expo-
sure. In what follows we shall assume X is binary, e.g.
0 (no treatment) or 1 (treatment), although the methods
described below are applicable to a continuously valued
exposure. The structural Cox model is given by S,(¢) =
So(0)ePBx+t and it is usually written in terms of the
hazard function,

At;x) = Ao(2) - exp {Bx - x},

where Ag(t) is the baseline hazard function. For any
covariate, U, which also affects the time-to-event, let
Sx(-; u) be the survival curve for the potential time-to-
event if a subject receives level x conditional on U = u.
The marginal structural Cox proportional hazards model
supposes that

Eu [S:(5 w)] = / Se(ts WdFu(w) = S:(0)

= So ()P} forall > 0

and exposure levels x,

where Fj; stands for the distribution function of U on
the studied population. The alternative to the marginal
model is a conditional model that specifies a structural
form for the conditional distribution given both the expo-
sure X and omitted covariate U (e.g. multivariable Cox
PH model). Due to non-collapsibility of Cox’s model [8],
the marginal model that corresponds to this multivariable
Cox model is not a Cox PH model.

Specifying that the marginal model is a Cox PH model
has the following advantages. First, it makes no paramet-
ric assumption about how the omitted covariate U affects
the distribution of the time-to-event: We allow for the
possibility that the omitted covariate has a causal effect
on the outcome without specifying a parametric model.
Second, it does not require interpreting the treatment
effect as conditional on a variable that is unknown (the
omitted covariate). Third, this is the convention used
in the reporting of randomized trials: It is unusual to
analyze randomized trials using models that control for
omitted covariates (such as Cox’s model with frailty), and
the convention has been not to condition on measured
characteristics either [9].

Time dependent hazard ratio
Proportionality of hazards is equivalent to a hazard ratio
that does not vary over time. A constant hazard ratio
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can be a simple and good approximation, just as a linear
model may be chosen when there is evidence of some non-
linearity. On the other hand there are times when the haz-
ard ratio varies considerably and attention is focused on its
time dependence. For instance, surgery may be associated
with increased risks up front compared to endovascular
procedures. There is a large literature on estimation of the
hazard ratio as a function of time including smoothing
splines [10], regression splines [11] or penalized regres-
sion splines [12] among other techniques.

Time-to-event, exposure and instrument

Suppose the observed data consists of independent and
identically distributed observations, {W;,X;, A;, T;}7
where W; is the instrument (1 < i < n) and X; is
the exposure level (either binary, ordinal or continuous).
A; = lT’p<Ct and T; = min(T?,C,') are the event indi-
cator and observed followup time respectively where T?
is the focus of interest, the time-to-event, and C; is the
censoring time. We assume that the potential censor-
ing times {C;j(x)}x=0,1 are independent of the potential
time-to-events { Ti0 (%) } (x=0,1] °

An instrument is defined by the following properties:

1. Itis associated with the exposure (W L X).
2. It satisfies the following two restrictions:

(a) There is no effect of the instrument on the
outcome except through its effect on the
exposure.

(b) There are no confounders of the instrument
and the outcome.

The latter two statements can be summarized as the
potential outcomes are independent of the instrumental
variable, {To(x)} (w=0,1) 1 w.

To satisfy Assumption 1 the instrument may either be
causal (i.e. it affects treatment choice) or non-causal (it is
an effect of a variable that also affects exposure). Assump-
tions 2(a) and 2(b) are often combined by stating that
conditional on X, the outcome and instrument are inde-
pendent. The instrument, W, may be continuous, ordinal
or binary.

For each subject there is one potential stochastic pro-
cess {N;(t;x),R;(t;x)};>0, for each possible level of x
where R;(¢; %) is the at risk indicator 17,(y)>;, and N;(¢; x)
is the counting process 17,<;. Let R;(£) = R;(t;X;) and
N;(t) = Ni(£; X;).

In studies of instrumental variables another assumption
that is typically introduced is homogeneity of the treat-
ment effect and monotonicity of the effect of the instru-
ment. In usual applications homogeneity of the treatment
effect is the assumption that the effect is same for different
levels of the omitted covariate, i.e. there is no interaction
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of the effect of the treatment and the omitted covariate.
In the marginal model an estimate of the treatment effect
will depend on the value of the omitted covariate. We do
not specify the effect of the omitted covariate; we avoid
this parameterization as the method we propose below
relies on a first order linear approximation of the hazard
in terms of the omitted covariate.

Another frequently addressed assumption in studies of
instrumental variables is monotonicity of the effect of
the instrument on the treatment. It assumes that in all
subjects the instrument is positively associated with the
treatment; for instance, the derivation of the complier
average causal effect is dependent on it. In this study
we make the monotonicity assumption, Pr[X > x|W =
wil > Pr[ X > x|W = wq] if w; > wy for all «.

Estimating equations for a time dependent hazard ratio

Let Ay(t) be the hazard function corresponding to
survival in the population were all subjects in that
population exposed to level x of the exposure, i.e.,
A(t) = —dSi(t)/Sx(t) which can also be written
E[dN;(t; x)|R;(t;x) = 1]. We suppose that, at time ¢, the
marginal (e.g. population) causal effect of having been
exposed to level 1 relative to level 0 of the time-varying
binary treatment X(#) is a change in the log-hazard of

Bx (®):
21(2) = exp{Bx (@)} - Lo(2). (1)

Further, suppose that the time dependent log-hazard ratio
is parameterized by Bx(t0). For instance, one simple
parameterization is Sx(t;0) = 6p + 01 - £.

If there is no selection bias, i.e. X is independent of any
omitted covariate, U, the difference

t
N;i(@) — /0 Ri(v) - exp{Bx (v) - Xi}d Ao(v),

which is known as a Martingale residual (Kalb eisch and
Prentice [13]), has an expected value of zero and is inde-
pendent of X (Ao(v) = fg Ao(s)ds). This implies that

t
E [Xi . (Ni(t) - / R;(v) - exp{Bx(v;0) 'Xi}dAO(V)>:|
0
=0 Vt>0.

Moreover,
t
E |:f0 @) - X;i - (dAN;(v) — Ri(v) - exp {Bx (v; 0) - Xi} dAo(v))] =0

for any real function ¢ (-).
This equation suggests that an estimator of Bx(¢;6) is
that Bx (¢; 6) for which

0= Xn: /OZ o) - X; - [dNi(v) —Ri(v) - exp {ﬁx(v;e) ~Xi} dAo(v)}
i=1

2)
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where 7 is a suitably large point of time (e.g. maxj<;<x{t:}),
K is the dimension of the parameter 6 = (01, - - ,6x) and
{dr(t) }f: ; are suitably selected real functions. These func-
tions should be chosen to minimize the variance of the
resulting estimator which motivates the choices ¢ (t) =
9Bx(t;0)/006k.

As Ag(t) is unknown we propose to solve for it using the
estimating equations

n t
0=)" [Nxt)— /O Ri(v) - exp { Bx(30) - X} dAo(v)] 3)
i=1

for all £ which is solved by the Breslow estimator (Lin [14])

2im1 ANi(V)

dAo(v) = A .
YA Ri) - exp {Br(vi0) - X}

(4)

Substitution of (4) into (2) yields the score equations for
the partial likelihood (Cox [15]) for a time-dependent
hazard ratio (Abrahamowicz et al. [11]). That is, the esti-
mating equations (2) are equivalent to the method of max-
imum partial likelihood estimation of a time-dependent
hazard ratio. If X is endogenous (confounded), then X; is
not necessarily independent of the Martingale residual

t
N;(t) — /0 Ri(v) - exp {Bx(v;0) - X;} dAo(v)

and therefore the estimating Eq. (2) are biased.

If W is an instrumental variable then it is approx-
imately independent of the counting process condi-
tional on X, or equivalently, the IV is independent
of the Martingale residual. A heuristic justification
starts by writing the causal hazard function condi-
tional on an omitted covariate U that affects both the
treatment and the time-to-event. We approximate the
causal hazard function by a linear Taylor expansion,
E[dN;®)IR;(t) = 1] = exp{Bx (v;0) - Xi}dAo(v) + ¢ U
—uy(t)] where py(¢) is the expected value of the omitted
covariate among people at risk at time . Then equating to
zero the correlation of the instrument with the counting
process leads to the following estimating equation 6,

0= ;fo W - %ﬂx(\/ﬂ) [N = R - exp { B 36) - Xi| Ao )]

(5)

If we substitute the Breslow estimator for Ag(v) into the
latter equation it results in the estimating equation

i Wj - Ri(v) - exp {Bx (v;6) - X}

0=Z/0 o) - | Wi = T
i=1

> Ri(v) - exp {Bx(v;0) - Xj}
j=1

dN;(v).

(6)
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If the time-dependent function is constant, i.e. Bx(v;0)
equals a scalar 0 this is the same estimating equation
proposed in MacKenzie et al. [2].

IV estimation for piecewise proportional hazards

In applications, categorization of follow-up time is favored
as an approach to assessing time-dependence of the haz-
ard ratio because of its simplicity. For instance, one can
make statements such as, in the first month the hazard
ratio was 1.5 but after one month was 0.5. The time-frame
is categorized into intervals {ti_l,ri}fi pfor0 = 19 <
71 < ... < tx = t and within each window the hazard
ratio is assumed to be constant, Bx(¢;0) = 6; for 7;_1 <
t < 1;. The partial likelihood estimator of a step function
time dependent hazard ratio is equivalent to applying the
partial likelihood estimator of the proportional hazards
model within each time window. For instance, to estimate
the hazard ratio in the interval [ 1;_1, 7;) exclude all sub-
jects eliminated from risk before time t;_; and censor
any events after time 7; (1 < i < K). For this piecewise
constant hazard ratio the IV based estimator proposed
in (6) is equivalent to applying the IV based method of
MacKenzie et al. [2]. The R function supplied in that paper
can be used accordingly to implement this approach for
each time window (https://github.com/toddamackenzie/
Instrumental-Variable-Hazard-Ratio-Estimation).

IV estimation for linear time dependent log hazard ratio

Any parameterization of the hazard ratio could be
implemented with the instrumental variable estimating
equations we propose. We chose to illustrate the approach
using a log-linear time-dependent model of the hazard
ratio, Bx(t;0) = 6p+0; -t. In this parameterization exp{6p}
is the hazard ratio at inception and exp{6;} is the multi-
plicative change in the hazard ratio per unit time. The two
parameters 6y and 0; can be estimated using the equations

> Wi - Riv) - exp { Bx(v;6) - X;}

o= ["|wi-"= dNi), (7)
=170 ;R,»(t»exp{ﬁx(v;ewxf}
=

and

> Wi Ri(v) - exp {Bx (%) - X}

n T =
0:2/0 v | Wi —
i=1

R0 exp {06 - X))
£

dN;(v),

(8)

respectively.

Monte Carlo simulations

We evaluated the behavior of the estimating equations we
propose in (6) under two scenarios for the marginal time-
dependent hazard ratio; i) a three piece constant hazard
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ratio, and ii) a log linear time-dependent hazard ratio. In
the first scenario, the estimation method is equivalent to
applying the approach of MacKenzie et al. [2] in early,
middle and late follow-up settings, and that is how we
implement and report the results. These simulations are
novel in that the 2014 paper did not consider estimation
of the hazard ratio later in follow-up, such as where the
survival curve dips below 75%. Because a much greater
proportion of the study will have either experienced the
outcome event or been censored by that time, it is reason-
able to expect that the performance of the method could
differ over this time-period compared to the early follow-
up period. For the log-linear function of time we consider
arange of intercepts and a range of slopes. Specific details
follow.

Comparators

In addition to evaluating the bias of our estimator for
the stepwise constant and log-linear hazard ratio mod-
els, we evaluate the performance of the partial likelihood
estimator. For the stepwise hazard model, because it is a
proportional hazards model in each of the three periods,
we also evaluate the performance of two other estimators
designed for proportional hazards. First, we have evalu-
ated the approach of Wang et al.[7] which estimates the
hazard ratio for a marginal structural model like ours.
Because Wang et al’s approach is designed for a binary
instrument, we dichotomize the continuous instrument of
our simulations at the median. Second, we have evaluated
the performance of the estimator of Martinez-Camblor
et al. [6] which estimates the hazard ratios of a Cox
model for the multivariable effect of the treatment and
the omitted covariate; that is, it conditions on the omitted
covariate.

Simulation methods

We have conducted extensive simulations to evaluate the
bias of the estimator we propose. Our simulation uses
a copula to generate times-to-event that depend on an
omitted covariate and treatment in such a way that the
marginal distribution of the potential outcomes, treated
and untreated, satisfy a model with the specified time-
dependent hazard ratio. The settings and parameter val-
ues for the simulation are listed in Tables 1 and 2.

The steps of the simulation are:

1. Randomly generate the bivariate random variable,
(Yo, Y1), from a bivariate copula., i.e. Yy and Y7 are
uniformly distributed but not independent.

2. Let the omitted covariate be the standard normal
deviate obtained as U = ®~1(Yp).

3. Randomly generate a continuous instrument, W,
from the standard normal distribution.

4. Randomly generate a binary exposure indicator X
using a logistic link with intercept of zero (yields

Page 5 of 11

Table 1 Simulation Variables: ®(-) is the cumulative distribution
functions for the standard normal distribution and £ is the
cumulative distribution function for the time-to-event that has
log-hazard of B4, B2, B3 in periods 1,2 and 3 respectively

Variable Symbol Generation

Correlated Uniform Yo, Y1) ~ copula(p)

Marginals

Omitted Covariate U o1 (Yp)

Instrumental Variable W ~N(0,1)

Potential Outcome if To —log(Yo)

not Exposed

Potential Outcome if T FTW )

Exposed

Exposure X PriX=1]=
logistic
(ayxU + ey W)

equal proportions of treated and untreated) and log
odds ratios, ay and ayy, for the association of W and
U respectively.

5. Obtain potential time-to-events T'(0) = —log(Yp)
(unit exponential distribution) and T'(1) = F; L)
where F) is the cumulative distribution function
whose hazard equals the specified time-dependent
hazard ratio

6. Right censor the times-to-event using a uniform
distribution whose scale is set to achieve the specified
censoring rate.

In our Monte Carlo simulation the confounding (endo-
geneity) is created by (i) setting the omitted covariate as
a monotonic function of the potential outcome under no
treatment, which is correlated with the potential outcome

Table 2 Parameters are constant within a dataset but vary
between datasets

Value Set
(—10g(10), log(10))
(log(2),109(50)
0.50,0.99

Element

log Odds Ratio U vs X: ey
log Odds Ratio W vs X: aryx

p: correlation of copula

Copula family Gaussian, Clayton, Gumbel

Stepwise log Hazard Ratio Period 1 84 [—In(3),—In(3) +
log(6)/24,..., In(3)]

Stepwise log Hazard Ratio Period 2 B, [—1In(3),—In(3) +
log(6)/24,..., In(3)]

log-linear HR intercept [-1,-08,..., 1]

log-linear HR slope over time [-0.5,—04,...,05]

Sample size of each dataset 1000

Censoring frequency 0.50

Number of events 500

Before each dataset is constructed the parameters above are randomly drawn with
equal probability from the value set
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under treatment (as controlled by the bivariate copula
using either Pearson or Kendal correlations of 0.50 or
0.99) and (ii) randomly generating the treatment indicator
based on the omitted covariate (as well as the instrument).
Therefore, the level of confounding by the omitted covari-
ate is controlled by a single parameter, the odds ratio,
exp(ayx) relating U (the untreated time-to-event trans-
formed to have a standard normal distribution) to X. For
instance, if a;;x = O there is no confounding. Before the
generation of each dataset it was randomly drawn from
a Uniform distribution on the interval log(1/10), log(10).
Values above log(5) were considered positive confound-
ing, and values below —log(5) were considered negative
confounding.

The stepwise constant time-dependent hazard ratio
took values as specifed in Table 2. For each simulated
dataset we randomly sampled with replacement from
these grids for the early, mid and late follow-up hazard
ratios. The early corresponded to approximately that time
period up to which survival curve was above 90%, the
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middle 90% down to 75%, and late survival of 75% or less.
The log-linear time-dependent hazard ratio was gener-
ated based on the randomly drawn intercept and slope as
specified in Table 2.

Complete R code is available at:
https://github.com/toddamackenzie/Instrumental-
Variable-Hazard-Ratio-Estimation, for users interested in
conducting the same simulations.

Simulation results for early, mid and late estimators of the
HR

Figure 1 shows the results of the simulations when the
instrument is strong, which we defined as an odds ratio
between the treatment and the instrument that exceeds
5. Each red point represents the median of over 1000
maximum partial likelihood estimates of the stepwise haz-
ard ratio. The partial likelihood estimators are clearly
subject to bias from confounding, which decreases as
follow-up increases. Each black point represents the
median of over 1000 estimates using the instrument and
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Fig. 1 Simulation Results for estimating three-piece time-dependent hazard ratio when the instrument is strong: The nine panes represent each
combination of early, mid and late follow-up, with (/) strong positive confounding, (/i) no confounding and (iii) strong negative confounding. Each
pane overlays scatterplots of the median estimated bias versus the true hazard ratio, our IV based estimator in black, the standard Cox MPLE in red,
the estimator of Wang in green and the estimator of Martinez-Camblor et al. in blue. Each point represents the median of over 1000 estimates

obtained from that many randomly generated datasets
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estimating equations we propose. The green and blue
points represent the median of the distribution of the esti-
mators of Wang et al. [7] and Martinez-Camblor et al.
[6]. The instrumental variable based estimator we pro-
pose is unbiased as an estimator of the marginal hazard
ratio in each of the three periods, with a slight tendency
toward bias by confounding for large and small hazard
ratios; that is, the magnitude of the bias increases as the
HR moves away from null and in the direction opposite
of the confounding. The estimators of Wang et al. [7] and
Martinez-Camblor et al. [6] demonstrate similarity and
slightly better accuracy.

The bias was affected by the strength of the instrument;
for each doubling of the odds ratio between the treatment
and the instrument, the bias reduced by approximately
5%. Figure 2 shows the results restricted to instruments
for which the odds ratio between treatment and instru-
ment was less than 5. The results are similar to those
reported for the scenario of a strong instrument. The bias
of our estimator did not vary with respect to choice of cop-
ula, or the correlation between the treated and untreated
potential outcomes (results not reported).
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Simulation results for log-Linear time dependent HR
Figure 3 shows the results of the simulations for estima-
tion of the log-linear hazard ratio. The top row demon-
strates that the intercept term of the log-linear hazard
ratio is estimated with very little bias using the instru-
mental variable estimating equation we propose (blue
points represent median of over 1000 estimates from that
many simulated datasets), unlike the maximum partial
likelihood estimators (points in red). Results from the esti-
mation of slope parameter of the log-linear hazard ratio
are found in the bottom row, which again show that the
IV based estimating equation we propose yields unbi-
ased estimators (blue points), unlike the partial likelihood
estimator (in red) with the exception that the IV based
estimator of the slope is biased when the true slope is zero.
The estimators of Wang et al. [7] and Martinez-Camblor
et al.[6] are not designed for log-linear estimators or any
time-dependent hazard ratio beyond piecewise constant.

The simulation findings did not change with respect
to the choice of the copula, the correlation between the
treated and untreated potential outcomes, or the strength
of the instrument.
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Fig. 2 Simulation Results for estimating three-piece time-dependent hazard ratio when instrument is weak: See Fig. 1 caption for details
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Fig. 3 Simulation Results for Estimating a Log-Linear Time Dependent Hazard Ratio: The top 3 panes represent estimation of the intercept
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Real-world application
We illustrate our method to address a comparative effec-
tiveness question in patients with carotid stenosis. We use
data from the nationwide Vascular Quality Initiative, VQI,
(http://www.vascularqualityinitiative.org) to compare the
composite outcome of death or stroke following inter-
vention between those undergoing endarterectomy (CEA)
and those undergoing carotid stenting (CAS). The data
consists of 73,312 patients who received CEA and 12705
who received CA during the years 2003-2016. The num-
ber of events was 8,005 of which 730 occurred in the first
30 days, 2498 in months 1 through 12 and 4,777 after the
first year. This example has been previously considered
by Columbo et al. [16]. Figure 4 (top) shows the Kaplan-
Meier estimates for the survival curves on both the CEA
and the CAS groups.

The population of patients who undergo CEA may not
be the same as those who undergo CAS, and therefore

any estimator of comparative efficacy may be biased by
confounding. Therefore we utilize an instrumental vari-
able approach. The instrument we employ is the center
level relative frequency of CEA versus CAS procedures
over the 12 months prior to the current patient. A value
of zero indicates that the patient received the surgery in
a facility which during the prior 12 months, has not per-
formed CEA. The validity of this instrument is argued in
Martinez-Camblor et al. [17]. Figure 4, bottom, depicts
the instrument’s distribution (histograms at left and box-
plot at right) in both groups.

Figure 5 shows estimates of the hazard ratio as a func-
tion of time. The left panel contains the partial likeli-
hood estimators of the stepwise constant hazard ratio and
the log-linear hazard ratio. After consulting with physi-
cians and a visual inspection of the Kaplan-Meier sur-
vival curve, we chose the cut-offs of 1 month (30 days)
and 6 months. In the first month the partial likelihood
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estimate of the hazard ratio comparing CEA to CAS
is 0.46 (95%CI: 0.39 to 0.54), while it is 0.55 (95% CI:
0.48 to 0.62) in months 2 through 6, and considerably
closer to unity thereafter at 0.75 (95%CI: 0.71 to 0.82).
The corresponding estimates based on our instrumen-
tal variable approach are similar in the first interval, 0.44
(95%CI: 0.31 to 0.61), although the confidence interval
is wider as expected for IV based estimators. The IV
based estimator of the hazard ratio in the middle inter-
val is closer to unity, 0.66 (95%CI: 0.50 to 0.88). The

estimator in the final interval is 0.77 (95%CI: 0.65 to
0.91).

The model for the hazard ratio as a log-linear func-
tion of time indicates the same pattern of the hazard
ratio moving toward unity as time progresses. Both the
partial likelihood estimator and the IV based estimator
indicate the hazard ratio begins at approximately 0.5 but
the IV based estimator reaches unity earlier. The observed
results at both early and late follow-up were quite close
in the standard and proposed methodologies suggesting



MacKenzie et al. BMC Medical Research Methodology (2021) 21:56

Page 10 of 11

1.2

Hazard Ratio

w0

i I T T 1
1 6 12 24 36

Months

Partial Likelihood Estimation

Fig. 5 Hazard Ratios Comparing Risk of Stroke or Death Between CSA and CEA: The left pane shows partial likelihood estimators of a 3 piece
time-dependent constant hazard ratio (steps at 1 and 6 months, in a dashed line) and a log-linear time-dependent hazard ratio (solid line). The pane
on the right shows the corresponding estimators based on the instrumental variable we proposed

IV Estimating Equations

N o
—
— —
o
=
o v
® ™~ o
o ©
=
©
™
©
i I
b
o

i I T T 1
1 6 12 24 36

Months

that, in average, the potential covariates affecting the sur-
vival have a minor impact on the effect of the treatment.
Between the first and six months, the difference is around
20% indicating that in this period some omitted covariates
spuriously enhance the observed effect of the treatment.

Discussion

We have proposed a method for using instruments in the
estimation of time-dependent hazard ratios. The frame-
work is general enough to accommodate any param-
eterization for a time-dependent hazard ratio. Like
maximum partial likelihood estimation of Cox’s propor-
tional hazards model it does not require a parameter-
ization of the baseline hazard. We have illustrated our
approach using two forms for a time-dependent hazard
ratio, (i) a piecewise constant hazard ratio and (i) a log
linear function of time.

Our approach focuses on time-dependent hazard ratios
that are marginal with respect to the omitted covari-
ate. That is, just like estimators of treatment effects in
randomized studies, the model we employ does not explic-
itly condition on the omitted covariate although it is
motivated by a linear approximation of a hybrid haz-
ard function in which the dependence on the omitted
covariate is additive and the dependence on treatment and

the observed covariates is multiplicative. Our approach is
analogous to estimators of population averaged parame-
ters such as generalized estimating equations. We encour-
age analysts to estimate both marginal models like ours
and models that condition on the omitted covariate. A dis-
advantage of the conditional model is that it conditions on
intangible characteristics, that is unmeasured characteris-
tics, that somehow affected the treatment selection.

We conducted extensive simulations to evaluate our
estimator of the piecewise hazard ratio and the log-
linear hazard ratio. For the former, which reduces to a
proportional hazards model for any of the time win-
dows (in which the hazard ratio is constant) we com-
pared our approach to the partial likelihood estimator,
the approach of Martinez-Camblor et al. [6] and the
approach of Wang et al. [7]. For the log-linear hazard ratio
model, we compared our approach to the partial likeli-
hood estimator. The simulations indicated our estimator
of a piecewise hazard ratio has some bias toward the null
which is comparable to the bias of Martinez-Camblor
et al. [6] and Wang et al. [7]. Our simulations indicate
our estimator of the log-linear hazard ratio has little
bias, especially in comparison to maximum partial likeli-
hood estimation when confounding by omitted covariates
is present.
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While we do not address it, this method generalizes
readily to multivariable models without much additional
complexity. That is, measured covariates can be incorpo-
rated into the model.

The method we propose has some notable limitations.
We do not believe it is a consistent estimator because we
derived our estimating equations by substituting for the
baseline hazard the Breslow estimator without justifica-
tion of why this is the ideal estimator using an instrumen-
tal variable. In addition, it is based on an approximation
of the hazard as an additive function of the omitted
covariate.

We believe our estimator can be improved by utilizing
inverse probablity weighting in our estimating equations.
In particular, like the approach of Wang et al. [7] and
Huling et al. [18] one should weight the subjects at risk at
any time ¢ using the instrumental variable to make those
subjects at risk generalizable to the entire population, i.e.
those at risk at time ¢ = 0, at which time the instrument is
orthogonal to the omitted covariates.

Conclusion

The estimating equations we propose for estimating a
time-dependent hazard ratio using an IV perform well
in simulations. We encourage the use of our procedure
for time-dependent hazard ratio estimation when unmea-
sured confounding is a concern and a suitable instrumen-
tal variable exists.
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