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Abstract

Background: Risk prediction models for time-to-event outcomes play a vital role in personalized decision-making. A
patient’s biomarker values, such as medical lab results, are often measured over time but traditional prediction models
ignore their longitudinal nature, using only baseline information. Dynamic prediction incorporates longitudinal
information to produce updated survival predictions during follow-up. Existing methods for dynamic prediction
include joint modeling, which often suffers from computational complexity and poor performance under
misspecification, and landmarking, which has a straightforward implementation but typically relies on a proportional
hazards model. Random survival forests (RSF), a machine learning algorithm for time-to-event outcomes, can capture
complex relationships between the predictors and survival without requiring prior specification and has been shown
to have superior predictive performance.

Methods: We propose an alternative approach for dynamic prediction using random survival forests in a
landmarking framework. With a simulation study, we compared the predictive performance of our proposed method
with Cox landmarking and joint modeling in situations where the proportional hazards assumption does not hold and
the longitudinal marker(s) have a complex relationship with the survival outcome. We illustrated the use of the RSF
landmark approach in two clinical applications to assess the performance of various RSF model building decisions and
to demonstrate its use in obtaining dynamic predictions.

Results: In simulation studies, RSF landmarking outperformed joint modeling and Cox landmarking when a complex
relationship between the survival and longitudinal marker processes was present. It was also useful in application
when there were several predictors for which the clinical relevance was unknown and multiple longitudinal
biomarkers were present. Individualized dynamic predictions can be obtained from this method and the variable
importance metric is useful for examining the changing predictive power of variables over time. In addition, RSF
landmarking is easily implementable in standard software and using suggested specifications requires less
computation time than joint modeling. (Continued on next page)
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Conclusions: RSF landmarking is a nonparametric, machine learning alternative to current methods for obtaining
dynamic predictions when there are complex or unknown relationships present. It requires little upfront
decision-making and has comparable predictive performance and has preferable computational speed.

Keywords: Area under the curve, Joint modeling, Landmarking, Prediction accuracy, Variable importance

Background
Risk prediction models assist physicians in making per-
sonalized clinical care decisions for their patients. In
predicting a survival outcome, prognostic models are tra-
ditionally developed using variables collected on patients
at a baseline time. When the variables are measured mul-
tiple times over a patient’s follow-up, such as medical lab
results, many models ignore the longitudinal trajectory
of these markers and utilize only baseline values. Thus,
these models fail to take into account how changes in
the marker over time may affect risk. Ideally, a patient’s
survival prediction should be updated dynamically as the
values of the longitudinal marker change. Dynamic pre-
diction incorporates time-dependent marker information
collected during a patient’s follow-up to produce updated,
more accurate estimates of their survival probability.
Two commonly used statistical approaches for dynamic

prediction are joint modeling and landmarking. Joint
modeling involves specifying a model for the longitudi-
nal marker process, a model for the survival outcome, and
uses a function to link the two [1, 2]. Estimation of this
model and computation of the conditional survival proba-
bilities involve numerical integration and can require sub-
stantial computation time [2, 3]. It also requires assump-
tions about the relationship between the marker process
and event time that may be unknown, or even when
known, often lead to convergence issues and pose a com-
putational burden as the complexity increases [2]. When
there is interest in incorporating multiple longitudinal
markers, approximation techniques must be used to eval-
uate parameter estimates but extensions are limited as is
the software to perform the computations [4, 5].
Landmarking requires specifying a sequence of survival

models for the subsample of individuals still at risk at
prediction times of interest during follow-up, referred to
as landmark times. At each landmark time, the model
incorporates the value of the longitudinal marker at that
time, or with extension, the longitudinal marker history
up to that time [6, 7]. In classic landmarking, a Cox pro-
portional hazards model is used. This approach avoids
specifying the distribution of the stochastic marker pro-
cess in time, making it appealing compared to the dis-
tributional assumptions required by joint modeling. It
has been shown that landmarking prediction accuracy is
affected by misspecification of the dependence structure

between the longitudinal process and the survival process,
but is less sensitive to misspecification of the longitudi-
nal marker trajectory and violation of the proportional
hazards assumption [7–9].
Both joint modeling and landmarking have limitations

when used to capture complex relationships between
the marker and survival. These methods have yet to be
explored for dynamic prediction in scenarios with a mul-
titude of available patient and clinical information, where
the quantity and complex relationships between these
variables can present challenges for these classic tech-
niques. If many variables are plausible candidates for
affecting the survival outcome, and these relationships are
largely unknown or complex, correctly specifying a model
to describe their relationship with the survival outcome
can be difficult. This complexity increases with multiple
longitudinally-measured variables, for which the longi-
tudinal marker trajectories, their dependence with the
survival process, and their dependence with each other
must be specified. Both joint modeling and landmark-
ing also rely on a survival model with a proportional
hazards assumption [6, 8], which can be restrictive and
unrealistic in practice. Thus, we hypothesize that a non-
parametric approach for dynamic prediction that does
not require explicit specification of the covariate relation-
ships can improve upon prediction accuracy and ease-of-
implementation.
Machine learning algorithms are nonparametric meth-

ods that assume no prior knowledge about the data and
have become popular in the prediction of survival out-
comes [10–14]. These methods have been shown to have
superior predictive performance compared to traditional
regression methods when there are a large number of pre-
dictors relative to the sample size (high-dimensional data)
and predictors have nonlinear, complex relationships in
the hazard for the survival outcome [15, 16]. Dynamic pre-
diction with machine learning has been explored with the
use of a machine learning ensemble for binary outcomes
adapted to survival data [17]. The predictive performance
of this approach was similar to joint modeling and Cox
landmarking in a data application. However, the method
is complex and does not provide an interpretation of
the covariate effects on survival. We propose a machine
learning approach for dynamic prediction that uses the
tree-based method of random survival forests and is
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easily implementable in standard software. This approach
will provide an alternative way of obtaining accurate
dynamic predictions in the presence of multiple covari-
ates without need for prior specification of covariate
relationships.
A random survival forest (RSF) is a nonparametric

ensemble method for the analysis of right censored sur-
vival data, built as a time-to-event extension of random
forests for classification [12, 18]. The method can handle
multiple covariates, noise covariates, as well as complex,
nonlinear relationships between covariates without need
for prior specification [19]. As such, RSFs often fill a role
in replacing classic Cox regression when the proportional
hazards assumption is in question as it is assumption-
free [20]. There is recent work that explores the use
of RSF in the context of dynamic prediction. One such
work includes an investigation of using a landmark-type
model to predict a time-to-event based on a discrete-
time survival model [21]. Another approach uses counting
processes to dynamically predict risk based on a piece-
wise constant hazard model [22]. A new definition of
the receiver operating characteristic curve has also been
developed for evaluating the performance of RSF [23].
Approaches to handle multiple longitudinal covariates
have been proposed that reduce the dimensionality of
the covariates and subsequently apply RSF to dynamically
predict the event [24, 25]. In our proposal, RSFs fit at
each landmark time can incorporate updated longitudi-
nal information in survival prediction while requiring no
assumptions about the relationship between the longitu-
dinal trajectory and the survival process.
We aim to assess the utility of using RSF in a landmark-

ing framework as an approach for dynamic prediction of
time-to-event outcomes using longitudinal biomarkers. A
simulation study is performed comparing the predictive
performance of a joint model, a Cox landmarking model
and the proposed RSF landmark approach under scenar-
ios of non-proportional hazards and model misspecifica-
tion as well as inclusion of multiple longitudinal markers.
In an application to dynamically predicting death after
heart valve transplant, we compare the predictive per-
formance of different model-building decisions for RSF
landmarking. Additionally, we illustrate the use of RSF
landmarking to obtain dynamic predictions for the devel-
opment of de novo Donor Specific Antibodies (dnDSA)
using longitudinal measurements of the immunosuppres-
sion drug Tacrolimus (TAC) in kidney transplant patients.
The structure of the paper is as follows. In Section

“Methods”, we describe the extension of RSF to be used
in a landmarking framework and give details about how
to assess the prediction accuracy. Sections “Simulation
study” and “Application” assess the methods via simula-
tion and data application, respectively. The “Discussion”
section includes concluding remarks as well as future

directions, followed by “Conclusions” which includes brief
recommendations.

Methods
Dynamic predictions
The observed data is given byDn = {Ti, δi, xi, yi; i = 1, ...n}
where Ti = min(T∗

i ,Ci) is the observed event time for
the i-th subject (i = 1, ..., n), with T∗

i denoting the true
event time, Ci is the censoring time, and δi = I(T∗

i ≤ Ci)
the event indicator. We observe xi, the baseline covari-
ate vector, in addition to yi, a continuous vector of the
longitudinal measurements for the marker, with yij =
yi(tij) denoting the value of the marker observed at time
tij for j = 1, ..., ni, where ni is the number of marker
measurements for individual i.
We are interested in obtaining a predicted probability

of survival for a new subject m from the same population
given their history of longitudinal marker measurements
and baseline covariate data. Specifically, the aim is to
obtain the predicted probability of surviving to a predic-
tion horizon τ +s, s > 0, given that subjectm has survived
up to landmark time τ , where s is a specified prediction
window of interest. That is, our dynamic predictions are
defined as:

πm(τ + s | τ , xm, ȳm(τ ))

= Pr(T∗
m ≥ τ + s | T∗

m > τ ,Dn, xm, ȳm(τ )).
(1)

This prediction is conditional on a summary value of the
history of the marker up to time τ , ȳm. For the purposes
of this manuscript, we assume that this summary mea-
sure is the scalar value of the last observation carried
forward (LOCF), ym(τ ). This formulation can be extended
to include multiple longitudinally-collected markers.

Landmarking
Landmarking involves selecting only the subset of subjects
still event-free at landmark time τ and using a survival
model to estimate the probability of surviving to the pre-
diction horizon τ + s, where the prediction window s is
pre-specified. There is often interest in many landmark
times τ1, τ2, . . . , τL, and thus landmarking involves devel-
oping a prediction model at each time. We construct a
prediction data set for each landmark time τl for the
risk set R(τl) = {i : Ti > τl}, consisting of individu-
als still event-free and uncensored at time τl. To reduce
the potential for bias that can occur from violation of
the proportional hazards assumption within a prediction
interval, administrative censoring is applied to the individ-
uals’ event times at the pre-specified prediction horizon,
τl + s [6, 7]. The selection of multiple landmark times
allows the same subject to contribute to the estimation of
many predicted residual time distributions. For a model
to be fit at each landmark time, every subject still in the
risk set must have a value for the longitudinal marker
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at that landmark time. If the marker is not continuously
observed, this value may not be available in practice and
is imputed, most commonly using LOCF [6]. A separate
survival model is then fit at each τl to obtain an esti-
mate of the landmark-specific effect of the marker for
predicting survival between τ and the fixed horizon τ + s
for the risk set R(τ ). For Cox landmarking, the propor-
tional hazards model at each landmark time τ is given
by h(t|τ , x, y(τ )) = h0,τ (t) exp{x′ξ1,τ + y(τ )ξ2,τ } for τ ≤
t ≤ t + s, where h0,τ (t) is the landmark-specific base-
line hazard function and ξτ = (ξ1,τ , ξ2,τ )′ is the vector of
landmark-specific coefficient estimates corresponding to
that landmark time.

Random survival forests
Random Survival Forests is an ensemble tree-based
method for the analysis of right-censored survival data
and is an extension of the random forest method [18,
26]. Survival trees are built by recursively partitioning the
covariate space using binary splits to form groups of sub-
jects who are similar according to the survival outcome
[27]. The RSF predictor ensemble is formed by aggregat-
ing the results of many survival trees. Here, we present the
RSF algorithm for creating a tree ensemble for predicting
survival for a given set of covariates, as described in [28].

1 Draw B (ntree) subsamples of a specified sample size
from the original dataset (with or without
replacement).

2 Grow a survival tree for each subsample b = 1, ...,B.

(a) At each tree node select a subset of the
predictor variables available to try as
candidates for splitting (mtry).

(b) Select the node split from the candidate
variables that maximizes the survival
difference between the daughter nodes based
on selected split criterion (splitrule) up to the
number of predefined split points (nsplit ).

(c) Repeat (a)-(b) recursively on each daughter
node until stopping criterion is met, often the
number of unique cases in each terminal node
(nodesize).

3 Calculate the cumulative hazard function for each
tree using the terminal nodes. Aggregate information
from the B survival trees to obtain a risk prediction
ensemble.

This method is implemented in the R package random-
ForestSRC with the function rfsrc() and can be tailored
based on different ensemble parameters that affect tree
building [29]. Selection of these parameters can change
the results of the predictions [29], and in Table 1 we show
the inputs used in this manuscript [26]. The parameters

Table 1 Parameters of a Random Survival Forest with suggested
values

Parameter Description Suggested value

ntree how many subsamples should be
performed

500-1000

sampsize proportion of the data should be
selected for each subsample

63% of available data

samptype Sampling Done With Replacement
(swr) or without replacement (swor)

swr

nodesize number of unique cases in each
terminal node

15

mtry how many variables should be
included as candidates for splitting

√
# variables

nsplit how many splits should be
considered for each candidate
variable

10

splitrule impurity measure which aims to
create the two most dissimilar
daughter nodes at each split

“logrank”

that affect each node split include mtry and nsplit, which
allow selection of how many variables should be included
as candidates for splitting and how many splits should
be considered for each candidate variable respectively.
Specifying the number of splits considered for each can-
didate variable can reduce computation time compared
to testing all possible split points for each covariate. The
parameter nodesize denotes the number of unique cases in
each terminal node and is mentioned in the existing soft-
ware package documentation as something that should be
experimented with to improve predictive performance.

RSF ensemble for dynamic prediction
At each landmark time, the general RSF algorithm is
applied to the corresponding landmark data set to build a
risk prediction ensemble. Specifically, for landmark time
τ we apply the RSF algorithm to the risk set R(τ ) = {i :
Ti > τ } using predictor variables Ki = (xi, ȳi(τ )) for each
subject i in the risk set. Once each tree has reached the
stopping criteria of the selected split type, the ensemble
construction consists of aggregating tree-based Nelson-
Aalen estimators. We extend the Morgensen et. al [28]
formulation to our landmark framework. For each sub-
sample b drawn from risk set R(τ ), we obtain a survival
tree, denoted Qτ

b and a unique terminal node of subjects
with the covariate vector K = (x, ȳ(τ )), denoted Qτ

b(K).
Let cτib be the number of times that subject i is selected
in the bth subsample for landmark time τ . For subject i,
we define the counting process as Ni(t) = I(Ti ≤ t)
and the at-risk process as Yi(t) = I(Ti > t) [30]. For
landmark time τ , we then define the landmark counting
process and at-risk processes as Nτ

i (t) = I(Ti ≥ τ)Ni(t)
and Y τ

i (t) = I(Ti ≥ τ)Yi(t), respectively. Then, using
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counting process notation as in [28], we define the aggre-
gated counting and at-risk processes for each subsample b
based on the landmark population, respectively, as

Nτ
b (t,K) =

n∑

i=1
cτibI(Ki ∈ Qτ

b(K))Nτ
i (t);

Y τ
b (t,K) =

n∑

i=1
cτibI(Ki ∈ Qτ

b(K))Y τ
i (t).

where in the terminal node corresponding to covariate
vector K, Y τ

b (t,K) is the number at risk at time t and
Nτ
b (t,K) is the number of uncensored events up to time t.

To estimate the conditional cumulative hazard Hτ
b (t|τ ,K)

for the terminal node corresponding to covariate vector K
in the bth subsample, we use a nonparametric conditional
Nelson-Aalen estimator [31] that is based on subjects at
risk at time τ and is given by

Ĥτ
b (t | K) =

∫ t

τ

Nτ
b (du,K)

Y τ
b (u,K)

.

The dynamic prediction for a new patient with covariate
vector Km = (xm, ȳm) at prediction time τ as defined in
Eq. (1) is then given by

π̂m(τ + s|τ ,Km) = exp
{

− 1
B

B∑

b=1
Ĥτ
b (τ + s | Km)

}
.

Additional considerations for building RSF models
Since the landmark formulation involves fitting a new
ensemble at each landmark time τ , special consideration
of the data and model formulation can occur at each pre-
diction time. Instead of excluding individuals with miss-
ing baseline predictors, since we are using a tree-based
algorithm, a forest can be grown in RSF to impute miss-
ing values to improve predictions [26]. This process can
be done both when building the predictive risk ensem-
bles, or when obtaining predictions for new individuals.
In addition, the user-specified tuning parameters for the
landmark-specific RSF can be adjusted separately at each
landmark time to achieve optimal predictive performance.
The function tune.rfsrc() is available in the random-
ForestSRC package and uses grid search to determine the
optimal terminal node size (nodesize) and number of vari-
ables to try as candidates for splitting (mtry) [29]. The
optimal values for these parameters are selected to min-
imize the out-of-bag (OOB) prediction error, which is
estimated using Harrell’s concordance index [26]. Tuning
is performed using fast trees, which builds survival forests
using the specified number of subsamples and sampling
type. This reduces computational speed but may not be as
accurate as using the full forest [29].

Variable importance
RSFs can capture nonlinear relationships between multi-
ple covariates for predicting survival, and the landmarking
RSF allows for these relationships to change over time.
RSF gives an interpretation of variables that play a key role
in predicting the survival outcome by providing a Variable
Importance (VIMP) measure for each predictor. VIMP is
defined as the change in prediction error on a new test
case if variable x were not available, given x was used to
grow the original forest. This is calculated via permuta-
tion of out-of-sample (OOB) observations that were not
involved in building the trees [12, 32]. VIMP is a rela-
tive measure compared to the other variables included in
building the forest ensemble. A zero or negative VIMP
value at a particular landmark time reflects that the vari-
able does not contribute predictive power for surviving
the prediction window at that prediction time during a
patient’s follow-up. VIMP can change during follow-up
for the different covariates and can be used by clinicians
to identify how the importance of the covariates change as
the patient survives to time points beyond baseline.

Assessing predictive performance
We assess the predictive performance of each method
based on calibration and discrimination. Area under the
receiver operating characteristic curve (AUC) was used
to assess discrimination, and Brier score (BS) as an over-
all measure for both calibration and discrimination, and
root mean square prediction error (RMSPE) was used
to compare predicted probabilities to the true survival
probabilities. To account for the censoring present in a
survival outcome as well as the changing incidence at each
landmark time, we use time-dependent versions of these
measures [33]. The time-dependent AUC, AUC(τ , s), is
used to determine how well the predicted probabilities
discriminate between those likely and unlikely to experi-
ence an event in the prediction window s given that they
are event-free at landmark time τ . This value ranges from
0 to 1, with higher values indicating better discrimination.
The dynamic Brier score, BS(τ , s), is defined as the mean
square error between the true event indicator and the pre-
dicted probability of an event in the prediction window s
for those event-free at landmark time τ [34], with lower
values indicating better predictive ability.

Simulation study
A simulation study was performed to compare the pre-
dictive performance of the RSF landmarking approach to
a joint model and Cox landmarking method. Specifically,
the four main aims were to compare performance under
the scenarios of (1) a simple relationship between the lon-
gitudinal and survival processes, (2) a violation of the
proportional hazard assumption and a complex depen-
dence of the longitudinal marker process, (3) multiple
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longitudinal outcomes, and (4), multiple noise variables
not associated with the survival process.

Data generation
The data were generated using a joint model. The longitu-
dinal processes for k longitudinal outcomes were modeled
using a linear mixed effects model that included only main
effects for three binary baseline covariates and a random
intercept and slope.

yik(t) = mik(t) + εik(t) = x′
ikβk + z′ikbik + εik(t)

where the longitudinal measurements yijk = {yik(tij), j =
1, . . . , nik} are simulated for each subject i for measure-
ment time tijk , and xik and zik are covariate vectors asso-
ciated, respectively, with the vector of fixed effects βk and
vector of random effects bik , bik ∼ N(0,Gk), where Gk
is the variance matrix, and is independent of εik(t) ∼
N(0, σ 2

k ). The estimate of true unobserved value of each
underlying longitudinal covariate is mik(t). In this simu-
lation study, we simulate two longitudinal markers,mi1(t)
and mi2(t), where xi1 = xi2 = (1, t,X1,X2,X3)′ and zi1 =
zi2 = (1, t)′.
For Aims 1-2 including only one longitudinal outcome,

two different scenarios were assumed for the survival
process, each with varying complexity in the associa-
tion between the survival and longitudinal processes. In
Scenario I, we simulated from a standard joint model
where the hazard of the event depended only on the
true current marker level. Scenario II included an inter-
action between log(1 + t) and the association parameter
to induce a violation of proportional hazards, and also
included a quadratic trend in the relationship between the
longitudinal marker and the survival outcome:

Scenario I: hi(t) = h0(t) exp{γ ′wi + α1mi1(t)}.
Scenario II: hi(t) = h0(t) exp{γ ′wi + α1mi1(t)2 log(1 + t)}
where wi = (Xi1,Xi2,Xi3)′ is the vector of base-
line covariates associated with the vector of coefficients
γ = (γ1, γ2, γ3)′. The scalar α1 quantifies the associa-
tion between the error free current measurement, mi1(t),
and the time-to-event outcome.We use aWeibull baseline
hazard, h0(t) = exp(σ1)σ2tσ2−1.
For Aim 3, we included the second longitudinal marker

using a quadratic relationship with the marker and the
survival process:

Scenario III: hi(t)=h0(t) exp{γ ′wi+α1mi1(t)+α2mi2(t)2}.

A total of 500 simulated data sets of 1000 subjects each
were generated. The subjects were assumed to have been
followed for a period of up to 15 years, with longitudi-
nal measurements at baseline and at up to 30 follow-up
times generated from an exponential distribution with

a rate of 2 per year for both longitudinal outcomes.
Censoring was simulated under a uniform distribution.
Each of the scenarios resulted in approximately 50%,
43%, and 45% censoring, respectively. To address the
fourth aim of the simulation study, an additional set of
7 binary “noise” variables, Xi4, . . . ,Xi10, were simulated
with varying prevalence, but not included in generating
the survival and longitudinal data under Scenarios I, II,
or III. Additional details and the parameter values for
the simulation are given in Supplementary Section 1 in
Additional file 1.

Model fitting
An identical procedure was repeated on data sets from
Scenario I, II and III. Each dataset was randomly split
into 50% training and 50% testing data sets. Each predic-
tion method was then fit to the training sets and used to
compute dynamic survival probabilities on the 500 test
individuals, which we used to assess predictive perfor-
mance. Evaluation of predictive ability via AUC, Brier
score and RMSPE was performed at five follow-up times
for each scenario, and values were averaged across simu-
lated data sets. A prediction window of s = 5 years was
used for all three scenarios.
We fit a joint model as specified in data generation with

a linear mixed effects model for the longitudinal process
and the true current value of the marker included in the
survival process. This model was correctly specified for
Scenario I, but misspecified for Scenario II. For Scenario
III, we fit two misspecified joint models. One in which fit
the longitudinal marker y1 as in Scenarios I and II, and the
longitudinal marker y2 is treated as a baseline covariate,
and a second in which we include both longitudinal mark-
ers using a multivariate shared parameter joint model
for longitudinal and survival outcomes under a Bayesian
estimation approach (implemented using the JMBayes R
package), ignoring the quadratic relationship with the haz-
ard. We used Cox landmarking by fitting a simple Cox
model with LOCF imputation of the longitudinal marker
at each of the landmark times. Details of the Cox model
and jointmodel that were fit and how dynamic predictions
were obtained can be found in Supplementary Section 2
(Additional file 1).
For the RSF landmarking approach we fit a RSF at

each landmark time, using LOCF for the longitudinal
marker as in the Cox landmarking. Each RSF was run
with 1000 trees and all other suggested values in Table 1.
We also fit the RSF models with parameter tuning at
each landmark time to select the number of covariates
to try as candidates (mtry) and final node size. We fit
all the modeling approaches twice: (1) with w including
only the 3 baseline variables that were used in the data
generation, as well as (2) including the 7 simulated noise
variables.
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Fig. 1 Simulation Results. Simulation estimates for AUC (upper panels) and BS (lower panels) for predicted probability
P(T∗ ≤ τ + 5 | T∗ > τ , y(τ ), x) from a Cox landmarking model (Cox), joint model (JM), and RSF landmarking approach (RSF). Left panels: a linear
trend in marker (Scenario I), middle panels: quadratic trend in marker with non proportional hazards (Scenario II), right panels: Inclusion of two
longitudinal covariates (Scenario III, joint model shown is the multivariate model). The lighter “noise” lines represent the models including the
additional 7 simulated variables that were not used in generating longitudinal and survival data

Results
In Scenario I (Fig. 1, left panel), when there is a simple
relationship between the survival and marker processes
where the survival depends only on the true current level
of the marker, the RSF landmarking approach does not
perform better than the Cox landmarking or correctly
specified joint model based on both AUC and Brier score.
The RMSPE followed a similar pattern to BS (Additional
file 1 Table S3) The AUC of all models decrease over time,
which is likely due to a selection process that induces
increasing homogeneity in the at-risk population at later
prediction time points [33]. The landmark Cox and RSF
models experience a greater decrease in AUC over time
possibly since these models are trained on smaller data
sets at later prediction times.
In Scenario II (Fig. 1, middle panel), when we violate the

proportional hazards assumption and introduce a more
complex relationship between the marker and the sur-
vival process, RSF landmarking performed better in terms
of both AUC and BS at every time point except the ear-
liest landmark where it performed similarly to the Cox
landmarking approach and the misspecified joint model.

The performance of RSF landmarking was similar across
all landmark times. In contrast, both the misspecified
joint model and Cox landmarking had worsening predic-
tive performance at later landmark times, with the largest
decrease over time seen in the misspecified joint model.
The RMSPE of the models can be seen in Additional File 1
Table S6, and follows a similar pattern to BS.
In Scenario III (Additional File Tables S7-9), the naïve

joint model that uses only longitudinal information from
one marker performed similarly to RSF at baseline, but
at later landmarks had worse performance. The multi-
variate joint model that uses both longitudinal markers
(Fig. 1, right panel) performed slightly better than RSF
at early landmark times but followed the same pattern
of reduction over time as the naïve joint model. The
Cox landmarking approach had performance similar to
the joint models at later landmark times as the longitu-
dinal quadratic relationship between y2 and the hazard
changed. The RSF method performed consistently across
time points and was closest to the true probability at
every landmark time, with AUC, BS, and RMSPE showing
similar patterns.
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In all scenarios, all methods (Cox noise, JM noise, RSF
noise) had decreased performance when variables were
included that were not associated with the survival pro-
cess (Fig. 1). In Scenario I (simple relationship), the per-
formance of the RSF decreased more with the inclusion
of the noise variables compared to the other two meth-
ods. In Scenario II (complex relationship), the reduction
in the RSF landmark and joint modeling approach was
less severe than the Cox landmark approach. All predic-
tions were similar with and without noise in Scenario III.
In Figures S1 in Additional file 1, we demonstrate that for
Scenario II the VIMP of the noise variables under the RSF
landmarking approach is close to 0 across the landmark
times.
Estimation and prediction using the Cox landmarking

model, the joint model, and RSF landmarking took on
average about 25 s (s), 80s, and 19s, respectively, for the
5 landmark times for all scenarios. The multivariate joint
model took much longer at about 15 min on average.
When noise covariates were included, estimation and pre-
diction of the RSF landmarking increased to around 30s.
RSF landmarking with tuning increased time by about 10s
for the correct set of covariates and about 30s with the
noise variables included. No substantial improvements in
predictive performance were seen from tuning in Scenario
I and across all scenarios when no noise is present. But,
with the more complex relationships in Scenarios II and
III, slight improvements in AUC, BS and RMSPE can be
seen in the tuned compared to author-selected parame-
ter models when noise variables are included (Additional
File 1, Tables S1-S9).
Overall, from the results of our simulation study we

found that (1) RSF landmarking did not have good pre-
dictive performance when there was a simple relationship
between the survival and longitudinal marker processes
and few baseline covariates; (2) When the relationship
between the marker and survival process was complex,
and the proportional hazards assumption violated, the
RSF landmark approach performed better than Cox land-
marking and a misspecified, simple joint model; (3) The
RSF method can accommodate more than one longitu-
dinal covariate with good predictive performance relative
to misspecified joint modeling and Cox landmarking; (4)
When extra noise variables are included and there are
complex relationships present, including these covariates
in the RSF landmarking reduces predictive performance
only slightly; (5) Parameter tuning when predicting with a
small number of covariates did not substantially improve
performance and may not be necessary.

Application
We use two data applications to demonstrate (1) the pre-
dictive performance of various RSF model specifications,
and (2) the computation and use of variable importance

and individualized dynamic predictions from a RSF land-
marking approach.

Heart valve transplant
We use an observational study of patients who received
an aortic valve replacement surgery [35] to assess the
predictive performance of RSF landmarking and evalu-
ate various model specifications in a clinical application.
Data were available for 256 patients who were followed
post surgery for whom longitudinal measurements were
collected for two different heart function measures, left
ventricular mass index (LVMI) and ejection fraction. Data
are publicly available in the joineR package in R software
[36]. The aim was to use these longitudinal marker mea-
surements and baseline patient characteristics to predict
the probability of surviving a prediction window of 3 years
at landmark times 0.5, 1, 1.5, 2, 2.5, 3 years post surgery.
We fit several variations of the RSF landmarking

approach to evaluate various RSFmodeling specifications:
imputation, administrative censoring, tuning, and vari-
able selection (Additional file 1, Table S10). We compare
the predictive performance of these RSF landmark mod-
els to each other, as well as to Cox landmarking, and a
joint model for survival and LVMI that assumes a lon-
gitudinal marker trajectory for LVMI, and a dependence
structure based on the true current LVMI level. All mod-
els included the following clinically relevant variables: sex,
age, preoperative left ventricular ejection fraction, pres-
ence of concomitant coronary artery bypass graft, and
implanted aortic prosthesis type. We also fit RSF models
with a larger set of 16 baseline predictors. The longi-
tudinal marker of ejection fraction was included in the
RSF and Cox models, but excluded from the joint model
due to the associated increase in modelling complexity.
For both the RSF and Cox landmarking, the longitu-
dinal measures were imputed at landmark times using
two different approaches, LOCF and subject-specific pre-
dictions from a linear mixed model (LMM). Predictive
performance measures of BS and AUC, as described pre-
viously, were computed at each landmark time using 5-
fold cross-validation, repeated and averaged across 100
iterations.
First, we compare the RSF landmark approach with Cox

landmarking and joint modeling (Additional file 1, Figure
S2). The RSF approach has similar predictive performance
to Cox landmarking in terms of AUC and BS, with the RSF
models having slightly higher AUC and lower BS at earlier
landmark times. The RSFmodel has similar BS to the joint
model at earlier landmark times but worse AUC, indicat-
ing that although the model has worse discrimination it is
possibly better calibrated at earlier times.
Second, comparing within the various RSF specifica-

tions, we assess RSF models that use LOCF versus LMM
imputation (Fig. 2). Based on AUC and BS, both the tuned
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Fig. 2 Heart Valve Application Results. Comparison of average cross-validated AUC (left panel) and BS (right panel) of RSF landmarking based on
imputation method for missing longitudinal values. Tuned = RSF parameters were tuned; LOCF = imputation using last-observation-carried forward;
LMM = imputation using subject-specific prediction from a mixed model for the longitudinal marker

and selected parameter RSF models that used the LOCF
imputation performed better than their LMM imputed
counterparts at later landmark times, but similarly or
worse at earlier landmark times.
Third, as a nonparametric method, RSF does not rely

heavily on the proportional hazards assumption, and thus
the administrative censoring of the event time that is
used in Cox landmarking may not be necessary. RSF land-
marking without administrative censoring had similar, but
slightly worse, predictive performance compared to the
method using administrative censoring (Additional file 1,
Figure S3).
Fourth, in high-dimensional settings, Cox and joint

models can be restrictive in the number of variables that
they can include for model stability. We compare a RSF
model with a clinically-relevant set of variables to RSF
landmark models that uses all of the 15 available baseline
variables. AUC and BS were very similar for both meth-
ods, with the RSFmodels using all variables having slightly
higher AUC at some landmark times (Additional file 1,
Figure S4).
Fifth, we assess the performance of RSF for dynamic

prediction using tuning to optimize the inputs for the
number of variables to try at each node (mtry) and
terminal node size. We found that tuned RSFs have
worse performance in terms of AUC and BS compared
to the selected settings given in Table 1 (Fig. 2, Addi-
tional file 1 Figure S4). This was seen in both the
full and reduced models, as well as with both types of
imputation.
Overall, we found that RSF shows good performance

using the suggested parameter inputs and can allow for
increased prediction abilities by imputing missing data

within the RSF procedure without significantly affecting
performance. In this particular data application, we find
that the RSF models perform similarly to Cox landmark-
ing, but not as well as the simple joint model. This is
possibly due to the lack of complexity in the relationships
between variables, as was explored in the simulation, or
due to the limited sample size on which to build the RSF
models.

Kidney transplant study
To demonstrate RSF landmarking for computing individ-
ualized dynamic predictions, we use a retrospective study
conducted at the University of Colorado Hospital which
followed patients post-kidney transplant for up to 7 years.
Data collected included basic baseline patient character-
istics, as well as longitudinal immunosuppression drug
levels (Tacrolimus, TAC), and the timing of the develop-
ment of de novo Donor Specific Antibodies (dnDSA), an
early warning signs of adverse outcomes. Additional study
details can be found elsewhere [37, 38]. The objective
was to determine an individual patient’s risk of devel-
oping dnDSA within 1 year using baseline factors and
a patient’s up-to-date longitudinal history of TAC. With
this application, we demonstrate the assessment of RSF
variable importance (VIMP), and illustrate computation
of patient-specific dynamic predictions of dnDSA using
baseline and TAC data.
There were 535 individuals that met the final inclusion

criteria, of which 178 (33%) experienced dnDSA during
follow-up. Post transplant, patients were monitored for up
to 7 years with up to 90 measures (median 22 [IQR: 15-
32]) of TAC ranging from 0 to 30. Ten baseline covariates
were included, the full list is given in Fig. 3.
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Fig. 3 TAC Landmark VIMPs. Delete-d jackknife 95% asymptotic normal confidence intervals for VIMP for the Kidney Transplant data set at landmark
times 6, 12, 18, and 24 months. Variables included in analysis are listed in the key. Donor Type = Deceased or Living donor; HLA mismatches = of
mismatches between the kidney donor and kidney recipient; Induction Therapy = thymoglobulin or other; TAC = LOCF of TAC measurement

We fit a RSF landmark model at each of the land-
mark times including all available covariates. The his-
tory of longitudinal TAC was summarized at each land-
mark time as a scalar value using LOCF. The repeated
5-fold average cross-validated AUCs at landmark times
6, 12, 18, 24 months were 0.58, 0.57, 0.52, and 0.64,
respectively.
Variable importance assessments were performed at

landmark times τ = 6, 12, 18, 24 months with a predic-
tion window of s = 12 months (Fig. 3). VIMP confidence
intervals were obtained using a delete-d jackknife esti-
mator, that was calculated using 1000 subsamples [32].
The VIMP of TAC was variable across landmark times,
but was generally becoming more important in predict-
ing dnDSA as time from transplant increased, though
reductions at landmark time 18 require additional inves-
tigation. While ethnicity was important early on, it had
VIMP values below 0 for later times indicating that it may
not be of much use predicting dnDSA when considerable
time has lapsed since transplant. Age and the number of
Human Leukocyte Antigens (HLA) mismatches proved to

be relatively important at all timepoints and additional
covariates to investigate include the type of induction and
maintenance immunotherapy.
As an example of dynamic prediction with RSF land-

marking, we fit a reduced RSF landmark model including
the covariates age, ethnic group, HLAmismatch, and last-
observed TAC, that were shown to be important from
the variable importance plot. We present the predicted
conditional dnDSA-free survival curves for two individ-
uals in the data set at landmark times of τ = 6, 12
months (Fig. 4). These two individuals had similar event
times but differing baseline covariates. Subject A had a
high TAC value at the first landmark time, while Subject
B had a low TAC value, and Subject B’s survival curve
is noticeably lower. Given that both individuals survive
to 12 months, we update the survival predictions using
their up-to-date TAC values 12 months post-transplant,
and find that Patient B’s 12-month survival probability
has improved based on their increased TAC value, indi-
cating that changes in drug exposure can impact the
development of dnDSA.
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Fig. 4 Individual Predictions. Longitudinal trajectory and RSF landmark conditional predicted probability of survival for s = 24 months at landmark
times τ = 6 (top panels) and 12 (bottom panels) months for 2 individuals who experienced an event at t = 18 months (red dotted lines). Model
AUCs were 0.61 (τ=6) and 0.62 (τ=12). Black dotted lines represent transition from left axis of TAC values to right axis of predicted probability.
HLAmis = HLA mismatches

Discussion
Dynamic prediction of survival outcomes is a powerful
tool in making important clinical decisions. In this paper,
we proposed a dynamic prediction method using a RSF
landmarking approach. The use of a machine learning
approach for dynamic prediction has practical and per-
formance advantages over the existing methods of Cox
landmarking and joint modeling.
In our simulation study, we assessed the performance

of the RSF landmarking approach. When there are a
small number of baseline variables and complex rela-
tionships do not exist between the marker and sur-
vival process, the RSF landmark approach does not have
good predictive performance compared to Cox land-
marking and a correctly specified joint model. However,
when there was a complex relationship for the depen-
dence between the marker process and the hazard and
the proportional hazards assumption was violated, RSF
landmarking outperformed a simple, misspecified joint
model and Cox landmarking. In the setting with two
longitudinal markers, the RSF landmarking approach,
which does not require specification of the marker
relationships in the survival process, outperformed the
joint model that included both longitudinal markers but

misspecified their relationship in the hazard function. As
well, when there were noise variables included in themod-
eling that were not used in the data generation process, the
predictive performance of all methods worsened, but the
decrease in performance was less for the RSF landmark
models than Cox landmarking. Thus, RSF landmarking is
beneficial in situations in which there are complex rela-
tionships present between the marker and survival out-
comes and when there aremultiple predictors present, but
their clinical relevance and predictive power is unknown.
In the heart valve transplant application, we assess the

predictive performance of RSF landmarking and its var-
ious specifications in a clinical setting. We compared
the imputation of the longitudinal markers in RSF land-
marking using a LMM or LOCF, and found that with
increasing landmark time the LOCF imputation had bet-
ter predictive performance. This is possibly due to a
misspecified LMM for the longitudinal markers that pro-
duces biased predictions at later landmark times. RSF
with administrative censoring, which is used in Cox land-
marking due to its reliance on the proportional hazards
assumption, had slightly better predictive performance for
the nonparametric RSF landmark models. Tuning of the
RSF parameters increased computation time substantially
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but often did not improve predictive performance com-
pared to using suggested parameters. This would indicate
that the application of the default tune.rfsrc, which is
based on Harrell’s concordance index, may not be suffi-
cient in this context. While this measure is related to the
time-dependent AUC [39], it may not be appropriate for
assessing predictive performance for a fixed prediction
horizon [40]. Instead, we can consider coding the selection
of optimal tuning parameters that maximizes the time-
dependent AUC metric at each landmark time. Selecting
a small subset of clinically relevant variables compared to
including all available variables did not improve perfor-
mance consistently across landmark times. Overall, using
RSF landmarking and LOCF imputation with suggested
specifications was found to be sufficient for maintaining
predictive performance and did not pose a computational
burden.
In the kidney transplant application, we demonstrate

the use of RSF landmarking for obtaining and under-
standing dynamic predictions to answer clinical hypothe-
ses. Previous studies have found that age, ethnicity, HLA
mismatches, and Tacrolimus were associated with devel-
opment of dnDSA [37]. This was confirmed with the
use of VIMP plots that also identified the novel pre-
dictor of type of maintenance immunosuppresion. Eth-
nicity was important in avoiding dnDSA immediately
following transplant, but less so as time progressed post-
transplant. Thus, the use of VIMP plots demonstrates
how relationships between the survival outcome and
predictors can change over time. This application also
demonstrated how predictions of dnDSA can be updated
in real time based on the TAC value at the landmark
time. This provides a tool for personalized medicine, as
it may help to inform the clinician whether to change
the dosing of TAC based on the patient-specific risk of
dnDSA.
Thus, an advantage of RSF landmarking is that this

nonparametric, machine learning approach allows for us
to capture complex, nonlinear relationships between the
longitudinal and baseline variables in the hazard of the
survival outcome. It does not rely on a proportional haz-
ards assumption as in Cox landmarking, and does not
require prior correct specification of the longitudinal tra-
jectory of the marker or the dependence relationship
between the marker and survival process as in joint mod-
eling. As well, it has good predictive performance in the
presence of noise variables, indicating that it is a useful
approach when there are multiple predictors for which
the clinical relevance is unknown. RSF landmarking is also
beneficial in situations where multiple longitudinal
biomarkers are present, as joint models require the spec-
ification of the longitudinal trajectory and their depen-
dence in the hazard for each marker process. VIMP can
also be useful in this case to see the changing predic-

tive power of the markers over time. In addition, RSF
landmarking is easily implementable in standard soft-
ware and using specifications suggested in thismanuscript
requires less computation time than joint modeling, espe-
cially when there is more than one longitudinal marker or
complex covariate relationships exist.
A limitation of RSF landmarking is that the predic-

tions are not linked over time due to the use of inde-
pendent RSF models at each landmark time results. Cox
landmarking with landmark-specific baseline hazards and
covariate effects suffers from the same issue, and thus
both approaches do not provide a consistent prediction
model [41]. Extensions to Cox landmarking include spec-
ifying the coefficient estimates and baseline hazard as a
smooth function of landmark time to link the landmark
models. To apply a similar smoothing technique in an
RSF landmarking frameworks, we can compute the cumu-
lative hazard used in the survival prediction at time τ

as an average of the cumulative hazards for a sequence
of landmark times surrounding τ . A similar approach
was used for dynamic prediction with large scale data,
where a sliding window in combination with RSF was
used to put more emphasis on the recent versus older
past [42].
In this work, we present a comparison of RSF land-

marking and its various specifications to two existing
methods and demonstrate situations in which it can be
expected to have greater utility and predictive perfor-
mance. Future work will require exploring the use of RSF
landmarking in various situations for which extensions to
RSFs exist but should be assessed before used in a land-
marking framework, such as competing risks [13] and
interval censored survival outcomes [43].Additionally, a
comparison of our RSF approach to recently developed
conditional inference and relative risk forests [44] for
time-varying covariates is of interest. We have demon-
strated the use of RSF landmarking using models built
using the log-rank split rule that is based on a propor-
tional hazards assumption [27]. Although, we did not
find that this method had poor performance in situa-
tions where the proportional hazards assumption was
violated, the use of other survival ensemble methods that
use other splitting rules, such as conditional inference
forests can be explored [45]. Additionally, as in Cox land-
marking, we use a LOCF imputation for the longitudinal
marker at landmark times at which it is not observed. We
extend this in the heart valve data application where we
explore the use of a model for the longitudinal marker
to impute the marker value, as in [46]. However, alterna-
tive specifications can be considered using other summary
measures such as the marker slope, or using a func-
tion of multiple time-varying covariates to grow trees
[24, 25]. The ability of RSFs to deal with correlation
among its predictors allows for us to include and evaluate
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multiple marker specifications when building the predic-
tive model. Additional studies are required to demon-
strate the use of RSF landmarking in high-dimensional
settings.

Conclusions
RSF landmarking is a nonparametric, machine learning
alternative for dynamic prediction that can capture com-
plex, nonlinear relationships between the longitudinal and
baseline variables in the hazard of the survival outcome.
It is a useful approach when there are multiple candidate
predictors for which the clinical relevance is unknown
or in situations where multiple longitudinal biomarkers
are present. Examining the VIMP over time can provide
insight into the changing predictive power of the markers
over time. In addition, RSF landmarking is easily imple-
mentable in standard software and using specifications
suggested in this manuscript requires less computation
time than joint modeling.
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