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Abstract

Background: Previous research has shown that chronic disease case definitions constructed using population-
based administrative health data may have low accuracy for ascertaining cases of episodic diseases such as
rheumatoid arthritis, which are characterized by periods of good health followed by periods of illness. No studies
have considered a dynamic approach that uses statistical (i.e., probability) models for repeated measures data to
classify individuals into disease, non-disease, and indeterminate categories as an alternative to deterministic (i.e.,
non-probability) methods that use summary data for case ascertainment. The research objectives were to validate a
model-based dynamic classification approach for ascertaining cases of juvenile arthritis (JA) from administrative
data, and compare its performance with a deterministic approach for case ascertainment.

Methods: The study cohort was comprised of JA cases and non-JA controls 16 years or younger identified from a
pediatric clinical registry in the Canadian province of Manitoba and born between 1980 and 2002. Registry data
were linked to hospital records and physician billing claims up to 2018. Longitudinal discriminant analysis (LoDA)
models and dynamic classification were applied to annual healthcare utilization measures. The deterministic case
definition was based on JA diagnoses in healthcare use data anytime between birth and age 16 years; it required
one hospitalization ever or two physician visits. Case definitions based on model-based dynamic classification and
deterministic approaches were assessed on sensitivity, specificity, and positive and negative predictive values (PPV,
NPV). Mean time to classification was also measured for the former.

Results: The cohort included 797 individuals; 386 (48.4 %) were JA cases. A model-based dynamic classification
approach using an annual measure of any JA-related healthcare contact had sensitivity = 0.70 and PPV = 0.82. Mean
classification time was 9.21 years. The deterministic case definition had sensitivity = 0.91 and PPV = 0.92.

Conclusions: A model-based dynamic classification approach had lower accuracy for ascertaining JA cases than a
deterministic approach. However, the dynamic approach required a shorter duration of time to produce a case
definition with acceptable PPV. The choice of methods to construct case definitions and their performance may
depend on the characteristics of the chronic disease under investigation.

Keywords: Administrative data, Classification, Discriminant analysis, Longitudinal analyses, Juvenile arthritis

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: lisa.lix@umanitoba.ca
3Department of Community Health Sciences, Rady Faculty of Health Sciences,
University of Manitoba, S113-750 Bannatyne Avenue, R3E 0W3 Winnipeg, Canada
Full list of author information is available at the end of the article

Feely et al. BMC Medical Research Methodology          (2021) 21:105 
https://doi.org/10.1186/s12874-021-01296-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-021-01296-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lisa.lix@umanitoba.ca


Background
Administrative health data, which capture information
about patient contacts with the health care system, are
widely used for chronic disease research and surveillance
[1–3]. Different approaches have been used to construct
definitions to ascertain disease cases from these data. A
common approach is to use a deterministic (i.e., non-
probability) rule [4] applied to administrative health data;
for example cases may be identified via any hospitalization
with a disease-specific diagnosis code. Alternatively,
model-based approaches apply statistical or machine-
learning (i.e., probability) models to ascertain disease cases
using multiple disease markers defined from administra-
tive health data, including diagnoses, medication use, and
healthcare procedures [5–10]. These model-based ap-
proaches have demonstrated greater accuracy than a de-
terministic case ascertainment approach for some chronic
diseases, such as peripheral artery disease, hypertension,
and kidney disease [7, 9, 10].
Model-based methods that consider the temporal as-

pects of healthcare contacts have also been proposed
[11–15]. Recent studies have examined model-based dy-
namic classification [12, 16], which applies a statistical
or machine-learning model to repeated measurements of
disease-specific indicators. At each measurement occa-
sion, individuals are classified into disease, non-disease,
and indeterminate categories based on predicted prob-
abilities of group membership; these model-based
methods may require data from only a few measurement
occasions to ascertain cases, and could therefore be
more efficient (i.e., requiring a shorter duration of time)
for making case ascertainment decisions. However, to
date only a few studies have considered a model-based
dynamic classification approach for disease case ascer-
tainment [12, 16] and comparisons with deterministic
case ascertainment methods have not been undertaken.
Our study purpose was to investigate the performance

of a model-based dynamic classification approach to as-
certain disease cases from administrative health data.
The objectives were to validate a model-based dynamic
classification approach for ascertaining cases of juvenile
arthritis (JA) from administrative data, and compare the
performance of a model-based dynamic classification ap-
proach with the performance of a deterministic ap-
proach for case ascertainment. We selected JA for this
study because it is an episodic disease characterized by
periods of good health followed by periods of illness that
vary in severity and/or duration. We hypothesized that a
case ascertainment approach that updates case status
after each measurement occasion would produce accur-
ate results in a shorter period of time than a determinis-
tic case ascertainment method based on summary data.
Moreover, we selected JA because validated, determinis-
tic case definitions have already been developed, which

provide a comparator for assessing the performance of
the model-based dynamic classification approach.

Methods
Data Sources
This study was conducted using linked administrative
health data and clinical registry data from the province
of Manitoba, Canada for fiscal years 1980/81 to 2017/18
(a fiscal year extends from April 1 to March 31). Mani-
toba has a universal healthcare system; virtually all con-
tacts with the healthcare system are captured for the
entire population. Manitoba has a total population of ap-
proximately 1.3 million people according to Statistics
Canada census data.
The administrative databases used in this study in-

cluded the Manitoba Health Insurance Registry, Hospital
Discharge Abstracts Database (DAD), and Medical
Claims database; these data were used to ascertain dis-
ease cases. Pediatric rheumatology clinic data were
linked to administrative data to define the study cohort
and validate the case ascertainment methods. All data-
bases were contained in the Manitoba Population Re-
search Data Repository housed at the Manitoba Centre
for Health Policy (MCHP), University of Manitoba, and
were linked using a unique anonymized personal health
identification number. Statistics Canada Census data for
dissemination areas, the smallest geographic unit for
which Census data are publically released, were used to
define an area-level measure of socioeconomic status to
describe the cohort.
The Manitoba Health Insurance Registry contains in-

formation about residents of Manitoba eligible for health
insurance coverage; it captures dates of coverage, rea-
sons for termination of coverage (e.g., migration out of
province, death), and demographic characteristics (e.g.,
age, sex, residence location). The DAD contains diagno-
sis and procedure codes for patients discharged from
Manitoba hospitals; diagnoses are recorded using the
World Health Organization’s International Classification
of Diseases (ICD). The 9th revision, clinical modification
of ICD (i.e., ICD-9-CM) was used prior to April 1, 2004
and the 10th revision, Canadian version (i.e., ICD-10-
CA) was used after this date; up to 25 diagnoses are cap-
tured on each record in the DAD. The Medical Claims
database contains information on specialist and general
practitioner (GP) physician billings for both in-hospital
and outpatient visits; a single ICD-9-CM diagnosis is
captured for each claim.
The Pediatric Rheumatology Clinical Database [17]

captures diagnostic information for each child seen by a
pediatric rheumatologist at the Children’s Hospital in
Winnipeg, Manitoba. Given that there are no pediatric
rheumatologists practicing outside of the Children’s
Hospital in Winnipeg, this database captures diagnosed
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JA cases for the entire province. The registry includes
clinically-confirmed diagnosis (i.e., type of JA diagnosis;
non-JA diagnosis) and date of diagnosis.

Study Cohort
The study cohort included Manitoba children in the
Pediatric Rheumatology Clinical Database who were: (1)
born between April 1, 1980 and March 31, 2002; (2)
could be linked to the Manitoba Health Insurance Regis-
try; (3) had a diagnosis recorded before age 16 years (i.e.,
the upper age limit for a clinical diagnosis of JA); (4) had
continuous health insurance coverage in Manitoba from
birth until age 16 years; and (5) had six-digit postal code
recorded on their birth record to determine their resi-
dence location at birth. Individuals were born between
April 1, 1980 and March 31, 2002 and were followed
from birth until their 16th birthday in the years of ad-
ministrative health data available for this study (i.e.,
April 1, 1980 to March 31, 2018).
The Pediatric Rheumatology Clinical Database includes

JA cases as well as individuals for whom a JA diagnosis
had been ruled out (i.e., non-JA controls), but who may
have another condition diagnosed by a pediatric rheuma-
tologist (e.g., musculoskeletal conditions, transient rheum-
atic conditions, systemic rheumatic or immune system
conditions, rheumatic skin disease, uveitis). JA is defined
as arthritis that begins before an individual’s 16th birthday
and persists for at least six weeks [18]. Both the current
juvenile idiopathic arthritis (JIA) disease classification [18]
and the previous juvenile rheumatoid arthritis (JRA) dis-
ease classification [19] were used to identify JA cases. Spe-
cifically, patients diagnosed with JIA, JRA, and
seronegative enthesopathy and arthropathy (SEA) syn-
drome were identified as JA cases.

Study Variables
Four healthcare utilization variables were defined for the
model-based dynamic classification approach (Table 1):
any JA-related healthcare contact (binary variable), total
number of GP physician visits (count variable), total
number of specialist physician visits (count variable),

and hospitalization for any reason (binary variable).
These variables were selected based on existing JA case
definitions [17, 20, 21]. Each variable was defined for
each of 15 time periods; the first time period extended
from birth to the second birthday (i.e. 0 and 1 years of
age) and the remaining time periods each comprised a
single year (i.e. 2, 3, 4, …, 15 years of age). The first time
period was longer than then remaining time periods, be-
cause JA-specific healthcare use was infrequent in the
first year of life, resulting in sparse cell counts.
Sociodemographic variables were also defined: sex,

area of residence (urban, rural), age at diagnosis, time
period of diagnosis, and income quintile. Sex and area of
residence were defined from the Manitoba Health Insur-
ance Registry; the latter was assigned based on six-digit
postal code at birth. Urban residents were those who
lived in Winnipeg, the largest city in Manitoba (popula-
tion > 700,000); all others were rural. Age at diagnosis
(1–5, 6–10 and 11–15 years) and time period of diagno-
sis (≤ 1992, 1993–2002, 2003–2012) were defined using
date of diagnosis recorded in the Pediatric Rheumatol-
ogy Clinical Database. Income quintile is an area-level
measure of socio-economic status based on total house-
hold income from Statistics Canada Census data; it was
defined by assigning individuals to income quintiles
based on postal codes recorded in the insurance registry
at birth [22, 23]. Individuals with a missing income quin-
tile value were included in the lowest income quintile;
they represented less than 0.5 % of the cohort.

Case Ascertainment Methods
Deterministic Case Definition
The deterministic JA case definition was previously vali-
dated in Manitoba [17]. Individuals were classified as JA
cases if, prior to the 16th birthday, they had one or more
hospitalizations or two or more physician visits with a
relevant diagnosis at least eight weeks apart but no more
than two years apart. The relevant diagnosis codes are
for rheumatoid arthritis and ankylosing spondylitis
(ICD-9-CM codes: 714, 720; ICD-10-CA codes: M05,
M06, M08, M45). Each cohort member’s hospital and

Table 1 Healthcare utilization measures for model-based dynamic classification approach

Measure Type Data
Source

Definition

Any JA-related healthcare
contact

Binary Medical
Claims
DAD

At least one JA-related diagnosis code (ICD-9-CM codes: 696, 713, 714, 716, 720; ICD-10-CA
codes: M05-M09, M45)

Number of general
practitioner visits

Count Medical
Claims

Total number of ambulatory visits to a general practitioner

Number of specialist visits Count Medical
Claims

Total number of ambulatory visits to a specialist physician

Hospitalization Binary DAD At least one hospitalization (excluding newborn hospitalization)

Note: JA juvenile arthritis; DAD Discharge Abstract Database; ICD International Classification of Diseases
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physician records from birth to the 16th birthday were
searched to assess whether the case definition criteria
were met. In sensitivity analyses, we also applied the de-
terministic case definition to data from two shorter time
periods: birth to 2 years of age and 14 to 16 years of age.
These sensitivity analyses represent the situation where
administrative data are only available for short periods
of time, as is often the case when deterministic case defi-
nitions are validated. For this sensitivity analysis, individ-
uals were only required to have continuous health
coverage from birth to 2 years of age for the first analysis
and from 14 to 16 years of age for the second analysis,
respectively. Two-year time periods were chosen because
the validated case definition requires two years of
follow-up [17].
Model-Based Case Definition Using Dynamic Classifi-

cation. The model-based dynamic classification ap-
proach used healthcare utilization accrued by a given
time period and sociodemographic covariates (i.e., age,
sex, area of residence) to predict group membership.
The individual’s group membership probabilities were
calculated at each consecutive measurement occasion
using accrued information until the individual was clas-
sified into one of the groups based on a pre-defined allo-
cation scheme. Once individuals were classified into one
of the groups, their group membership probabilities
were not updated further (i.e., their classification did not
change) [12, 16].
Longitudinal discriminant analysis (LoDA) [12, 16]

using multivariate generalized linear mixed models
(MGLMM) was adopted to compute the group member-
ship probabilities. Suppose that measurements for R � 1
healthcare utilization variables are available at multiple oc-
casions for N individuals, and that each individual belongs
to one of G groups; in this studyG = 2 (i.e., JA cases and
non-JA controls). Let Yi;r ¼ Y i;r;1;…;Y i;r;nr

� �
denote the

repeated measurements on the rth variable for the ith indi-
vidual observed at time points ti;r ¼ ti;r;1;…; ti;r;nr

� �
; ti;r;1.

Denote vi;r;1;…; vi;r;nr 2 Rpr as vectors of covariates. The
disease variables, measurement occasions, and covariates
for the ith individual are denoted by Y i ¼ Yi;1;…;Yi;R

� �

and Ci ¼ ti;1;…; ti;R; vi;1;1;…; vi;R;nR
� �

. Given the ith indi-
vidual’s group status Ui ¼ g and latent random effects
vector bi ¼ bi;1;…; bi;R

� �
, the jth repeated measurement

Y i;r;jðj ¼ 1;…; nrÞ of the rth longitudinal disease marker
(r ¼ 1;…;R) is assumed to follow a distribution from an
exponential family (e.g., normal, binomial, Poisson) with a
dispersion parameter ϕg

r . The expectation is given by

h�1
r E Yi;r;j

��bi;Ui ¼ g
� �� � ¼ xg

T

i;r;ja
g
r þ zg

T

i;r;jbi;r; ð1Þ

where h�1
r is a chosen link function for the rth longitu-

dinal disease marker, xgi;r;j ¼ xgi;r;j Cið Þ and zgi;r;j ¼ zgi;r;j Cið Þ
are vectors of covariates derived from the information in
Ci, and ag

r are the unknown fixed effects parameters.
The dispersion parameter ϕg

r is either known or un-
known depending on the distribution of the rth disease
marker [12]
A Markov Chain Monte Carlo (MCMC)-based Bayes-

ian estimation approach was used to estimate the un-
known parameters of the MGLMM for each group [12,
16, 24]. The prior distribution of the model parameters
was specified to be weakly informative, as per previous
research [24]. The number of mixture components for
the random effects distribution must be specified; the
optimal number of mixture components can be deter-
mined by assessing model fit using the penalized ex-
pected deviance (PED) [25]. Lower values for the PED
indicate better model fit. In this study, the number of
mixture components was set to one for JA cases and
non-JA controls, for a parsimonious model.
The MLGMMs were used to estimate group member-

ship probabilities; Bayes theorem gives the probability
that the individual belongs to group g as

Pg ¼
�g f g

PG�1
~g¼0 �~g f ~g

; ð2Þ

where f g is a predictive density for the individual’s ob-

served longitudinal healthcare use given the model pa-
rameters and �g is the prior probability of belonging to
group g; �~g is the prior probability of belonging to each
group (0) and f ~g is the predictive density for each group

[26]. Naïve prior group probabilities of 0.50 for both JA
cases and non-JA controls were adopted. The predictive
density f g in Eq. (2) can be specified using one of three

prediction approaches: marginal, conditional, and ran-
dom effects. In general, the accuracy of the prediction
approach depends on the data being used and must be
evaluated in the process of building and testing the
model [26].
Once an individual’s group membership probabilities

were computed, each individual was assigned to a group
based on an a priori allocation scheme. The point near-
est to the top left corner of the ROC curve, which mini-

mizes d2 ¼ 1� Sensitivityð Þ2 þ 1� Specificityð Þ2, was
chosen as the cut-off point. It has been previously shown
in dynamic classification to be optimal for balancing
sensitivity and specificity [16, 27]. Hughes et al. [16] de-
veloped an allocation scheme that incorporates the cred-
ible intervals (CrIs) of the group membership
probabilities, to account for the variability between indi-
viduals in the uncertainty of these probabilities. The CrI
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allocation scheme may increase positive predictive value
(PPV) without sacrificing sensitivity, specificity, and
probability of correct classification (PCC). In this study,
99 % CrIs were adopted, as they were previously shown
to perform optimally [16, 28]

Statistical Analysis
JA cases and non-JA controls were described on the
sociodemographic variables and healthcare utilization
variables using means and standard deviations for con-
tinuous variables and frequencies and percentages for
categorical variables. A correlation analysis was con-
ducted to describe the relationship of the longitudinal
outcomes across the time periods. Given that the longi-
tudinal outcomes were comprised of both dichotomous
and count variables, Spearman correlation coefficients
were computed. Descriptive statistics were also produced
for the deterministic case definition.
For the model-based dynamic classification approach,

MGLMMs were fit separately to the data for JA cases
and non-JA controls. Bernoulli models with logit link
functions were fit for the binary variables and Poisson
models with log link functions were fit for the count var-
iables. A random intercept was included in all models to
allow the means of the healthcare use variables to vary
across individuals. Two models were fit to the data: (1)
JA utilization model, which included a single healthcare
utilization variable of any JA-related healthcare contact
in addition to the sociodemographic covariates, and (2)
full model, which included all four healthcare utilization
variables in addition to the sociodemographic covariates.
The models were fit using the MCMC algorithm devel-
oped by Komárek and Komárková [24] and the parame-
ters of the models were described using their posterior
means (i.e., means conditional on the data) and 95 %
CrIs. The convergence of the MCMC algorithm was
evaluated using trace plots, the Gelman-Rubin diagnostic
[29] and auto-correlation plots.
The model-based dynamic classification approach was

evaluated using five-fold cross-validation; all cohort
members were randomly assigned to one of the five
folds. For example, for fold 1, the MGLMMs were fit
using data from folds 2 to 5 and then the predicted
probabilities were used to classify each individual in fold
1 as a JA case, non-JA control, or indeterminate case.
This process was repeated for the remaining folds. A
confusion matrix that included the indeterminate cat-
egory was created for each fold after the last time period.
Classification accuracy measures were computed for
each fold and then averaged across the five folds.
Classification accuracy measures included sensitivity,

specificity, PPV, and negative predictive value (NPV)
and their 95 % confidence intervals (95 % CIs). These
measures were calculated for both the deterministic case

definition and the model-based dynamic classification
approach. As well, for the model-based dynamic classifi-
cation approach, the proportion of indeterminate (i.e.,
unclassified) cases was produced. For the model-based
dynamic classification approach, the classification accur-
acy measures were compared amongst the prediction ap-
proaches (i.e., marginal, conditional, and random effects)
as well as between the two models. The best dynamic
classification model was the model with the greatest area
under the receiver operating characteristic curve (AUC).
The classification accuracy measures were calculated for
the models after each time period to describe the evolu-
tion of classification accuracy over time. As well, sensi-
tivity and specificity were computed using the entire
cohort, as well as only those cohort members who were
classified (i.e., were not in the indeterminate category) at
each measurement occasion.

Results
Description of Study Cohort
There were 1761 records in the Pediatric Rheumatology
Clinical Database between 1980 and 2012; the years for
which the database was constructed. A total of 1142
children captured in this database were born between
April 1, 1980 and March 31, 2002. After applying other
exclusion criteria, the final study cohort included 797
children of which 386 (48.4 %) were JA cases and 411
(51.6 %) were non-JA controls (Fig. 1). A total of 207 in-
dividuals were excluded because they did not have con-
tinuous Manitoba health insurance coverage between
birth and their 16th birthday. Almost two-thirds (62.8 %)
of these excluded individuals did not have health insur-
ance coverage at birth, most often because they were not
residents. The remaining individuals (n = 77) had health
insurance coverage at birth but were lost to follow-up
before their 16th birthday; three-quarters (76.6 %) of
these individuals left the province, 15.6 % could not be
located or were registered in error, and 7.8 % were
deceased.
Characteristics of the study cohort stratified by JA

cases and non-JA controls are provided in Table 2. Co-
hort members in both the JA case and non-JA control
groups were more likely to be female (65.3 and 64.7 %,
respectively), which was expected as pediatric rheumatic
diseases are more common among girls [30, 31]. The
distribution of age at diagnosis recorded in the clinical
database was slightly different between the groups. Non-
JA controls were more likely to be diagnosed at older
ages, whereas cases were more likely to be diagnosed ei-
ther in early childhood (i.e. 0–5 years of age) or early
adolescence (i.e. 11–15 years of age). Period of diagnosis
was dissimilar between the two groups, although the ma-
jority of cohort members in both the JA cases and non-
JA control groups were diagnosed between 1993 and
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2002 (49.7 and 79.3 %, respectively). Cohort members in
both the JA case and non-JA control groups were more
likely to live in an urban area at birth (56.5 and 57.9 %,
respectively) and were generally evenly distributed across
the income quintiles. There were no significant differ-
ences in income quintile between the two groups (p-
value = 0.48). Characteristics of the study cohort strati-
fied by JA case status and period of diagnosis are pro-
vided in Additional File 1.
As expected, JA cases were more likely to have a JA-

related visit than non-JA controls at all ages. This likeli-
hood increased consistently amongst cases over time
(14.0-64.5 %). For controls, the likelihood of having a JA
visit was low at all ages, but increased over time (1.9-
9.0 %). For both the JA case and non-JA control groups,
the mean number of GP physician visits was highest
early in life (10.51 and 9.35, respectively). Similarly, the
mean number of specialist physician visits was highest
for both groups early in life (10.02 and 10.51). For the
non-JA controls, the number of specialist physician visits

was lower than for the JA cases until around age 10.
Spearman correlation coefficients for each of the longi-
tudinal outcomes across the time periods revealed mod-
erate to high correlations amongst the earliest time
periods, with a decay in correlation over time (see Add-
itional File 1).

Model‐Based Dynamic Classification Approach
The JA utilization model and full model were fit to the
repeated measurements for the JA cases and non-JA
controls. A summary of the estimated model parameters
for these two models is provided in Table 3. The esti-
mated model parameters for the fixed effects and the
random intercept were similar for both the JA utilization
model and the full model; only the results for the full
model are described. For any JA visit, sex and age were
statistically significant for JA cases; females were more
likely to have a JA visit and age was positively associated
with having a JA visit. For non-JA controls, region of
residence and age were significantly associated with

Fig. 1 Study cohort flow chart
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having a JA visit; children living in the urban region at
birth were less likely to have a JA visit and age was posi-
tively associated with having a JA visit. For number of
visits with a specialist physician, sex, region of residence

and age were all statistically significant for JA cases; fe-
males, those living in the urban region at birth and
younger age were associated with increased number of
specialist visits. For non-JA controls, region of residence
and age were significantly associated with the number of
specialist physician visits; children living in the urban re-
gion at birth and younger ages were associated with an
increased number of specialist visits. For both JA cases
and non-JA controls, region of residence and age were
negatively associated with hospitalization and the num-
ber of GP visits. The PED for the JA utilization model
was 6168 and 2155 for JA cases and non-JA controls
respectively.
For each of the models, visual assessment of the trace

plots indicated that convergence was reach after the
1000th iteration. A total of 10,000 MCMC samples were
drawn from the Gibbs sampler. The Gelman-Rubin diag-
nostic was used to ensure convergence to the target pos-
terior distribution was reached. The upper confidence
limits of the potential scale reduction factor (PSRF) were
less than 1.02 for all parameters, suggesting convergence
was reached with 10,000 samples. Autocorrelation plots
indicated that the MCMC samples were correlated, thus,
1:100 thinning was applied. In summary, after determin-
ing convergence was reached by the 1000th iteration,
the first 1000 samples were discarded as “burn-in” and
the remaining 9000 samples were used for inference.
The predicted probabilities for the full model by JA

case status and fold were summarized (see Additional
File 1). For both the JA cases and non-JA controls, the
means and standard deviations were similar across the
five folds for the marginal and random effects prediction
approaches. For both prediction approaches, the mean
predicted probabilities increased over the time periods
for the JA cases and decreased over the time periods for
the non-JA controls. The standard deviations of the pre-
dicted probabilities increased over the time periods and
were higher for the marginal prediction approach com-
pared to the random effects approach.
Figure 2 provides a summary of the classification ac-

curacy for the JA utilization and full models for both the
marginal and random effects predication approaches.
The conditional prediction approach resulted in a simi-
lar fit to the marginal approach and its results are there-
fore not shown. For each model, the random effects
prediction approach had higher classification accuracy
than the marginal approach. However, the random ef-
fects prediction approach left more individuals unclassi-
fied after the last time period compared to the marginal
approach. In addition, for both models, the random ef-
fects prediction had a higher mean classification time
than the marginal approach, meaning, on average, it re-
quired more years of data to make a classification. On
average, 6.44 (JA utilization model) and 2.78 (full model)

Table 2 Characteristics of the study cohort, stratified by juvenile
arthritis (JA) case status

Characteristic JA Cases
(n = 386)

Non-JA Controls
(n = 411)

n (%) n (%) P-value*

Sex

Male 134 (34.7) 145 (35.3) 0.87

Female 252 (65.3) 266 (64.7)

Age at diagnosis (years)

0–5 146 (37.8) 102 (24.8) < 0.01

6–10 82 (21.2) 118 (28.7)

11–15 158 (40.9) 191 (46.5)

Period of diagnosis

≤ 1992 83 (21.5) 6 (1.5) < 0.01

1993–2002 192 (49.7) 326 (79.3)

2003–2012 111 (28.8) 79 (19.2)

Region of residence

Urban 218 (56.5) 238 (57.9) 0.68

Rural 168 (43.5) 173 (42.1)

Income quintile

Q1 (Lowest/Not Found) 83 (21.5) 102 (24.8) 0.48

Q2 68 (17.6) 77 (18.7)

Q3 80 (20.7) 67 (16.3)

Q4 81 (21.0) 91 (22.1)

Q5 (Highest) 74 (19.2) 74 (18.0)

Any JA-related visit

0–2 years 54 (14.0) 8 (1.9) < 0.01

8 years 154 (39.9) 21 (5.1) < 0.01

15 years 249 (64.5) 37 (9.0) < 0.01

Number of general practitioner visits*

0–2 years 10.51 (9.98) 9.35 (10.28) 0.11

8 years 1.64 (2.29) 1.86 (2.69) 0.22

15 years 2.17 (2.95) 2.05 (2.80) 0.56

Number of specialist visits*

0–2 years 10.02 (11.38) 10.51 (11.33) 0.54

8 years 3.97 (4.86) 2.87 (4.89) < 0.01

15 years 3.89 (4.10) 4.27 (5.98) 0.30

Hospitalization

0–2 years 114 (29.5) 137 (33.3) 0.25

8 years 23 (6.0) 36 (8.8) 0.13

15 years 36 (9.3) 69 (16.8) < 0.01

*Reported as mean (standard deviation); all other characteristics are reported
as frequency (%)
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additional years of data were needed to classify an indi-
vidual as a JA case or non-JA control using the random
effects approach.
For the marginal approach, the full model performed

best on all classification accuracy measures, except for
specificity, which was highest for the JA utilization
model at 0.74. No individuals were left in the indeter-
minate category at the end of the measurement occa-
sions using the JA utilization model. The proportion of
indeterminate individuals for the full model was 0.09.
Mean classification time was considerably lower for the
JA utilization model at 2.77 years compared to 7.07 years
for the full model.
For the random effects approach, sensitivity of the

classified data ranged from 0.71 (JA utilization model) to
0.75 (full model) and was only slightly lower for all of
the data, specificity of the classified data ranged from
0.84 (JA utilization model) to 0.94 (full model) and again
was only slightly lower for all of the data, AUC ranged

from 0.72 (full model) to 0.78 (JA model), PPV ranged
from 0.82 (JA model) to 0.92 (full model), and NPV
ranged from 0.75 (JA model) to 0.79 (full model). The
proportion of individuals in the indeterminate category
at the end of the observation period for the JA
utilization and full models were 0.02 and 0.15, respect-
ively. Mean classification time was similar for the JA
utilization and full models at 9.21 and 9.85 years,
respectively.
The JA utilization model using the random effects pre-

diction approach was chosen as the best LoDA model,
as it had the highest AUC amongst the models at 0.78.
This model was used for the remaining analyses.
Figure 3 illustrates how the proportion of individuals

unclassified, sensitivity, specificity, and PPV changed
across measurement occasions for the model-based dy-
namic classification approach using the marginal and
random effects prediction approaches for the JA
utilization model. For the marginal approach, 68.1 % of

Table 3 Posterior means (95 % credible intervals) for the JA utilization and full models

Variable JA Utilization Modela Full Modelb

JA Cases Non-JA Controls JA Cases Non-JA Controls

JA-related visit

Male -0.60 (-0.97, -0.24) -0.07 (-0.44, 0.28) -0.59 (-0.95, -0.22) -0.07 (-0.43,0.27)

Urban -0.24 (-0.59, 0.11) -0.57 (-0.91, -0.22) -0.24 (-0.60, 0.11) -0.53 (-0.86,-0.18)

Age 0.21 (0.19, 0.22) 0.17 (0.14, 0.20) 0.21 (0.19, 0.22) 0.17 (0.14,0.20)

E(Intercept) -1.76 (-2.09, -1.44) -4.75 (-5.22, -4.28) -1.77 (-2.11, -1.46) -4.74 (-5.21,-4.28)

SD(Intercept) 1.59 (1.44, 1.75) 1.06 (0.86, 1.27) 1.60 (1.44, 1.75) 1.03 (0.84,1.23)

# specialist visits -- --

Male -- -- -0.19 (-0.37, -0.02) -0.13 (-0.32, 0.06)

Urban -- -- 0.55 (0.38, 0.71) 0.63 (0.45, 0.81)

Age -- -- -0.04 (-0.05, -0.04) -0.03 (-0.04, -0.03)

E(Intercept) -- -- 1.26 (1.12, 1.40) 0.91 (0.74, 1.07)

SD(Intercept) -- -- 0.80 (0.74, 0.86) 0.92 (0.85, 0.99)

Hospitalization -- --

Male -- -- 0.24 (-0.03, 0.52) 0.02 (-0.23, 0.25)

Urban -- -- -0.57 (-0.83, -0.32) -0.58 (-0.80, -0.34)

Age -- -- -0.11 (-0.13, -0.09) -0.04 (-0.06, -0.03)

E(Intercept) -- -- -1.46 (-1.72, -1.20) -1.47 (-1.71, -1.24)

SD(Intercept) -- -- 0.87 (0.73, 1.01) 0.84 (0.73, 0.96)

# GP visits -- --

Male -- -- 0.03 (-0.16, 0.24) -0.02 (-0.22, 0.19)

Urban -- -- -0.50 (-0.68, -0.30) -0.46 (-0.66, -0.25)

Age -- -- -0.11 (-0.11, -0.10) -0.10 (-0.10, -0.09)

E(Intercept) -- -- 1.62 (1.46, 1.79) 1.45 (1.28, 1.63)

SD(Intercept) -- -- 0.94 (0.87, 1.02) 1.00 (0.92, 1.07)

Note: Values in boldface font indicate the fixed effect estimate was statistically significant at α = 0.05: GP general practitioner; JA juvenile arthritis; E(Intercept)mean
of random intercept; SD(Intercept) standard deviation of random intercept
aJA utilization model contains one healthcare utilization variable: any JA-related healthcare contact; b Full model contains four healthcare utilization variables: (1)
Any JA-related healthcare contact, (2) Number of specialist physician visits,(3) Hospitalization, (4) Number of general practitioner (GP) physician visits
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individuals were left unclassified after the first measure-
ment occasion (0 and 1 years of age), but dropped to only
8.9 % of individuals after the second measurement occa-
sion (2 years of age). By the end of the third measurement
occasion (3 years of age), all cohort members were classi-
fied. Accordingly, the accuracy measures changed during
the first three measurement occasions and then remained
constant, as there were no new individuals to be classified.
For the random effects approach, all individuals were left
unclassified after the first measurement occasion. The
proportion of unclassified individuals then steadily de-
creased to 0.02 after the 15th measurement occasion (15
years of age). Sensitivity increased across all the time pe-
riods, to 0.70 after the last measurement occasion,
whereas specificity remained at 0 until after the fifth meas-
urement occasion (i.e., 5 years of age) where it increased
to 0.81 after the last measurement occasion. PPV in-
creased to 0.91 and then slightly decreased to 0.82.
Figure 4 summarizes the classification accuracy of the

deterministic case definition. The case definition that used
data from all 15 measurement occasions (i.e. birth to 16th

birthday) had sensitivity of 0.91, specificity of 0.92, PPV of
0.92, and NPV of 0.91. When this deterministic case defin-
ition was applied to two-year intervals (i.e., birth to 2nd
birthday, 14th to 16th birthdays), sensitivity and NPV
were lower than when the case definition was applied to
all years of data. The case definitions applied to the two-
year intervals achieved higher specificity and PPV than the
case definition applied to all years of data.
The model-based dynamic classification approach did not

outperform the deterministic approach that used all 15 re-
peated measurements on any of the classification accuracy
measures. The case definition for the model-based dynamic
classification approach resulted in a sensitivity estimate that
was 23.1 % lower than the sensitivity of the deterministic case
definition. The dynamic model did, however, achieve higher
sensitivity and NPV than the deterministic case definition
when the latter was applied to just two years of data.

Discussion
In this study, a model-based dynamic classification ap-
proach was applied to Manitoba’s administrative health

Fig. 2 Accuracy measures for model-based dynamic classification approach for juvenile arthritis. Legend: Marginal and random effects prediction
approaches were used for the JA utilization model and full model; AUC = area under the receiver operating characteristic curve; PPV = positive
predictive value; NPV = negative predictive value
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data linked to a clinical registry comprised of JA cases
and non-JA controls. Classification accuracy of the dy-
namic classification approach was compared to a vali-
dated deterministic case definition [17]. Based on the
AUC, the JA utilization model using the random effects
prediction approach was chosen as the best dynamic
classification model. The dynamic classification model
had lower accuracy for ascertaining JA cases than the
deterministic case definition. However, the dynamic clas-
sification approach required a shorter duration to pro-
duce a case definition with acceptable PPV.
Although the model-based dynamic classification ap-

proach did not outperform the conventional determinis-
tic case definition [17] in this application, there are
other chronic diseases where this may not be the case.
Specifically, chronic conditions that are episodic in na-
ture and have changing patterns of healthcare utilization
over time, such as inflammatory bowel disease [32], may
benefit from the use of a dynamic classification approach
to construct case definitions.
In this study, a chronic disease with well-defined age

limits for diagnosis (i.e., birth to 16th birthday) [18] was
selected for investigation. This will not be the case for
all chronic conditions, especially those that are likely to
have an age of onset in adulthood; it may not make

sense or be possible to use an individual’s complete lon-
gitudinal health history from birth. The observation
period for applying a model-based dynamic classification
approach may be defined using a defined period of time
following a specific treatment or procedure date [8, 10,
28, 33]. A specified number of years or an age range
could also be used to define the observation period [11].
In addition, the timing of classification updates needs

to be considered. In this study, the first classification
was conducted at the second birthday using data accrued
from birth, and then the classifications were updated an-
nually until the 16th birthday. However, the classifica-
tions could have been updated with other time intervals/
frequencies, depending on the nature of the disease
under study and the probability of disease onset at dif-
ferent ages. An individualized updating schedule, similar
to that used in previous applications of the model-based
dynamic classification approach [12, 16, 28] could also
be used. An individual’s classification is then updated
each time a new health care visit is recorded in adminis-
trative health data. Researchers must carefully consider
the optimal updating approach based on the features of
the data available to them and the characteristics of the
health condition of interest. Implementation of the
model-based dynamic classification approach also

Fig. 3 Proportion of indeterminate individuals, sensitivity, specificity, and positive predictive value for model-based dynamic classification
approach. Legend: Based on the JA utilization model. Panel A shows results for the marginal prediction approach. Panel B shows results for the
random effects approach
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requires consideration of the longitudinal disease
markers of interest, additional model covariates, and
random effects. In this study, the disease markers and
covariates were chosen based on prior research [31, 34,
35]. Fit statistics may also be used to provide empirical
evidence about the choices to be made.
One limitation of the model-based dynamic classifica-

tion approach is that once an individual is classified, their
status is not revisited at subsequent measurement occa-
sions. For example, if an individual had a high probability
of not being a JA case earlier in their life and was classified
as a non-JA control, their status was not revisited later in
time. This may result in misclassification for diseases that
evolve over time, that is, where the measures used for clas-
sification show changes in their trends or associations
with one another over time. However, no studies to our
knowledge have examined the impact of updating the pre-
dicted probabilities on misclassification bias. Another
limitation was that only one updating approach was used
to make classifications. Applying a different updating ap-
proach to the study data, such as updating the results each

time a new visit was recorded in the administrative health
data, could influence the final classification results. An-
other potential limitation is that a normal distribution was
chosen for the random effects in the MGLMMs, instead
of a more flexible mixture normal distribution. If the ran-
dom effects distribution is misspecified, there is potential
for the estimates of the model parameters to be biased
and this may affect the performance of the discriminant
analysis, although this impact was expected to be negli-
gible based on previous research [12]. Finally, the study
cohort was a referral population defined from the
Pediatric Rheumatology Clinical Database, which had a
higher percentage of JA cases than what would be seen in
the general population. This may affect the generalizability
of the results to the study population, an issue that has
arisen in similar studies in which clinical registry data are
used for case definition validation [17, 20].

Conclusions
In summary, this study suggests that a model-based dy-
namic classification approach can produce chronic

Fig. 4 Accuracy of the model-based dynamic classification approach and deterministic approach for juvenile arthritis case definitions. Legend:
PPV = positive predictive value; NPV = negative predictive value
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disease case definitions using longitudinal information
from administrative health data with acceptable PPV.
However, the PPV from the dynamic classification
model was lower than the PPV produced by the deter-
ministic case definition. In this disease setting, the deter-
ministic case definition ascertained JA cases with greater
accuracy than the dynamic classification model. How-
ever, there can be value associated with using longitu-
dinal information in a dynamic manner to construct
case definitions, because the evolution of the classifica-
tion process can be described. Currently, the determinis-
tic approach is the most widely-used approach to
construct case definitions for population-based chronic
disease research and surveillance [4, 17, 36]. However,
researchers need to determine the implications of classi-
fying an individual as a disease case or non-disease con-
trol if there is insufficient evidence to do so. Dynamic
classification allows individuals to remain unclassified if
specified criteria indicate that more information is
needed to make a potentially more accurate decision.
Instead of viewing case definition development as “one

approach fits all”, researchers should carefully consider
the characteristics of their disease of interest, as well as
the data available, to determine which approach, deter-
ministic, model-based, or dynamic, may result in the
greatest classification accuracy. The choice of methods
to construct chronic disease case definitions and their
performance will depend on the characteristics of the
disease of interest.
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