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Statistical analysis of two arm randomized
pre-post designs with one post-treatment
measurement
Fei Wan

Abstract

Background: Randomized pre-post designs, with outcomes measured at baseline and after treatment, have been
commonly used to compare the clinical effectiveness of two competing treatments. There are vast, but often
conflicting, amount of information in current literature about the best analytic methods for pre-post designs. It is
challenging for applied researchers to make an informed choice.

Methods: We discuss six methods commonly used in literature: one way analysis of variance (“ANOVA”), analysis of
covariance main effect and interaction models on the post-treatment score (“ANCOVAI” and “ANCOVAII”), ANOVA
on the change score between the baseline and post-treatment scores (“ANOVA-Change”), repeated measures (“RM”)
and constrained repeated measures (“cRM”) models on the baseline and post-treatment scores as joint outcomes.
We review a number of study endpoints in randomized pre-post designs and identify the mean difference in the
post-treatment score as the common treatment effect that all six methods target. We delineate the underlying
differences and connections between these competing methods in homogeneous and heterogeneous study
populations.

Results: ANCOVA and cRM outperform other alternative methods because their treatment effect estimators have
the smallest variances. cRM has comparable performance to ANCOVAI in the homogeneous scenario and to
ANCOVAII in the heterogeneous scenario. In spite of that, ANCOVA has several advantages over cRM: i) the baseline
score is adjusted as covariate because it is not an outcome by definition; ii) it is very convenient to incorporate
other baseline variables and easy to handle complex heteroscedasticity patterns in a linear regression framework.

Conclusions: ANCOVA is a simple and the most efficient approach for analyzing pre-post randomized designs.

Keywords: Pre-post design, ANCOVA, ANOVA, Repeated measures, Change score, Treatment effect

Background
Two arm parallel randomized trials have been widely
used to compare the clinical effectiveness of compet-
ing treatments in improving patients’ health out-
comes. In these trials, continuous outcomes of
interest were routinely measured at baseline (defined

as “baseline score”) and one post treatment time
point (defined as “post-treatment score”). The primary
purpose of designing a pre-post randomized study is
to answer the scientific question of interest: is treat-
ment A more effective than treatment B? To assess
the difference in the treatment effectiveness between
two treatments, we need to select a study endpoint
and quantify a treatment effect. Common study end-
points include the post treatment score, the change
score from baseline to post treatment, a percentage
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change from baseline, and rate of change from base-
line. The difference between two arms on selected
study endpoints is defined as the treatment effect.
Few studies have investigated the links between these
different metrics of treatment effect in a randomized
pre-post trial. These underlying connections are crit-
ical in understanding the equivalence among some
statistical methods that may appear to be very differ-
ent at the first sight. We need to be certain about the
type of treatment effect each method targets and se-
lect the one that yields an unbiased and the most ef-
ficient estimator of the treatment effect of our
interest.
There are a number of statistical methods commonly

used in analyzing pre-post trials. We can analyze the
post-treatment score using one way analysis of variance
model (ANOVA) [1, 2], analysis of covariance model
adjusting for the baseline score (ANCOVAI) [2–7], and
ANCOVA including a baseline score by treatment inter-
action (ANCOVAII) [3, 4, 8–10]. We can also analyze
the change score using ANOVA (ANOVA-Change) [11].
Alternatively, we can model the baseline and post-
treatment scores jointly using repeated measures models
(RM) and constrained repeated measures models (cRM)
[10, 12–14]. Despite of the simplicity and wide applica-
tion of randomized pre-post designs, which method is
the best analytic approach has been a debated topic and
many methodological studies have been performed to
compare different statistical methods for past decades
[1–13]. However, it is challenging for applied researchers
to evaluate this vast, but often conflicting, amount of in-
formation in current literature and make an informed
choice.
In this study we aim to review ANOVA, ANCOVAI,

ANCOVAII, ANOVA-Change, RM,andcRM from a
practical standpoint, with the focus on delineating the
differences and underlying connections between them.
In section Methods, we first provide notations and as-
sumptions for a typical pre-post design, define homoge-
neous and heterogeneous study populations, and discuss
some common study endpoints and the associated met-
rics of treatment effects. We next analytically assess dif-
ferences and connections between these competing
models in the homogeneous and heterogeneous scenar-
ios by first describing each model using the same set of
population mean, variance, and covariance parameters.
In section Results, we compare the relative efficiency of
these competing methods theoretically using three
simulated weight loss trial examples (homogeneous
data, heterogeneous data with balanced design, het-
erogeneous data with unbalanced design). In the last
two sections, we discuss the results and give recom-
mendation on the best analytical approach in a ran-
domized pre-post design.

Methods
A hypothetical weight loss trial and metrics of treatment
effects
Notations
In a hypothetical two arm parallel weight loss trial com-
paring the effect of a new drug (“treatment”) and a pla-
cebo (“control”) in reducing participants’ body weights,
we use Yijt to denote body weight of the i th subject (i =
1, 2, 3,…nj) in the jth treatment arm (j = 0, 1) at the t th
time (t = t0, t1 ). n0 and n1 are the number of subjects in
the control and treatment arms.
We denote the mean baseline weights for the treat-

ment and control arms by μ1t0 and μ0t0 , respectively.
Random allocation guarantees μ1t0 ¼ μ0t0 and we let μt0
denote the overall mean baseline weight. The mean
weights of the treatment and control arms at time t1 are
denoted by μ1t1 and μ0t1 , respectively (Fig. 1). We define
homogeneous and heterogeneous study populations as
follows:

i) The homogeneous scenario: every participant has
the same pattern of variance and covariance
structure for their baseline and post-treatment
weights, which is parameterized as below:X
¼ σ2

0
ρσ0σ1

�
ρσ0σ1
σ21

�
;

where σ20 and σ21 are the variances of the baseline and
post-treatment weights, ρ is the correlation coefficient
between the baseline and post-treatment weights.

ii) The heterogeneous scenario: variance and
covariance structures of the baseline and post-
treatment weights differ between the treatment and
control arms. Formally, we haveX
0
¼ σ2

0
ρ0σ0σ01

�
ρ0σ0σ01
σ201

�
;

andX
1
¼ σ2

0
ρ1σ0σ11

�
ρ1σ0σ11
σ211

�
;

where σ20 is the common variance of the baseline body
weight in the control and treatment arms.
Randomization guarantees that the variances of the
baseline weights in both arms are equal to σ20 . σ201 and
σ211 are the variances of the post-treatment weight in the
control and treatment arms. ρ0 and ρ1 are the correl-
ation coefficients between the baseline and post-
treatment weights in the control and treatment arms,
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respectively. In practice, participants may respond to the
treatment more differently so that variability of the post-
treatment weight tends to be larger in the treatment arm
than in the control arm and the correlation between
pre- and post-treatment weights are usually stronger in
the control arm than in the treatment arm. i.e., ρ0 > ρ1
and σ211 > σ201.

Metrics of treatment effect
We discuss the following three metrics of treatment ef-
fect commonly reported in pre-post trials:

i) The primary endpoint is the post-treatment weight
measured at t1. The difference in the mean post-
treatment weights of two arms is defined as a treat-
ment effect, which is parameterized as follows:

τ ¼ μ1t1−μ0t1

For example, if τ = − 10, we can interpret the results
as “at the end of the trial, the mean weight was 10
pounds lower in the treatment group than in the control
group.”

ii) The primary endpoint is the change score
calculated by subtracting the baseline weight from
the post-treatment weight. i.e., Δij ¼ Y ijt1−Y ijt0 . The
difference in the mean change scores of two arms is
a treatment effect. Formally, we have:

~τ ¼ μ1t1−μ1t0
� �

− μ0t1−μ0t0
� �

e.g. if ~τ ¼ −10, this difference is usually interpreted as
“weight reductions were 10 pounds greater in the treat-
ment group than in the control group”. Since

randomization ensures μ0t1 ¼ μ0t0 , it follows directly ~τ
¼ τ . When we code “0” for t0 and “1” for t1, the mean
change score for each arm can also be interpreted as the
mean change rate per unit time for each arm, repre-
sented by slopes in Fig. 1. Thus, the difference in slopes,

denoted by e~τ ¼ α1−α0 , is also equivalent to τ. As shown
in previous section, ANOVA and ANCOVA target τ,

ANOVA-CHANGE targets ~τ; and RM targets e~τ: How-
ever, we can compare these statistical methods targeting
seemingly very different types of treatment effects in a
meaningful way because of the equivalence between τ, ~τ;

and e~τ in randomized pre-post designs.

iii) The primary endpoint is the percent change from

baseline weight, denoted by φij ¼ ðY ijt1−Y ijt0 Þ
Y ijt0

. The

mean difference in the percent change between two
arms is defined as a treatment effect and
parameterized as follows:

τ� ¼ φ1−φ0;

where φ1 and φ0 are the mean percent changes of the
treatment and control arms. Although the percent
change is popular among clinical researchers, this metric
has several drawbacks [1, 15, 16]: i) the percent change

is a function of ratio
Y ijt1
Y ijt0

. The distribution of the percent

change is highly skewed. Analyzing it with normal-
theory based statistical methods is not justified and non-
parametric statistical methods are generally less power-
ful; ii) the percent change is not a symmetric measure.
For example, the mean weight of adults over 20 in US is
197.8 pound for men and 170.5 pound for women. The
mean difference is 27.3 pound between men and women.
Men weight 16% (i.e.,100 × ((197.8–170.5)/170.5)) more

Fig. 1 Hypothetical two arm pre-post weight loss randomized trial
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than women, whereas women weight 13.8% (i.e.,
100 × ((197.8–170.5)/197.8)) less than men. The differ-
ences could be different depending on which sex is used
as devisor; iii) the percent change is not an additive
measure. For example, if a participant’s weight increases
by 10% in first 6 months and fall by 10% for the next 6
months, the 2 % changes do not cancel out. The partici-
pant’s weight at the end would be only 99% of the par-
ticipant’s starting weight.

Statistical models
In this section, we focus on six methods that estimate τ.
We describe each statistical model using the same set of
population mean, variance, and covariance parameters
defined in section Methods for homogeneous and het-
erogeneous scenarios, separately. For each method, we
present the closed-form expressions of the point estima-
tor of treatment effect and its variance. It often goes un-
noticed in practice that different statistical methods have
different types of variances (i.e., conditional vs. uncondi-
tional variances) associated with their treatment effect
estimators. For example, the OLS model-based variances
for ANCOVA are conditional because OLS assumes the
baseline weight is fixed. Generally speaking, the baseline
weight is random because we rarely enroll participants
into randomized trials based on predetermined values of
the baseline weight. Thus, the unconditional variance
and the corresponding unconditional inference is of
greater interest because we want the findings derived
from the current sample to be generalizable to the popu-
lation of interest. We will discuss in details whether the
OLS model-based conditional inference (i.e., test statis-
tics and p-values from standard statistical softwares) for
ANCOVA is still valid for unconditional hypothesis test-
ing and the potential fixes that we can use to draw valid
unconditional inference if the usual OLS model-based
inference is biased.

When the study population is homogeneous
Method 1:ANOVA modeling post treatment measure
(“ANOVA-Post”). We model the post-treatment body
weight Y ijt1 using the binary treatment indicator Gij (1 if
in the treatment arm; 0 if in the control arm) as follows:

Y ijt1 ¼ β 1ð Þ
0 þ β 1ð Þ

1 Gij þ e 1ð Þ
ij ; i ¼ 1; 2;…; nj; j

¼ 0; 1; ð1Þ

e 1ð Þ
ij � N 0; σ21

� �
;

where βð1Þ0 ¼ μ0t1 ;β
ð1Þ
1 ¼ μ1t1−μ0t1 ¼τ, and eð1Þij is inde-

pendently and identically distributed (i.i.d) random error.

βð1Þ1 represents the treatment effect. Model (1) is homo-
scedastic with a constant residual variance σ21.

We can fit an ordinary least squares (OLS) regression
to estimate the coefficients and standard errors of model
(1). The closed-form expressions of the OLS estimator

β̂
ð1Þ
1;ols and its “unconditional” variance, denoted by varð

β̂
ð1Þ
1;olsÞ, are presented in Table 1. β̂

ð1Þ
1;ols is estimated by the

sample group mean difference in the post-treatment

weight between two arms. β̂
ð1Þ
1;ols is unbiased for τ. The

OLS model-based variance of β̂
ð1Þ
1;ols assuming known σ21

is:

varols β̂
1ð Þ
1;ols

� �
¼ σ21P1

j¼0

Pn j

i¼1 Gij−G::

� �2 ;
where G:: ¼

P1

j¼0

Pn j
i¼1

Gij

n0þn1
¼ n1

n0þn1
. σ21 is estimated by

σ̂21 ¼
P1

j¼0

Pn j

i¼1 yijt1−ŷ
1ð Þ
ijt1

� �2
n0 þ n1−2ð Þ ;

where ŷð1Þijt1 ¼ β̂
ð1Þ
0;ols þ β̂

ð1Þ
1;olsGij is the predicted value from

model (1). We let dvarolsðβ̂ð1Þ1;olsÞ denote the OLS model-

based variance estimator with σ̂21 substituted for σ21 ,
which is output by standard statistical softwares

(Table 1). Since
P1

j¼0

Pn j

i¼1ðGij−G::Þ2 ¼ n0n1
n0þn1

, it follows

that varolsðβ̂ð1Þ1;olsÞ ¼ varðβ̂ð1Þ1;olsÞ. It is well established thatdvarolsðβ̂ð1Þ1;olsÞ is unbiased for varolsðβ̂ð1Þ1;olsÞ. Thus, dvarolsð
β̂
ð1Þ
1;olsÞ is unbiased for varðβ̂ð1Þ1;olsÞ. The usual OLS model-

based inference (i.e., test statistics t ¼ β̂
ð1Þ
1;olsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarolsðβ̂ð1Þ

1;olsÞ
q and

the associated p-value) is valid for testing Ho : τ = 0
unconditionally.
Method 2:ANCOVA modeling post treatment meas-

ure (“ANCOVAI”): We model the post-treatment weight
Y ijt1 using the binary treatment indicator Gij and the
baseline weight Y ijt0 .

Y ijt1 ¼ β 2ð Þ
0 þ β 2ð Þ

1 Gij þ β 2ð Þ
2 Y ijt0 þ e 2ð Þ

ij ; i

¼ 1; 2;…; nj; j ¼ 0; 1; ð2Þ

e 2ð Þ
ij � N 0; σ2ϵ 2ð Þ

� �
and σ2ϵ 2ð Þ ¼ 1−ρ2

� �
σ2:1

, where βð2Þ0 ¼ μ0t1−ρ
σ1
σ0
μt0 , β

ð2Þ
1 = τ; βð2Þ2 = ρ σ1

σ0
, and

eð2Þij is i.i.d random error. βð2Þ1 measures the treatment ef-

fect τ and βð2Þ2 represents the slope of the pre-post asso-
ciation between Y ijt1 and Y ijt0 . Model (2) has a common
residual variance σ2ϵð2Þ and implicitly assumes that two
arms share the common baseline mean μt0 .
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The coefficients and standard errors of model (2) are
also estimated using an OLS regression. The OLS esti-

mator β̂
ð2Þ
1;ols is derived as the sample mean difference in

the post-treatment weight adjusting for the sample mean
difference in the baseline weight between two arms. The
group mean difference in the baseline weight can be

seen as chance imbalance in a randomized trial. β̂
ð2Þ
1;ols is

unbiased for τ both conditional on Y ijt0 and uncondi-

tionally. The formulas of β̂
ð2Þ
1;ols and its “unconditional”

variance varðβ̂ð2Þ1;olsÞ are listed in Table 1. However, OLS
assumes that the baseline weight Y ijt0 is fixed. OLS

targets the conditional variance of β̂
ð2Þ
1;ols , denoted by var

ðβ̂ð2Þ1;olsjY ijt0Þ , instead of varðβ̂ð2Þ1;olsÞ. The formula of varð
β̂
ð2Þ
1;olsjY ijt0Þ with a known common residual variance σ2ϵð2Þ

is presented in Table 1. Since σ2
ϵð2Þ is generally unknown,

it is estimated by the following sample residual variance:

σ̂2
e 2ð Þ
ij

¼
P1

j¼0

Pn j

i¼1 yijt1−ŷ
2ð Þ
ijt1

� �2
n0 þ n1−3ð Þ

, where ŷð2Þijt1 ¼ β̂
ð2Þ
0;ols þ β̂

ð2Þ
1;olsGij þ β̂

ð2Þ
2;olsY ijt0 , the pre-

dicted value from model (2). We let dvarolsðβ̂ð2Þ1;olsjY ijt0Þ
denote the OLS model-based variance estimator with

σ̂2ϵð2Þ substituted for σ2ϵð2Þ . Note that dvarolsðβ̂ð2Þ1;olsjY ijt0Þ is
reported by standard statistical softwares (e.g. “proc reg”
in SAS). Its formula is presented in Table 1.
Since we want to generalize our conclusions to a gen-

eral population and Y ijt0 can take different values from
those collected in the current sample, we may wonder
whether significance tests based on the model-based

conditional variance assuming Y ijt0 is fixed (e.g., t

¼ β̂
ð2Þ
1;olsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarolsðβ̂ð2Þ

1;olsjY ijt0 Þ
q ) is comparable to unconditional in-

ference (e.g., t ¼ β̂
ð2Þ
1;olsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðβ̂
ð2Þ
1;olsÞ

q ), in which Y ijt0 is treated as

random variable, for testing Ho : τ = 0. To establish this

equivalence, we need to show: i) dvarolsðβ̂ð2Þ1;olsjY ijt0Þ is un-
biased for varðβ̂ð2Þ1;olsjY ijt0Þ ; ii) varðβ̂ð2Þ1;olsjY ijt0Þ is un-

biased for varðβ̂ð2Þ1;olsÞ . The first part is well established
in a homoscedastic linear model. The second part holds

because we can show that varðβ̂ð2Þ1;olsÞ =E( varðβ̂
ð2Þ
1;olsjY ijt0

Þ ) using the law of total variance formula and the fact

that β̂
ð2Þ
1;ols is unbiased for τ. That is, the unconditional

variance of β̂
ð2Þ
1;ols is the average of its conditional vari-

ance over the distribution of the baseline weight. There-
fore, the usual model-based standard errors and
associated p-values are valid for unconditional inference
[3, 5, 17].
Method 3:Repeated measures model (“RM”):RM

models the baseline and post-treatment weights (Y ijt0 ,
Y ijt1 ) jointly using the binary treatment indicator Gij, the
binary time factor Tij, the time by treatment inter-
action Gij × Tij as follows:

Y ijt ¼ γ 3ð Þ
0 þ γ 3ð Þ

1 Gij þ γ 3ð Þ
2 Tij þ γ 3ð Þ

3 Gij � Tij

þ e 3ð Þ
ijt ; i

¼ 1; 2;…; nj; j ¼ 0; 1; t ¼ t0; t1; ð3Þ

e 3ð Þ
ijt0

e 3ð Þ
ijt1

 !
� N

0
0

� �
;
X	 


;

When t0 = 0 and t1 = 1, γð3Þ0 ¼ μ0t0 , γð3Þ1 ¼ μ1t0−μ0t0 ;

γð3Þ2 ¼ μ0t1−μ0t0 ; and γð3Þ3 ¼ ðμ1t1−μ1t0Þ−ðμ0t1−μ0t0Þ . γð3Þ0

represents the mean baseline weight of the control arm,

γð3Þ1 represents the difference in the mean baseline

weights of the treatment and control arms, γð3Þ2 repre-
sents the mean change from baseline in the control arm,

and γð3Þ3 is generally interpreted as the difference in the
mean change from baseline in a unit time interval be-
tween the treatment and control arms (“difference in dif-
ference”), also known as the difference in slopes. We
have μ1t0 ¼ μ0t0 from random allocation and it follows

that γð3Þ1 ¼ 0 and γð3Þ3 ¼ μ1t1−μ1t1 ¼ τ: Thus, testing Ho

: γð3Þ3 ¼ 0 is equivalent to testing Ho : τ = 0.
The generalized least squares (GLS) model with corre-

lated outcomes is routinely used to estimate the coeffi-
cients and standard errors of model (3). The GLS

estimator of the treatment effect γ̂ð3Þ3; gls and its variance

varðγ̂ð3Þ3; gls ) given known variance and covariance pa-

rameters are presented in Table 1. γ̂ð3Þ3; gls is estimated by

the sample mean difference in body weight change be-
tween two arms and is unbiased for τ in a large sample.
The variance and covariance parameters are generally
unknown and need to be estimated using the restricted
maximum likelihood (REML). The conventional max-
imal likelihood estimation (MLE) should be avoided.

The REML variance estimator dvarremlðγ̂ð3Þ3; gls) is derived

by plugging the REML estimators of the variance and
covariance parameters (i.e., σ20; σ

2
1; ρσ0σ1 ) into the for-

mula of varðγ̂ð3Þ3; glsÞ.We use Kenward and Roger method
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[18](“ddfm = kenwardroger” in SAS proc. mixed proced-
ure) to adjust for the potential finite sample bias indvarremlðγ̂ð3Þ3; gls) because of its failure to incorporate vari-

abilities of the REML estimators of the variance and co-
variance parameters. This adjustment involves inflating
the variance and covariance matrix and computing an
adjusted approximation degrees of freedom.
Method 4:Constrained Repeated measures Model

(“cRM”): By specifying γð3Þ1 in the model, RM model (3)
assumes the mean baseline weight is different between
two arms. Liang and Zeger [8] proposed the following

cRM model by fixing γð3Þ1 ¼ 0 to force the treatment and
control arms to have the same intercept. Intuitively,
cRM is more efficient than RM because cRM estimates
one less parameter. Formally, we model the baseline and
post-treatment weights (Y ijt0 , Y ijt1 ) jointly using the bin-
ary factor Tij, a time by treatment interaction Gij × Tij in
the following cRM model:

Y ijt ¼ γ 4ð Þ
0 þ γ 4ð Þ

2 Tij þ γ 4ð Þ
3 Gij � Tij þ e 4ð Þ

ijt ; i
¼ 1; 2;…; nj; j ¼ 0; 1; t ¼ t0; t1 ð4Þ

e 4ð Þ
ijt0

e 4ð Þ
ijt1

 !
� N

0
0

� �
;
X	 


;

where γð4Þ0 ¼ μt0 ; γ
ð4Þ
2 ¼ μ0t1−μ0t0 , and γð4Þ3 ¼ τ . Interpre-

tations of γð4Þ0 , γð4Þ2 , and γð4Þ3 are the same as their coun-
terparts in RM. The formulas of the GLS point

estimator γ̂ð4Þ3; gls and its variance varðγ̂ð4Þ3; glsÞ are listed in

Table 1. γ̂ð4Þ3; gls is unbiased for τ asymptotically. The em-

pirical or the model-based variance estimate for varð
γ̂ð4Þ3; glsÞ is derived using REML in the same way as a

regular RM model.
Method 5:ANOVA with change score (“ANOVA-

Change”): We model change score Δij ¼ Y ijt1−Y ijt0 using
the binary treatment indicator Gij as follows:

Δij ¼ β 5ð Þ
0 þ β 5ð Þ

1 Gij þ e 5ð Þ
ij ; i ¼ 1; 2;…; nj; j ¼ 0; 1; ð5Þ

e 5ð Þ
ij � N 0; σ2ϵ 5ð Þ

� �
and σ2ϵ 5ð Þ ¼ σ2

1 þ σ2
0−2ρσ0σ1;

where βð5Þ0 ¼ μ0t1−μ0t0 , βð5Þ1 ¼ ðμ1t1−μ1t0Þ−ðμ0t1−μ0t0Þ ,
and eð3Þij is i.i.d random error. βð5Þ0 measures the mean dif-

ference score in the control arm. βð5Þ1 measures the treat-
ment effect ~τ . Since μ1t0 ¼ μ0t0 due to randomization at

baseline, βð5Þ1 is reduced to τ. The closed-form expres-

sions of β̂
ð5Þ
1;ols and varðβ̂ð5Þ1;olsÞ are listed in Table 1. β̂

ð5Þ
1;ols

is derived as the sample mean difference in the change
score between two arms (“difference in difference”) and

is unbiased for τ. The OLS model-based variance of β̂
ð5Þ
1;ols

assuming known σ2
ϵð5Þ is

varols β̂
5ð Þ
1;ols

� �
¼ σ2ϵ 5ð ÞP1

j¼0

Pn j

i¼1 Gij−G::

� �2 ;
where G:: ¼

P1

j¼0

Pn j
i¼1

Gij

n0þn1
¼ n1

n0þn1
. σ2ϵð5Þ is estimated by

σ̂2ϵ 5ð Þ ¼
P1

j¼0

Pn j

i¼1 Δij−Δ̂
5ð Þ
ij

� �2
n0 þ n1−2ð Þ ;

where Δ̂
ð5Þ
ij is the fitted value from model (5). We letdvarolsðβ̂ð5Þ1;olsÞ denote the OLS model-based variance esti-

mator with σ̂2
ϵð5Þ substituted for σ2ϵð5Þ Table 1, which is re-

ported by standard statistical softwares. SinceP1
j¼0

Pn j

i¼1ðGij−G::Þ2 ¼ n0n1
n0þn1

, it follows that varolsðβ̂ð5Þ1;olsÞ
¼ varðβ̂ð5Þ1;olsÞ . It is well established that dvarolsðβ̂ð5Þ1;olsÞ is

unbiased for varolsðβ̂ð5Þ1;olsÞ, and thus for varðβ̂ð5Þ1;olsÞ. The
usual OLS model-based inference is valid for uncondi-
tional hypothesis testing.

When the study population is heterogeneous
Method 6:ANCOVAII: Different variance and covari-
ance structures in the treatment and control arms sug-
gest a baseline measurement by treatment interaction
term in ANCOVA [2, 3, 9, 10]. To estimate τ using an
interaction model, we first compute the mean centered
baseline weight ~Y ijt0 by subtracting the overall mean
baseline weight from individual baseline weights. i.e.,
~Y ijt0 ¼ Y ijt0−μt0 . We then model the post-treatment
body weight Y ijt1 using the binary treatment indicator

Gij, the mean centered baseline weight ~Y ijt0 , and the

baseline weight by treatment interaction Gij � ~Y ijt0 as
follows:

Y ijt1 ¼ β 6ð Þ
0 þ β 6ð Þ

1 Gij þ β 6ð Þ
2

~Y ijt0 þ β 6ð Þ
3 Gij � ~Y ijt0 þ e 6ð Þ

ij ; i ¼ 1; 2;…; nj; j ¼ 0; 1;

ð6Þ

e 6ð Þ
i0 � N 0; σ2

ϵ 6ð Þ
0

	 

and σ2

ϵ 6ð Þ
0

¼ 1−ρ20
� �

σ201

e 6ð Þ
i1 � N 0; σ2

ϵ 6ð Þ
1

	 

and σ2

ϵ 6ð Þ
1

¼ 1−ρ21
� �

σ211

, where βð6Þ0 ¼ μ0t1 , β
ð6Þ
1 ¼ τ;βð6Þ2 ¼ ρ0

σ0t0
σ0
, and βð6Þ3 ¼ρ1

σ1t1
σ0

−ρ0
σ0t0
σ0

. eð6Þi0 and eð6Þi1 are i.i.d random errors in the

control and treatment arms. βð6Þ1 measures the treatment

effect. βð6Þ2 is the regression slope of the baseline body

weight in the control arm. βð6Þ3 measures the difference
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in the regression slopes of the baseline weight between
the treatment and control arms. Model (6) is heterosce-
dastic because the error terms in the treatment and con-
trol arms have different residual variances.

As presented in Table 2, the OLS estimator β̂
ð6Þ
1;ols is

the adjusted mean difference in the post-treatment body
weights controlling for a weighted mean difference of
the baseline body weights between two arms with un-
equal weighting coefficients for treatment and control

arms (i.e., β̂
ð6Þ
2;ols þ β̂

ð6Þ
3;ols for the treatment group, and

β̂
ð6Þ
2;ols for the control group). β̂

ð6Þ
1;ols is unbiased for τ. The

conditional variance of β̂
ð6Þ
1;ols, denoted by varðβ̂ð6Þ1;olsj~Y ijt0Þ

, incorporates two different residual variances σ2
ϵð6Þ0

and

σ2
ϵð6Þ1

(Table 2). Standard statistical softwares such as SAS

do not output varðβ̂ð6Þ1;olsj~Y ijt0Þ because OLS incorrectly

assumes a common residual variance σ2
ϵð6Þ , which is the

following weighted average of σ2
ϵð6Þ0

and σ2
ϵð6Þ1

:

σ2ϵ 6ð Þ ¼ n0
n0 þ n1

σ2
ϵ 6ð Þ
0

þ n1
n0 þ n1

σ2
ϵ 6ð Þ
1

We let varolsðβ̂ð6Þ1;olsj~Y ijt0Þ denote the OLS model-

based conditional variance of β̂
ð6Þ
1;ols incorporating σ2ϵð6Þ

(Table 2). Since σ2ϵð6Þ is generally unknown, σ2
ϵð6Þ is esti-

mated by

σ̂2ϵ 6ð Þ ¼
P1

j¼0

Pn j

i¼1 yijt1−ŷijt1

� �2
n0 þ n1−4ð Þ ;

where ŷijt1 is the predicted value of yijt1 . We let dvarolsð
β̂
ð6Þ
1;olsj~Y ijt0Þ denote the OLS model-based variance estima-

tor of β̂
ð6Þ
1;ols with σ̂2ϵð6Þ substituted for σ2ϵð6Þ . and known

constant μt0 (Table 2). dvarolsðβ̂ð6Þ1;olsj~Y ijt0Þ is reported by
standard statistical softwares (e.g., “proc reg” in SAS). To
assess the validity of the model-based standard errors
and p-values from a regular ANCOVAII model for un-
conditional inference, we need to examine: i) whetherdvarolsðβ̂ð6Þ1;olsj~Y ijt0Þ is unbiased for varðβ̂ð6Þ1;olsj~Y ijt0Þ ; ii)

whether varðβ̂ð6Þ1;olsj~Y ijt0Þ is unbiased for varðβ̂ð6Þ1;olsÞ.
First, dvarolsðβ̂ð6Þ1;olsj~Y ijt0Þ is unbiased for varolsðβ̂ð6Þ1;olsj

~Y ijt0Þ: However, the unbiasedness of dvarolsðβ̂ð6Þ1;olsj~Y ijt0Þ as
an estimator of varðβ̂ð6Þ1;olsj~Y ijt0Þ depends on the relation-

ship between varolsðβ̂ð6Þ1;olsj~Y ijt0Þ and varðβ̂ð6Þ1;olsj~Y ijt0Þ .
Asymptotically, we have

Δ
β̂

6ð Þ
1;ols

¼ varolsðβ̂ 6ð Þ
1;ols

~Y ijt0

�� �
− varðβ̂ 6ð Þ

1;ols
~Y ijt0

�� �
¼ σ2

ϵ 6ð Þ
0

−σ2
ϵ 6ð Þ
1

	 

1
n1

−
1
n0

	 

It can be shown in a balanced design (n0 = n1),

varolsðβ̂ 6ð Þ
1;ols

~Y ijt0

�� �
≈ varðβ̂ 6ð Þ

1;ols
~Y ijt0

�� �
:

Thus, dvarolsðβ̂ð6Þ1;olsj~Y ijt0Þ is nearly unbiased for varð
β̂
ð6Þ
1;olsj~Y ijt0Þ ½3�: When the design is unbalanced (n0 ≠ n1),

varolsðβ̂ 6ð Þ
1;ols

~Y ijt0

�� �
≠ varðβ̂ 6ð Þ

1;ols
~Y i jt0

�� �
:

Hence, dvarolsðβ̂ð6Þ1;olsj~Y ijt0Þ is biased for varðβ̂ð6Þ1;olsj~Y ijt0Þ:
Due to heteroscedasticity, dvarolsðβ̂ð6Þ1;olsj~Y ijt0Þ over-

estimates varðβ̂ð6Þ1;olsj~Y ijt0Þ if the group with a larger re-
sidual variance has larger sample size and the group with
a smaller residual variance has smaller sample size, and

otherwise may underestimate varðβ̂ð6Þ1;olsj~Y ijt0Þ [3, 4].
Second, the common mean baseline weight μt0 is gen-

erally unknown. We need to estimate μt0 in ~Y ijt0 using

the overall sample mean μ̂t0 ¼
P1

j¼0

Pn j
i¼1

Y ijt0

n0þn1
but

ANCOVA treats μ̂t0 as fixed and fails to capture this
additional variability in the conditional variances. As

shown below, it turns out that varðβ̂ð6Þ1;olsj~Y ijt0Þ underesti-
mates varðβ̂ð6Þ1;olsÞ by a factor of β½6�23;ols varðμ̂t0Þ [3]:

var β̂
6ð Þ
1;ols

� �
¼ E var β̂

6ð Þ
1;olsj~Y ijt0

� �� �
þ β 6ð Þ2

3;ols var μ̂t0
� �

:

Thus, the OLS model-based conditional inference is
biased for unconditional hypothesis testing because of
heteroscedasticity and neglecting of sampling variability
in μ̂t0 . To fix these two problems, we can use the follow-
ing adjusted heteroscedasticity-consistent (HC) variance

estimator to replace dvarolsðβ̂ð6Þ1;olsj~Y ijt0Þ for valid uncondi-
tional inference:

dvaraHCðβ̂ 6ð Þ
1;ols

~Y ijt0

�� � ¼ dvarHCðβ̂ 6ð Þ
1;ols

~Y ijt0

�� �þ β̂
6ð Þ2
3;ols

σ̂2
0

n0 þ n1
;

where dvarHCðβ̂ð6Þ1;olsj~Y ijt0Þ is a HC variance estimator

for varðβ̂ð6Þ1;olsj~Y ijt0Þ [19] and can be output from stand-
ard softwares. HC variance estimators are consistent
(i.e., unbiased in large sample). Among all available HC
variance estimators, HC2 was shown to have the best
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ŷ ij

t 1
Þ2

ðn
0
þn

1
−
5Þ

U
va
rðβ̂

ð6Þ 1;
ol
sÞ
¼

1 n 0
ð1−

ρ2 0
Þσ

2 01
þ

1 n 1
ð1−

ρ2 1
Þσ

2 11
þ
ðρ

1
σ 1

1
σ 0
−
ρ 0

σ 0
1

σ 0
Þ2

σ2 0
n 0
þn

1

AN
CO

VA
-P
os
t
I

β̂ð7
Þ

1;
ol
s
¼

ðy :
1t

1
−
y :
0t

1
Þ−
β̂ð7Þ 2;

ol
sðy

:1
t 0
−
y :
0t

0
Þ

C

va
rðβ̂

ð7
Þ

1;
ol
sjY

ijt
0
Þ¼

ð1 n 0
þ

Xn 0 i¼
1

ðy i
1t

0
−
y :
0t

0
Þ2 ð

y :
1t

0
−
y :
0t

0
Þ

P 1 j¼
0

P n j i¼
1
ðy i

jt 0
−
y :

jt 0
Þ2

Þ
σ2 ϵ

ð7Þ 0

þ
ð1 n 1

þ

Xn 1 i¼
1

ðy i
1t

0
−
y :
1t

0
Þ2 ð

y :
1t

0
−
y :
0t

0
Þ

X1 j¼
0

X n
j

i¼
1
ðy i

1t
0
−
~ y :
1t

0
Þ2

Þ
σ2 ϵ

ð7Þ 1

σ2 ϵð
7Þ 0

¼
ð1−

ρ2 0
Þσ

2 01
,
σ2 ϵð

7Þ 1

¼
ð1−

ρ2 1
Þσ

2 11

d var ol
sðβ̂

ð7
Þ

1;
ol
sjY

ijt
0
Þ¼

ð1 n 0
þ

1 n 1
þ

Xn 0 i¼
1

ðy i
1t

0
−
y :
0t

0
Þ2 ð

y :
1t

0
−
y :
0t

0
Þ

P 1 j¼
0

P n j i¼
1
ðy i

jt 0
−
y :

jt
0
Þ2

þ

Xn 1 i¼
1

ðy i
1t

0
−
y :
1t

0
Þ2 ð

y :
1t

0
−
y :
0t

0
Þ

X1 j¼
0

X n
j

i¼
1
ðy i

1t
0
−
~ y :
1t

0
Þ2

Þσ̂
2 ϵ
ð7Þ

σ̂2 ϵð
7Þ
¼
P 1 j¼

0

P n j i¼
1
ðy i

jt 1
−
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performance in finite samples [3, 4] (e.g.
“HCCMETHOD = 2” in proc. reg or “EMPIRICAL” in

proc. mixed, SAS). β̂
½6�
3;ols is the OLS estimator of βð6Þ3 , and

σ̂20 is the overall sample variance of the baseline body

weight. It follows directly that dvaraHCðβ̂ð6Þ1;olsj~Y ijt0Þ is

asymptotically unbiased for varðβ̂ð6Þ1;olsÞ and we can con-

struct a valid test t ¼ β̂
ð6Þ
1;olsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvaraHCðβ̂ð6Þ

1;olsj~Y ijt0 Þ
q for testing Ho :

τ = 0 unconditionally.
Method 7ANCOVAI: We model the post-treatment

weight Y ijt1 using the binary treatment G and the base-
line weight Y ijt0 :

Y ijt1 ¼ β 7ð Þ
0 þ β 7ð Þ

1 Gij þ β 7ð Þ
2 Y ijt0 þ e 7ð Þ

ij ð7Þ

e 7ð Þ
i0 � N 0; σ2

ϵ 7ð Þ
0

	 

and σ2

ϵ 7ð Þ
0

¼ 1−ρ20
� �

σ201 þ β 6ð Þ
3 p1

� �2
σ20

e 7ð Þ
i1 � N 0; σ2

ϵ 7ð Þ
1

	 

and σ2

ϵ 7ð Þ
1

¼ 1−ρ21
� �

σ211 þ β 6ð Þ
3 p0

� �2
σ20

, where βð7Þ0 ¼ βð6Þ0 −βð6Þ3 p0μ0; and βð7Þ1 ¼ τ. eð7Þi0 and eð7Þi1

are random errors in the control and treatment arms.

Since eð7Þi0 and eð7Þi1 have different variances in general,
model (7) is heteroscedastic and the severity of hetero-
scedasticity is determined by the correlation coefficient,
the variances of the post-treatment weights in two arms,
and whether the design is balanced.

As shown in Table 2, the OLS estimator β̂
ð7Þ
1;ols is an

adjusted mean difference in the post-treatment weights
controlling for a weighted mean difference of the base-
line weights between two arms with equal weighting co-

efficient for the treatment and control arms (i.e., β̂
ð7Þ
2;ols

for both arms). β̂
ð7Þ
1;ols is unbiased for τ. The true condi-

tional variance varðβ̂ð7Þ1;olsjY ijt0Þ incorporates two differ-
ent residual variances. Similar to ANCOVAII, the OLS
model-based inference for ANCOVAI also mistakenly
assumes a constant residual variance σ2ϵð7Þ , which is a

weighted average of σ2
ϵð7Þ0

and σ2
ϵð7Þ1

, as follows:

σ2ϵ 7ð Þ ¼ n0
n0 þ n1

σ2
ϵ 7ð Þ
0

þ n1
n0 þ n1

σ2
ϵ 7ð Þ
1

:

Since σ2
ϵð7Þ is unknown, it is estimated by

σ̂2ϵ 7ð Þ ¼
P1

j¼0

Pn j

i¼1 yijt1−ŷijt1

� �2
n0 þ n1−3

;

where ŷijt1 is the predicted value of yijt1 from model (7).
The closed form expressions of the OLS model-based

conditional variance varolsðβ̂ð7Þ1;olsjY ijt0Þ incorporating

σ2ϵð7Þ and the OLS model-based variance estimator dvarols
ðβ̂ð7Þ1;olsjY ijt0Þ with σ̂2ϵð7Þ substituted for σ2ϵð7Þ are given in
Table 2. Recall that standard statistical softwares reportdvarolsðβ̂ð7Þ1;olsjY ijt0Þ . To show the model-based standard
errors and p-values are valid for unconditional inference,

we need to examine: i) whether dvarolsðβ̂ð7Þ1;olsjY ijt0Þ is un-

biased for varðβ̂ð7Þ1;olsjY ijt0Þ ; ii) whether varðβ̂ð7Þ1;olsjY ijt0Þ
is unbiased for varðβ̂ð7Þ1;olsÞ.
First, dvarolsðβ̂ð7Þ1;olsjY ijt0Þ is unbiased for varolsðβ̂ð7Þ1;olsj

Y ijt0Þ but the unbiasedness of dvarolsðβ̂ð7Þ1;olsjY ijt0Þ as an

estimator of varðβ̂ð7Þ1;olsjY ijt0Þ depends on the relationship

between varolsðβ̂ð7Þ1;olsjY ijt0Þ and varðβ̂ð7Þ1;olsjY ijt0Þ. Asymp-
totically, we have

Δ
β̂

7ð Þ
1;ols

¼ varolsðβ̂ 7ð Þ
1;ols Y ijt0

�� �
− var β̂

7ð Þ
1;olsjY ijt0

� �
¼ σ2

ϵ 7ð Þ
0

−σ2
ϵ 7ð Þ
1

	 

1
n1

−
1
n0

	 

When sample sizes are equal between two arms, we

have

varolsðβ̂ 7ð Þ
1;ols Y ijt0

�� �
≈ varðβ̂ 7ð Þ

1;ols Y ijt0

�� �
:

Thus, dvarolsðβ̂ð7Þ1;olsjY ijt0Þ is nearly unbiased for varð
β̂
ð7Þ
1;olsjY ijt0Þ in a balanced design [3]. When sample sizes

are not equal between two arms,

varolsðβ̂ 7ð Þ
1;ols Y ijt0

�� �
≠ varðβ̂ 7ð Þ

1;ols Y ijt0

�� �
;

it follows directly that dvarolsðβ̂ð7Þ1;olsjY ijt0Þ is biased for

varðβ̂ð7Þ1;olsjY ijt0Þ due to heteroscedasticity. dvarolsðβ̂ð7Þ1;olsj
Y ijt0Þ may over-estimate varðβ̂ð7Þ1;olsjY ijt0Þ when the group
with a larger residual variance has larger sample size and
the group with a smaller residual variance has smaller

sample size, and otherwise may underestimate varðβ̂ð7Þ1;ols

j~Y ijt0Þ [3, 4] . ANCOVAI is robust against heteroscedasti-
city in a balanced design, but not in an unbalanced
design.
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Second, different from ANCOVAII, varðβ̂ð7Þ1;olsjY ijt0Þ is

unbiased for varðβ̂ð7Þ1;olsÞ because varðβ̂ð7Þ1;olsÞ ¼ Eð varð
β̂
ð7Þ
1;olsjY ijt0ÞÞ .
Thus, the model-based standard errors and p-values

are valid for unconditional inference in a balanced de-
sign but are biased in an unbalanced design only due to
heteroscedasticity. This bias can be easily corrected by

replacing dvarolsðβ̂ð7Þ1;olsjY ijt0Þ with an HC variance estima-

tor dvarHCðβ̂ð7Þ1;olsjY ijt0Þ [4, 19] and corrected ANCOVAI
will provide valid unconditional inference.
Constrained Repeated Measures heterogeneous vari-

ance model (“cRM”): We model the baseline and post-
treatment weights (Y ijt0 ; Y ijt1 ) jointly using the binary
time point Tij, time by treatment interaction Gij × Tij:

Y ijt ¼ γ 8ð Þ
0 þ γ 8ð Þ

1 Tij þ γ 8ð Þ
2 Gij � Tij þ e 8ð Þ

ijt j

¼ 0; 1; i ¼ 1; 2;…nj: ð8Þ

e 8ð Þ
i0t0

e 8ð Þ
i0t1

 !
� N

0
0

� �
;
X

0

	 

in the control arm;

e 8ð Þ
i1t0

e 8ð Þ
i1t1

 !
� N

0
0

� �
;
X

1

	 

in the treatment arm;

where γð8Þ0 ¼ μt0 ; γ
ð8Þ
2 ¼ μ0t1−μ0t0 , and γð8Þ2 ¼ τ . Noting

that subjects in the treatment and control arms have dif-
ferent variance-covariance structures for the association
between the pre- and post-treatment weights, we fit a
cRM heterogeneous variance GLS model with group
specific variance-covariance structure (“repeated/group=
” in SAS proc. mixed procedure specifies distinct
variance-covariance structure for each treatment arm).

The formulas of γ̂ð8Þ2;gls and varðγ̂ð8Þ2;glsÞ are listed in Table 2.

The GLS estimator γ̂ð8Þ2;gls is asymptotically unbiased for

γð8Þ2 . REML is used to derive the empirical or model-

based variance estimatordvarremlðγ̂ð8Þ2; gls).

Results
All treatment effect estimators, except the ANOVA esti-
mator, are expressed as the mean difference in post-
treatment measurements adjusting for the chance imbal-
ance in baseline measurement between two arms in cer-
tain ways. Nonetheless, all estimators are unbiased for τ.
To compare these competing methods, we evaluate the
efficiency of point estimators of treatment effect by com-
paring their “unconditional” variances. Since the hypoth-
esis testing of no treatment effect is based on dividing
the point estimator by its standard error (i.e., variance
divided by sample size) and rejecting the null hypothesis

when this ratio exceeds a given threshold, the method
that produces unbiased point estimate with the smallest
unconditional variance is preferred because standard
error in the dominator of statistical test determines the
statistical power.

When study population is homogeneous
ANCOVAI is a more efficient alternative to ANOVA be-

cause varðβ̂ð2Þ1;olsÞ≤ varðβ̂ð1Þ1;olsÞ (Table 1). This advantage
of ANCOVA over ANOVA can also be observed from
the fact that the residual error variance of ANCOVAI is
less than the residual error variance of ANOVA (i.e.,ð1−
ρ2Þσ21 ≤σ21 ). When the correlation coefficient ρ becomes
larger, the ANCOVAI estimator has smaller variance.
Since Y ijt1 and Y ijt0 are highly correlated in general, the
inclusion of Y ijt0 in ANCOVAI explains away some vari-
ability in Y ijt1 and thus reduces the residual variance and
yields a more efficient estimator of treatment effect than
ANOVA.
ANOVA-Change and RM have exactly same point es-

timators of τ and thus have the same variances (Table 1).
To compare ANOVA-Change or RM with ANOVA, we
can derive the difference between the unconditional var-
iances of their treatment effect estimators as follows:

Δ1 ¼ σ0 1−2ρσ1ð Þ:

When ρ < 1
2σ1

, Δ1 > 0 and ANOVA outperforms

ANOVA-Change and RM because the ANOVA estima-
tor has smaller variance. When ρ > 1

2σ1
, Δ1 < 0 and

ANOVA underperforms the other two methods.
It can be shown that the difference between the un-

conditional variances of the ANCOVAI or cRM estima-
tors and those of theANOVA-Change or RM estimators
are always nonnegative:

Δ2 ¼ σ21 þ σ20−2ρσ0σ1
� �

− 1−ρ2
� �

σ2
1

¼ σ0−ρσ1ð Þ2≥0

Thus, ANOVA-Change or RM is less efficient than ei-
ther ANCOVAI or cRM because their estimators have
larger variances. Intuitively ANCOVAI or cRM assumes
that mean baseline weights in two arms are equal in a
randomized study but ANOVA-Change or RM assumes
that there is a baseline difference and needs to estimate
an extra parameter.
As shown in Table 1, the ANCOVAI and cRM estima-

tors of τ are equivalent because βð2Þ1;ols = ρσ0σ1
σ20

. However,

ANCOVAI plugs in the OLS estimators β̂
ð2Þ
1;ols , whereas

cRM plugs in the REML estimators of the variance and
covariance parameters. The numerical difference be-

tween β̂
ð2Þ
1;ols and γ̂ð4Þ3;gls becomes negligible as sample size
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increases. Because of this equivalence between β̂
ð2Þ
1;ols and

γ̂ð4Þ3;gls , varðβ̂ð2Þ1;olsÞ and varðγ̂ð4Þ3; glsÞ are equal [3]. As dis-

cussed previously, ANCOVAI is a conditional model as-
suming fixed baseline covariates. Even though the
model-based variance estimates are conditional, they are
unbiased for the unconditional variance and thus the
usual model-based conditional inference is still valid for
unconditional hypothesis testing. ANCOVAI performs
comparably to cRM [3, 17].

When study population is heterogeneous
A heterogeneous study population justifies the inclusion
of a treatment by baseline weight interaction term. Thus,
ANCOVAII is the correctly specified model, whereas
ANCOVAI is a mis-specified model. In this case, the “con-
ditional” treatment effect is not constant across different
values of baseline weight. The “marginal” treatment effect
τ is simply the average of the conditional treatment effect
over the distribution of the baseline weight and measures
an overall treatment effect. As shown previously, both
ANCOVA models can be used to estimate τ even though
ANCOVAI is mis-specified. Then, what is the advantage
of using a more complex interaction model over a main

effect model? It turns out the ANCOVAII estimator β̂
ð6Þ
1;ols

is more efficient than the ANCOVAI estimator β̂
ð7Þ
1;ols be-

cause varðβ̂ð6Þ1;olsÞ≤ varðβ̂ð7Þ1;olsÞ [5]. Only in a balanced de-

sign varðβ̂ð6Þ1;olsÞ ¼ varðβ̂ð7Þ1;olsÞ and the two ANCOVA
models perform comparably. Note that the OLS model-
based variance estimates for ANCOVAI and II are both
biased for the corresponding unconditional variances, but
the HC-variance estimators provide simple fixes.
The ANCOVAII and cRM estimators of τ are equiva-

lent because βð6Þ2 þ βð6Þ3 ¼ ρ0σ0σ01
σ20

and βð6Þ2 ¼ ρ1σ0σ11
σ20

(Table 2). Two methods only differ in the way two esti-
mators are estimated. ANCOVAII plugs in the OLS esti-

mators β̂
ð6Þ
2;ols and β̂

ð6Þ
3;ols , whereas cRM plugs in the REML

estimators of the variance and covariance parameters.
The numerical difference between the ANCOVAII and
cRM estimators becomes smaller as sample size in-
creases. As discussed previously, standard statistical soft-
wares such as SAS does not output unconditional
variance for ANCOVAII directly but the usual OLS
model-based standard errors and p-values are biased for
unconditional inference in heterogeneous scenario. The
adjusted HC-variance estimator fixes this bias. Corrected
ANCOVAII provides valid unconditional inference and
performs comparably to cRM. Another alternative ap-
proach to estimate variances of the ANCOVAI and II
estimators is to use bootstrap method [20].

Data example
No human data was used in this study. Instead we simu-
lated three weight loss trial data sets based on a pub-
lished study for three scenarios: homogeneous data,
heterogeneous data with balanced and unbalanced de-
signs as follows [21]:

1) The baseline weights for the control and treatment
arms were generated from normal distribution with
mean 88 kg and standard deviation 14 kg. Weights
at 6 month after treatment for the control arm have
mean 86 kg and standard deviation 15 kg. This gives
a ~ 2.3% change from baseline. The mean and
standard deviation of body weight at the sixth
month in the treatment arm are 83 kg and 15 kg,
respectively; This corresponds to a 5.7% change
from baseline.

2) In the homogeneous data, the correlation
coefficient between the pre- and post-treatment
weights is 0.9. One hundred eighty subjects were
assigned to the treatment and control arms equally.
In the heterogeneous data, the correlation coeffi-
cient between the pre- and post-treatment weights
in the control arm is 0.9 and 0.7 in the treatment
arm. Sample sizes are (n0 = 90, n1 = 90) for the bal-
anced design and (n0 = 60, n1 = 120) for the unbal-
anced design. We analyzed the data examples using
the methods outlined in section Methods. The stat-
istical results were reported in Table 3 (SAS pro-
grams are provided in the Additional file 1).

In the first data example, ANOVA produced the lar-
gest standard error and the largest p-value. ANOVA-
Change and RM both outperformed ANOVA with much
smaller standard errors and p-values. ANCOVAI and
cRM outperformed ANOVA-Change and RM with
smaller standard errors and p-values. Although ANCO-
VAI and cRM are equivalent when sample size is large,
there are still minor numerical differences between the
two in finite sample.
For the second data example with a balanced design,

Fig. 2a shows that there is a strong baseline weight by
treatment interaction. Both ANCOVAI and II have het-
eroscedastic errors by treatment arm (Fig. 2b and c). As
shown in Table 2, the OLS model-based standard error
of ANCOVAI is very similar to its HC and bootstrap
standard errors. Thus, heteroscedasticity does not bias
the model-based standard error of ANCOVAI. Although
ANCOVAII is robust against heteroscedasticity in the
balanced design, the OLS model-based standard error of
ANCOVAII (s.e = 1.333) is still not correct because OLS
fails to consider the variability of estimating the overall
mean baseline weight. The adjusted HC standard error
for ANCOVAII is 1.402, which is closer to the model-
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based and HC standard errors of ANCOVAI. The boot-
strapping standard errors for ANCOVAI and II are close
to their HC or adjusted HC standard errors, which sug-
gests the HC and adjusted HC variances perform well in
estimating the unconditional variances. The cRM esti-
mate and its standard error are close to those from
ANCOVAI and II.
For the third example with an unbalanced design,

Fig. 2d also reveals a baseline weight by treatment inter-
action. Both ANCOVA models have heteroscedastic er-
rors by treatment arm (Fig. 2e and f). The model-based
standard errors of ANCOVAI and II are not valid. The
model-based standard errors were larger than the HC
standard errors and thus overestimated the true condi-
tional variances. Compared with ANCOVAI, ANCO-
VAII has a smaller HC standard error (also smaller p-
value) and thus is slightly more efficient. The adjusted
HC standard error for ANCOVAII is very close to the
model-based standard error for cRM. The bootstrapping
standard errors for ANCOVAI and II are very close to
their HC or adjusted HC standard errors.

Discussion
In this study we compare the efficiency of six unbiased
methods analyzing pre-post designs. We found

ANCOVA and cRM are the equally most efficient
methods compared with other alternatives in homoge-
neous and heterogeneous scenarios. In this study, we
focus on the scenario in which randomization is
properly performed and these competing methods all
target the same causal quantity. In the scenarios
where the treatment is not properly randomized or
not randomized at all (e.g., in an observational study),
the baseline score will not be balanced by design. In
this case these competing methods may target differ-
ent causal quantities. Debate over using change-score
analysis (or RM) verse ANCOVA in the non-
randomized setting, generally known as the lord’s
paradox, is a well-known example [22, 23].
The majority of previous studies has only examined

homogeneous study population. In this setting, ANOVA
is one of the least efficient approaches for analyzing pre-
post designs because it does not utilize any baseline in-
formation. ANOVA-Change and RM incorporate the
baseline score as part of outcome, whereas ANCOVAI
includes the baseline score as a covariate. ANCOVAI
outperforms ANOVA-Change and RM because ANCO-
VAI utilizes the assumption that the baseline scores are
balanced between two arms in a randomized study.
Thus, change score is a less efficient way to utilize the

Table 3 Statistical analysis of the three simulated data examples

Scenario Method Estimate Standard error p-value

Homogeneous ANOVA −3.089 2.106 0.144

ANCOVAI −2.422 0.955 0.0121

ANOVA-Change −2.354 0.971 0.0163

RM −2.354 0.971 0.0163

cRM −2.434 0.944 0.0108

Heterogeneous
(n0 = 90, n1 = 90)

ANCOVAI −3.203 1.403a 0.0235

1.397b 0.0231

1.400d n/a

ANCOVAII −3.165 1.333a 0.0187

1.402c 0.0252

1.397d n/a

cRM −3.203 1.405 0.0241

Heterogeneous
(n0 = 60, n1 = 120)

ANCOVAI −3.416 1.415a 0.0167

1.279b 0.0083

1.281d n/a

ANCOVAII −3.399 1.376a 0.0145

1.258c 0.0076

1.260d n/a

cRM −3.396 1.262 0.0078
aOLS regression model-based standard error
bHC standard error for ANCOVA I (main effect) model
cModified HC standard error for ANCOVA II (interaction) model
dBootstrapping standard error (n = 5000)
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baseline score than including the baseline score as a co-
variate. Since we seldom can control the values of the
baseline score in randomized trials, the OLS assumption
that the baseline score is fixed casts doubt on the validity
of ANCOVA for hypothesis testing [6, 12]. Crager
proved ANCOVAI is valid for unconditional inference in
homogeneous scenario [6]. This conclusion can be sim-
ply attributed to that the conditional variance of the
ANCOVAI estimator is an unbiased estimate for its un-
conditional variance [3].
A few studies investigated further a heterogeneous

scenario [3, 4, 10, 12, 24]. Although the heterogeneity
justifies the inclusion of the baseline measurement by
treatment interaction term, ANCOVAI and II are
both unbiased. Yang and Tsiatis showed that

ANCOVAII has a smaller unconditional variance esti-
mator than that of ANCOVAI unless in a balanced
design [9]. However, the OLS model-based variances
of the ANCOVAI and II estimators, reported by
standard statistical softwares, are conditional vari-
ances, not unconditional variances. The OLS model-
based standard errors and associated p-values for
ANCOVAII are generally questionable for uncondi-
tional inference, and the model-based inference for
ANCOVAI is biased only when the design is unbal-
anced [3, 4, 10, 24]. With the corrected HC variance
estimators, both models provide valid unconditional
inference. Choosing between ANCOVAI and II then
becomes an evaluation of a trade-off between simpli-
city and some gains in efficiency.

Fig. 2 Diagnosis plots of ANCOVA main and interaction models in heterogeneous scenario. a Scatter plot of baseline and follow-up weights in
balanced design. Black and red solid dots are data points in the treatment and control arms. Black and red solid lines are the regression slopes of
baseline weight against follow-up weight in the treatment and control arms. b Boxplot of residuals from the treatment and control arms from
ANCOVAI model in balanced design; c Boxplot of residuals from the treatment and control arms from ANCOVAII model in balanced design; d
Scatter plot of baseline and follow-up weights in unbalanced design. Black and red solid dots are data points in the treatment and control arms.
Black and red solid lines are the regression slopes of baseline weight against follow-up weight in the treatment and control arms. e Boxplot of
residuals from the treatment and control arms from ANCOVAI model in an unbalanced design; f Boxplot of residuals from the treatment and
control arms from ANCOVAII model in an unbalanced design
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In homogenous setting, cRM was suggested as a su-
perior choice to ANCOVAI because the unconditional
variance of the cRM estimator is smaller than the condi-
tional variance of the ANCOVAI estimator [25]. Ken-
ward et al. pointed out that such direct comparison
between the conditional and unconditional variances is
not meaningful. Since both estimators are equivalent, it
can be shown that cRM coupled with REML and
Kenward-roger adjustment performs almost identically
to ANCOVAI in finite samples [17]. In heterogeneous
scenario, cRM is comparable to ANCOVAII [3]. In pres-
ence of missing data, applied researchers often prefer
cRM over ANCOVA because it can utilize all observed
data but ANCOVA uses only complete cases. However,
imputation methods which utilize the strong pre-post
correlation, such as weighting and regression imput-
ation, can improve the statistical power for ANCOVA
without biasing estimates, making it comparable to cRM
[17].
Furthermore, ANCOVA has several advantages over

cRM: first, outcome should only be the variable that can
be influenced by treatment. Baseline measurement is
certainly not an outcome by this definition. It is concep-
tually more appropriate to include the baseline score as
covariate, not model it as outcome [5]; Second, it is very
convenient to include other baseline variables in a re-
gression model for more efficient estimates of treatment
effect. Third, it is easy to adjust for other patterns of het-
eroscedastic errors in an OLS regression. For example,
we may expect larger variability in the post-treatment
weights associated with larger baseline weights. cRM
cannot handle this more complex type of heteroscedasti-
city easily. HC-variance estimators for ANCOVA are
simple fixes and readily implemented in statistical
softwares.

Conclusion
Comparing with other alternative methods, ANCOVA is
a simple and the most efficient approach analyzing a
pre-post randomized design. When there exists a base-
line score by treatment interaction, we need to assess
the heteroscedasticity of ANCOVA particularly when
the design is not balanced. The HC-variances should be
used for valid inference when heteroscedasticity is
present. Adding an interaction term in ANCOVA can
gain some efficiency but not including this term does
not bias results.
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