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Abstract

Background: In follow-up studies, the occurrence of the intermediate event may influence the risk of the outcome
of interest. Existing methods estimate the effect of the intermediate event by including a time-varying covariate in
the outcome model. However, the insusceptible fraction to the intermediate event in the study population has not
been considered in the literature, leading to effect estimation bias due to the inaccurate dataset.

Methods: In this paper, we propose a new effect estimation method, in which the susceptible subpopulation is
identified firstly so that the estimation could be conducted in the right population. Then, the effect is estimated via
the extended Cox regression and landmark methods in the identified susceptible subpopulation. For susceptibility
identification, patients with observed intermediate event time are classified as susceptible. Based on the mixture
cure model fitted the incidence and time of the intermediate event, the susceptibility of the patient with censored
intermediate event time is predicted by the residual intermediate event time imputation. The effect estimation
performance of the new method was investigated in various scenarios via Monte-Carlo simulations with the
performance of existing methods serving as the comparison. The application of the proposed method to mycosis
fungoides data has been reported as an example.

Results: The simulation results show that the estimation bias of the proposed method is smaller than that of the
existing methods, especially in the case of a large insusceptible fraction. The results hold for small sample sizes.
Besides, the estimation bias of the new method decreases with the increase of the covariates, especially continuous
covariates, in the mixture cure model. The heterogeneity of the effect of covariates on the outcome in the
insusceptible and susceptible subpopulation, as well as the landmark time, does not affect the estimation
performance of the new method.

Conclusions: Based on the pre-identification of the susceptible, the proposed new method could improve the
effect estimation accuracy of the intermediate event on the outcome when there is an insusceptible fraction to the
intermediate event in the study population.

Keywords: Time-varying covariate, Mixture cure model, Landmark method, Extended Cox regression, Residual time
distribution
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Background

In the context of follow-up studies, some patients may
experience the intermediate event before the occurrence
of the outcome of interest. The instances of intermediate
events include the occurrence of the objective disease re-
sponse or adverse events, the change in a biomarker, or
the initiation of a subsequent or secondary treatment
[1]. Like baseline variables, the intermediate event could
change the risk of the outcome but in the form of a
time-varying covariate. More and more researchers are
interested in the effect of the time-varying intermediate
event [2, 3]. For simplicity and differentiation, we ex-
press the time-varying intermediate event as “event” and
the event of interest as “outcome” hereinafter. Rather
than being determined at entry as in randomized con-
trolled trials, the group of each patient is based on the
whole follow-up in studies of time-varying intermediate
events. The time from entry to the intermediate event
varies from patient to patient. Some patients may die or
drop out of the trial before the occurrence of the inter-
mediate event and they are classified into the event-free
group as a consequence. For patients who have experi-
enced the intermediate event, there is a period of time
during which the outcome, such as death, did not hap-
pen. This period of time is classified into the event
group in traditional survival analysis, which is in favor of
the event. Furthermore, patients who have or have not
experienced the intermediate event may be heteroge-
neous. The outcome is more likely to happen or it hap-
pens earlier to patients in the event-free group.
Therefore, bias in the effect estimation of the time-
varying intermediate event is incurred using the trad-
itional survival analysis, which is called guarantee time
bias or immortal time bias [4, 5].

Suissa [6] quantified the magnitude of the guarantee
time bias under different survival distributions and vari-
ous study designs. To deal with the guarantee time bias,
Mantel and Byar method [7-9], also called extended
Cox regression, analyzes the time-varying intermediate
event data by grouping with the person-time instead of
patients. Patients who have experienced the time-varying
intermediate event are classified into the event-free
group before the occurrence of the intermediate event
and classified into the event group after the occurrence
of the intermediate event. The extended Cox regression
has been proved to provide unbiased estimates [4] and is
recommended as a method to eliminate the guarantee
time bias [6]. Cho et al. [5] recommended the extended
Cox regression for analyzing the cumulative and long-
term drug exposure. The limitation of the extended Cox
regression is its incapability to visualize the survival
curve for each group so the effect of the time-varying
intermediate event is not intuitively clear. Anderson
et al. [10] proposed the landmark method to eliminate
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guarantee time bias. They suggested analyzing the data
of patients who have survived to the chosen landmark
time and classifying the patients into either the event
group or the event-free group based on their intermedi-
ate event status at the landmark time without consider-
ing the possible shift after that. The landmark method
performs well when the effect is small [1] though in a
less powerful manner because of the conditional nature.
The landmark method has been widely applied to the
dynamic prediction for time-to-event data or other data
types [11-13]. Recently, a pooled summary analysis of
several landmarks, ie., the landmark supermodel, has
been advocated to smooth the effect of the time-varying
intermediate event [14, 15]. The naive method [16] and
exclusion method [6] are also alternative methods to
handle guarantee time bias. But both of them are not
recommended based on the results of simulation studies
[4].

Despite extensive works focusing on eliminating the
bias when estimating the effect of the time-varying inter-
mediate event, an insusceptible fraction [17-22] to the
intermediate event in population has not been consid-
ered in existing literature [1, 4, 6]. For instance, in stud-
ies that estimate the effect of the acute graft-versus-host
disease (aGVHD) on the relapse or death of patients fol-
lowing hematopoietic cell transplantation, some of the
patients would never experience the aGVHD, i.e., they
are not susceptible or immune to the aGVHD [23]. For
existing methods, i.e., the extended Cox regression and
landmark methods, the patients insusceptible to the
intermediate event would be classified into the event-
free group since the intermediate event could not be ob-
served. However, the hazards of the outcome are differ-
ent in patients who are susceptible but have not
experienced the intermediate event and patients who are
insusceptible to the intermediate event. The mix of in-
susceptible patients would change the hazard of the out-
come in the event-free group, leading to the bias in the
effect estimation of the time-varying intermediate event
further.

Regarding the insusceptible/cure fraction in survival
analysis, most previous researches concentrate on the
cure fraction to the outcome (i.e., dependent variables)
[24-26] instead of the insusceptible fraction to the inter-
mediate event (i.e., independent variables). The logistic
regression model (LRM) has been widely used to identify
the cure fraction to the outcome [20, 24, 27]. Lee’s study
[23] has taken into account the insusceptible fraction to
the intermediate event. They derived the risk prediction
for the time-varying intermediate event (aGVHD in their
study) via a novel multi-state model which was built on
Conlon’s [28] multi-state cure model. Both Lee’s and
Conlon’s models estimated the risk function of the out-
come (death in both studies), the time-varying
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intermediate event (aGVHD in Lee’s study and recur-
rence in Conlon’s study), and the transition of the inter-
mediate event to the outcome. However, the effect of
the time-varying intermediate event on the outcome has
not been taken into account in their models.

In this paper, we aim to estimate the effect of the
time-varying intermediate event on the outcome when
there is an insusceptible fraction to the intermediate
event. We propose a new effect estimation method in
which the susceptible subpopulation pre-identification is
newly considered. Patients who have experienced the
intermediate event are susceptible to the event without a
doubt. While the susceptibility of the patient with cen-
sored intermediate event time could be predicted based
on the following two considerations. 1) There are dis-
similarities between the susceptible and insusceptible
subpopulations, such as the distribution of covariates
that influence the susceptibility to the intermediate
event. Note that the occurrence of most intermediate
events is dependent on the characteristics of the patient
but not the external environment. Some endogenous co-
variates, such as the severity of the illness and the bio-
marker level, make the patient more prone to the
occurrence of the intermediate event. 2) The time to the
intermediate event can partly reflect the susceptibility of
the patient. For example, patients who have experienced
neither the outcome nor the intermediate event for a
long time are more likely to be insusceptible to the
intermediate event. Since the information of the inci-
dence and time of the time-varying intermediate event is
combined by the mixture cure models [29], we propose
to predict the susceptibility of patients via the residual
time distribution [30] of the intermediate event based on
the mixture cure model. The patient with censored
intermediate event time is more likely to be insuscep-
tible to the intermediate event when his/her residual
time of the intermediate event is incalculable using the
event time distribution of the susceptible subpopulation.
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Then, the extended Cox regression and landmark
methods are employed to estimate the effect of the time-
varying intermediate event in the identified susceptible
population. The proposed new method hopes to reduce
the estimation bias of existing methods by mitigating the
interference from the insusceptible subpopulation and
conducting the effect estimation in the right population.

Methods

To estimate the effect of the time-varying intermediate
event when there is an insusceptible fraction to it in the
study population, we propose an improved method in
which the susceptible subpopulation pre-identification is
newly considered. There are three steps in the new
method as summarized in Table 1: 1) fit the incidence
and time of the intermediate event with the mixture
cure model; 2) pre-identification of the susceptible sub-
population; 3) effect estimation based on the identified
susceptible subpopulation.

Step 1: fit the incidence and time of the intermediate
event with the mixture cure model

Suppose a cohort composed of the susceptible and the
insusceptible patients, the susceptible may experience
the intermediate event sometime in follow-up while the
insusceptible may never not. Assume there are N pa-
tients in the cohort. Let r(0 <7< 1) denote the propor-
tion of the susceptible in the study population, s be an
indicator denoting whether a patient is susceptible (s =
1) or insusceptible (s=0), and 7, be the time to the
time-varying intermediate event for the susceptible.
Then the cumulative incidence function of the time-
varying intermediate event at time f, modeled by the
mixture cure model is expressed as [31].

F(t.|x,z) = 1-S(¢.|x, z)
= 1-[1-7(x) + m(x)S(t|s = 1,2)] (1)

Table 1 Three steps of the proposed effect estimation method based on the susceptible pre-identification

Step 1: Fit the incidence and time of the intermediate event with the mixture cure model.
Based on the intermediate event data, maximize the following likelihood function to obtain the estimates of Be and y,

L(BeY) = lﬁ{[ﬂ(xl)f(fab = 1,7 x [1=71() + 71(%)S(tals = 1,%)]' "}

where 71%) = [1 + exp(—(yo + Y X)), S(tels = 1,X) = exp(—Aete” exp(ﬁeTx)) and f{t| s=1,%x) =d[1 = S(to| s=1,x))/dt..

Step 2: Pre-identification of the susceptible subpopulation.

(1) For patients that have experienced the intermediate event the susceptibility is s=1, i.e,, being susceptible to the intermediate event.

(2) For patients with censored intermediate event time the susceptibility is s=1 when vu; > it

1-m(x;
when UfS an(x,)+n(x7,7)(_)§((>@ [s=1x)

Step 3: Effect estimation based on the identified susceptible subpopulation.

Wand s=0, ie, being insusceptible,

where u; is a random number from the uniform distribution U(0, 1).

Based on the identified susceptible subpopulation, estimate the effect of the time-varying intermediate event which is quantified by f,.

For the extended Cox regression method,

h(to| X, z(t,)) = ho(t,) exp(Bo X + Boz(tL).

For the landmark method,

h(to|X, Zz,,) = ho(to) exp(Bo X + B,21,, ), for patients with t, > tu.
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where 7(x) = P(s = 1| x) is the probability of being sus-
ceptible to the intermediate event for the patient with
covariate vector of x:(xl,...,xg)T, S(t,|s=1,z) is the
probability that a susceptible patient with covariate vec-
tor of z=(zy, ..., zj)T has not experienced the intermedi-
ate event up to time f.. The vectors of x and z could be
the same or different and we set them the same for ease
of notation in the following parts. The LRM and Weibull
distribution are used to model the susceptible probabil-
ity and the time to the intermediate event for susceptible
patients, respectively, as done in the literature [20, 22,
31, 32]. Specifically, the susceptible probability for the
patient with covariate vector x is expressed as

1
C 1+ exp[-(yo +Y7x)]

and the probability that a susceptible patient with covar-
iate vector x has not experienced the intermediate event
up to time ¢, is formulated as

S(te]s =1,x) = exp(—/lete"e exp(BeTx)) (3)

where y and B. are the coefficient vectors of the covari-
ate vector x, A, and v, are the scale and shape parame-
ters of the Weibull distribution, respectively. Suppose
that the intermediate event time, the outcome time, and
the administrative censoring time (i.e., the longest
follow-up time) for the i-th (i=1,...,N) patient are de-
noted by T,; T,; and 7, respectively, the observed inter-
mediate event time f,; = min(7,;, T,; 7). For the sake of
distinction, the subscript character “e” is used herein-
after for the time-varying intermediate event while the
subscript character “o” for the outcome. For the insus-
ceptible patient (s =0), T,; is supposed to be infinite and
larger than 7. For the susceptible patient (s =1), the oc-
currence of the intermediate event could be censored by
both the outcome and the end of the follow-up. In other
words, the intermediate event time might not be ob-
served (8,;=0) due to insusceptibility or censoring. Ac-
cordingly, the censored intermediate event time ¢, =
C,;=min(T,;, 7). Otherwise, the observed intermediate
event time ¢, =T,; and the censoring indicator J,;=1.
Based on the mixture cure model described in eq. (1),
the likelihood of the observed data can be written as

7(x)

(2)

N
L(Bery) = [T{ ) (tilsi = 1,30))% x [1=m(x) + (xS talsi = 1, %]

7 ()

where fit.|s=1,x)=d[1 - S(t,|s=1,x)]/dt, is the prob-
ability density function (PDF) of the intermediate event
for susceptible patients. The estimates of y and B. can
be obtained by maximizing the likelihood in eq. (4) via
the expectation-maximization (EM) algorithm. More de-
tails on the estimation and computation process can be
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found in Peng and Dear [21] and Sy and Taylor [20],
which are not repeated here to avoid tedious
descriptions.

The estimation process has been compiled to a SAS
macro, named %PSPMCM, by Corbiére and Joly [31]. In
SAS macro %PSPMCM, the logit link in eq. (2) could be
replaced by the probit link and the log-log link, and the
Weibull distribution in eq. (3) could be replaced by the
exponential, lognormal, log-logistic distributions, or the
Cox model. The alternative link functions and distribu-
tions can be adopted when the LRM and the Weibull
distribution do not fit the data well.

Step 2: pre-identification of the susceptible
subpopulation

Patients who have experienced the intermediate event
are classified as susceptible. For patients with censored
intermediate event time, the susceptibility is predicted
based on the residual time distribution [30] of the inter-
mediate event. Let a,; be the residual time for the inter-
mediate event after the censored intermediate event
time C,, where C,,=min(T,; 1) as aforementioned in
Step 1. According to the mixture cure model, the condi-
tional distribution of the intermediate event time for the
i-th patient with censored intermediate event time is
given by [30].

P(Tei > Cy +ﬂei|Tei > Cei)
_ 1-m(xi) + m(x:)S(Cei + deils = 1,x;)
l—n(xi) + T[(xl’)S(Cel'|S = l,xi)

(5)

where P(T,;> C,;+ay| T > C,;) €(0,1). We generate a
random number #; from the uniform distribution 2/(0, 1)
for each patient with censored intermediate event time
and set P(T,; > C,; + a,;| T.; > C,;) = u;. Then, we have

n (ui[l—n(xi) + 71(x;)S(Ceils = 1,x,-)]—[1—7r(x,-)]>_cd.

=S
aez ]T(xl)

(6)

In eq. (6), u;[1 - 7(x;) + m(x;)S(Cei| 5 = 1, x))] = [1 - 72(x;)]
is supposed to be positive since S(T;|s=1,x)e(0,1).

That is, +;(_x’5(;(">cals:1,xi) < u;. With u; being a ran-

dom number from the uniform distribution U(0, 1), ei-

ther of the following two conditions may occur to the i-
1-7(x;)
)4+7(x;)S(Ceils=1,x;)
calculated with eq. (6). That is, the patient may experi-
ence the intermediate event at a,; after the censoring

time C,. Therefore, we identify the patient as suscep-

3 1-m(x;)
tible. 2) 1-7(x;)+7(x:)S(Ceis=1,x;)

of u,[1 - m(x;) + 1m(x;)S(C,i| s =1, x;)] - [1 - m(x;)] is nega-
tive and the residual time for the intermediate event
(ae;) is incalculable. In other words, S(T,;| s =1,x) is not
applicable to calculate the residual intermediate event

th patient: 1) e < u; and a,; could be

>u;. In this case, the value
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time because the patient does not belong to the category
of the susceptible, i.e., s z 1. The patient is considered to
be insusceptible to the intermediate event then. Viewed
from another perspective, with u; following the uniform

distribution (0, 1), there is P(l_”(xv) +71(_x7-1)<;é)C =T >u)
1-7(x;)

= T TS (Cai=T That is, the probability that a pa-
tient is classified as insusceptible is equal to the prob-
ability that he/she belongs to the insusceptible part 1
- 71(x;), which is reasonable. To sum up, patients who

have not experienced the intermediate event but with
1-7(x;)
1-72(x;)+7(x;)S(Ceils=1,x;)

number u; following U(0,1) are classified as insuscep-
tible. The other patients with censored intermediate
event time are classified as susceptible conversely.

As above, patients with censored intermediate event
time are classified into either the susceptible or the in-
susceptible according to whether the residual intermedi-
ate event time could be imputed. We call the proposed
classification method the residual intermediate-event
time imputation (RITI) method. The proposed RITI
method incorporates the information of both the suscep-
tible probability, i.e., m(x), and the intermediate event
time distribution of the susceptible, i.e., S(C,| s = 1, x).

For comparison and completeness, we adopt the LRM
to classify the patients with censored intermediate event
time, since the LRM is a widely used model for the
classification issue [33-35]. To be specific, the logistic
regression part of the mixture cure model, ie., m(x), is
used to calculate the susceptible probability of the
patient with censored intermediate event time. Then a
random number following the Bernoulli distribution
with the probability of m(x) is generated. The patient is
classified as susceptible if the random number is one,
and insusceptible on the contrary. Compared to the pro-
posed RITI method, it is straightforward that the LRM
only takes advantage of the incidence part of the mixture
cure model, losing the information of the conditional
survival function, i.e., S(C,| s = 1, x), when identifying the
susceptible.

equal or greater than the random

Step 3: effect estimation based on the identified
susceptible subpopulation

Based on the identified susceptible patients, we employ
the extended Cox regression and landmark methods to
estimate the effect of the intermediate event on the
outcome. For the extended Cox regression, the hazard
function of the outcome is expressed as

h(to|x, z(t,)) = ho(t,) exp(BoTx +ﬁzz(t0)) (7)

where ¢, is the outcome time, z(¢,), a time-varying vari-
able, is the indicator for the occurrence of the intermedi-
ate event at time ¢, with z(z,) =1 for patients who have
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experienced the intermediate event and z(t,) =0 other-
wise, and B, is the covariate coefficient vector. The base-
line hazard function of Weibull distribution is used in
this paper, ie., ho(t,) = AoVot, ' . For the landmark
method with the landmark time #;,4, the hazard function
of the outcome is expressed as

h(t0|x7 ZtLM) = hO(tD) exp(BoTx +/))ZZtLM)’ Lo > tim (8)

where the intermediate event indicator z;,, is not a
time-varying variable as in eq. (7), it is a fixed value de-
termined by the intermediate event status at the land-
mark time. Patients who have experienced the outcome
before the landmark time are not included in the ana-
lysis. The effect of the intermediate event is quantified
by the coefficient /3, in egs. (7) and (8).

The details of the extended Cox regression and land-
mark methods are not elaborated here. Readers inter-
ested are referred to Mantel [7], Martinussen [36], and
Therneau [8] for extended Cox regression method and
are referred to Van Houwelingen [37], Anderson [10],
and Dafni [38] for the landmark method.

Results

We conducted Monte-Carlo simulations to assess the es-
timation performance of the proposed method in differ-
ent scenarios, as described in later subsection
“Simulation results”. As summarized in Table 2, we also
investigated the estimation performances of other
methods for comparison purposes. The methods in-
cluded in simulations are as follows.

(1) Existing methods that estimate the effect of the
time-varying intermediate event based on the entire
population (coded as exCox1 for the extended Cox
regression and LM1 for the landmark method).

(2) Control methods with the susceptible
subpopulation identified by existing LRM (coded as
exCox2 and LM2 when the effect was estimated via
the extended Cox regression and the landmark
method, respectively).

(3) The proposed new methods with the susceptible
subpopulation identified by the RITI method (coded
as exCox3 and LM3 when the effect was estimated
via the extended Cox regression and the landmark
method, respectively).

(4) Performance benchmark: existing methods that
estimate the effect based on the real susceptible
subpopulation (coded as exCox4 and LM4 when
the effect was estimated via the extended Cox
regression and the landmark method, respectively).
It is necessary to take the methods exCox4 and
LM4 into account to highlight the effect of the
susceptible subpopulation pre-identification process.
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Table 2 Details of the methods investigated in the simulation study

Page 6 of 19

Method The susceptible Effect estimation  Analysis set

Code pre-identification method
LRM RITI exCox LM Entire population Identified susceptible subpopulation Real susceptible subpopulation
exCox1 v v
exCox2 v v v
exCox3 v v v
exCox4 v v
LM1 v v
LM2 v v v
LM3 v v v
Lm4 v v

The proposed new methods were coded as exCox3 and LM3. Existing methods were coded as exCox1-exCox2 and LM1-LM2. The results of methods exCox4 and
LM4 were served as the performance benchmark. Abbreviations: exCox extended Cox regression; LM landmark method; LRM logistic regression model; RIT/

residual intermediate-event time imputation

However, it is worth noting that it is impossible to
obtain the results of these two methods in practice
because the susceptibilities of patients with cen-
sored intermediate event time are unknown.

Simulation setting

The data for the i-th patient in the simulation study in-
cluded {s; t.;, Ocir Loi» 001 X}, Where s; was the susceptible
indicator with s; =1 for the susceptible and s; =0 for the
insusceptible, x; was the covariate vector and f,; O, t,;
d,: were the observed time and the censoring indicator
for the intermediate event and the outcome, respectively,
with §,;=1 for uncensored data and §.,;=0 for censored
data. Note that the intermediate event time could be
censored by the occurrence of the outcome but not vice
versa. Both the intermediate event time and the outcome
time could be censored by the study termination. For
illustration, we assumed no dropout in this paper.

Covariate vector

For the covariate vector x that influences the hazard of
the intermediate event and the outcome, three scenarios
were considered as follows.

Scenario (i): Four covariates X;-X, following independ-
ent Bernoulli distributions with the probability of 0.1,
0.2, 0.3, and 0.5, respectively.

Scenario (ii): Four covariates X;-X,, where X;-X, follow-
ing independent Bernoulli distributions with the probabil-
ity of 0.3 and 0.5, and X3-X, following independent
uniform distributions in (0,5) and (0,10), respectively.

Scenario (iii): Six covariates X;-X4, where X;-X, being
the same as the scenario (i) and X5-X4 following inde-
pendent uniform distributions in (0,5) and (0,10), re-
spectively. That is, scenario (iii) was the combination of
scenarios (i) and (ii).

With the three scenarios, both the number and type of
covariates have been taken into account.

Susceptibility

We generated random numbers with the LRM to simu-
late the population with a specified susceptible propor-
tion. Assume all covariates affect the susceptibility, the
probability of being susceptible to the intermediate event
was expressed by

1
1+ exp(=(yo +v7x))

P(s = 1|x) = n(x) = )

where the value y, was determined based upon iterative
computation [39] to obtain a desired susceptible propor-
tion. All covariate coefficients were set to be 1 (ie, y=1)
for simplicity. Then, the susceptibility of each patient was
generated from a Bernoulli distribution with the
probability of P(s; = 1| x;) as calculated in eq. (9).

Time to the intermediate event

For insusceptible subpopulation, the intermediate event
time 7, was set to be a missing value because the event
could never be observed. For the susceptible, the time to
the intermediate event was generated from a Cox model
with the baseline hazard of a Weibull distribution (A, v,)
and the covariate x. It was expressed as

_ |~ log(u) e
e exp(B"x)

where u was the random number from the uniform dis-
tribution in (0,1) and B. was the coefficient vector with
the element being the logarithm of the hazard ratio (HR)
for each covariate. For illustration, we set 5,=1.2 for
dichotomous covariates, 3, =0.12 for the covariate fol-
lowing uniform distribution in (0,10) and S.=0.24 for
the covariate following uniform distribution in (0,5) so
that the covariate effects were of the same level, i.e., the
multiplicative effect of each covariate on the baseline

(10)
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hazard (exp(B.x)) ranged from 1 to exp(l.2). v, was the
shape parameter of the Weibull distribution with v, =1
as an exponential distribution representing the inter-
mediate event rate was constant over time. A value of
v.> 1 indicated that the intermediate event rate increas-
ing over time and a value of 0 <v, <1 indicated the rate
decreasing over time. We set v, at 0.8, 1.0, and 1.2 to
cover the above three scenarios. The scale parameter of
the Weibull distribution (1.) was set to make sure that
approximately 30-40% of the susceptible patients have
experienced the intermediate event within 2 months.
Accordingly, we had A, =0.005, 0.0115, and 0.0015 for
the covariate scenarios (i)-(iii), respectively.

Time to the outcome

We assumed that the time to the outcome for the sus-
ceptible and insusceptible subpopulations followed the
same baseline Weibull distribution with parameters (1,,
v,) but was differently affected by covariates. For illustra-
tion, we assumed that the covariates had less effect on
the hazard of outcome for the insusceptible, i.e., Boin-
sus = OPo,suss 0 <@ <1, where Boinsus and Posus Were the
coefficient vectors of covariate vector x on the hazard of
the outcome for the insusceptible and susceptible sub-
populations, respectively, and @ was the covariate effect
ratio. Besides, to ensure that about half of the susceptible pa-
tients have experienced the intermediate event before the
censoring of the outcome, we assumed the covariates had
the same effect on the hazards of both the intermediate
event and the outcome for the susceptible subpopulation.
Therefore, we had A,=A.=1, v,=v.=v, and PBo,insus/® =
Bo,sus = Pe = B. Accordingly, the time to the outcome for the
insusceptible subpopulation was generated by

1/v,
- log(u)
Ao P (Bonsus”X)

_ [ - log(u) 11/]/.
A exp (coBTx)

Ta,insus =

(11)

For the susceptible subpopulation, a time-varying vari-
able denoting the intermediate event status was added in
the hazard function which was expressed as

h(to,sus) = Ao"oto,susvr1 exp <Bo,susTx + ﬁzz(to,sus))
= MWty ™! exp(BTx + Bz (fosus) )-
(12)

According to Austin’s work [40], we generated the
time to the outcome for the susceptible subpopulation
as follows:
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v
-1
. [/#?[i’;l)} . if - log(u) <AT.” exp(Bx)

[— log(u)-A exp(BTx) T,
A exp(BTx +8,)

osus =

1/v

+ T, if -log(u)=AT," exp(BTx)

(13)

where T, was the time to the intermediate event gener-
ated by eq. (10).

Suppose the maximum follow-up time was 12 months,
i.e., 7=12. For all patients, the observed outcome time
was the smaller one between the generated outcome
time and the maximum follow-up time, ie., ¢, = min(T,,
sus O Ty unsuss 12). For patients susceptible to the inter-
mediate event, the observed intermediate event time was
the minimum of the generated intermediate event time,
outcome time, and the maximum follow-up time, ie.,
t,=min(7T,, T,, 5. 12). For the insusceptible patients, ¢, =
C.= min(To, insus» 12)'

Based on the simulated random number, we estimated
the effect of the intermediate event on the outcome as
follows. Firstly, fit the data with the mixture cure model
and estimate the model parameters via the SAS macro %
PSPMCM compiled by Corbiére and Joly [31] (only for
methods exCox2-exCox3 and LM2-LM3). Secondly, pre-
dict the susceptibility of the patients with censored
intermediate event time by the LRM (only for methods
exCox2 and LM2) and the RITI (only for methods
exCox3 and LM3) methods. Thirdly, estimate the effect
of the intermediate event on the outcome by the ex-
tended Cox regression or landmark methods. Repeat the
three steps M times and compare the estimation per-
formance of the eight methods by average bias (BIAS)
and mean squared errors (MSE) with.

BIAS = ﬁ(ﬁz) /M-,
7and

MSE = f (B.-8.) /m
(14)

where ,Z?Z was the estimate of 3, i.e., the effect of the inter-
mediate event on the outcome. The smaller the magni-
tudes of BIAS and MSE, the more accurate the estimation.

To comprehensively compare the estimation perfor-
mances of methods exCox1-exCox4 and LM1-LM4 and
investigate the factors that may affect the performance
of the proposed new method, we carried out the simula-
tion study in various scenarios. Specifically, we set three
covariate scenarios (as described in "Covariate vector" of
this subsection), three levels for the ratio of the effect of
covariates on the outcome in the insusceptible and sus-
ceptible subpopulation (i.e., ®=0.5, 0.67, 0.83) and
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three landmark times (i.e., 1, 2, 3 months) for the land-
mark method. The number of simulations per scenario
was M = 100. The sample size was set to be 2000 in each
scenario to guarantee at least 40—50 outcomes were ob-
served in the analysis dataset. SAS 9.4 (SAS Institute
Inc., Cary, NC, USA) was used for simulated data generation
and analysis.

Simulation results

We display the simulation results of methods exCox1-
exCox4 and LM1-LM4 separately since they belong to
two series of methods. For methods with the prefix of
“exCox”, the effect was estimated by the extended Cox
regression while the landmark method was adopted to
estimate the effect for methods with the prefix of “LM”.
In addition, to illustrate the influence of each factor, the
estimation performances of these methods are investi-
gated by varying factors one at a time while controlling
the others. Specifically, Figs. 1, 2, 3, 4 in this subsection
show the variation of the estimation performance with
five different factors as follows.

(a) Different effects of the intermediate event on the
outcome (f,) and different event rate variations,
the latter was reflected by the shape parameter
(v) of the Weibull distribution of the
intermediate event time and the outcome time
(Fig. 1).

(b) Different covariates (scenarios (i)-(iii)) included in
the study (Fig. 2).

(c) Different ratios of the effect of covariates on the
outcome in the insusceptible and susceptible
subpopulations (w) (Fig. 3).

(d) Different landmark times (¢;,,) for the landmark
method (Fig. 4).

Besides, in Fig. 5, we examine the small sample per-
formance of the proposed method. The comparison be-
tween the stochastic procedure and the deterministic
procedure with the cutoff point of 0.5 of the proposed
RITI pre-identification method is shown in Figs. 6 and 7.
For each scenario, we show the BIAS and MSE of the
effect estimate [32 versus the proportion of the susceptible
in the study population, i.e., 7(%).

Figure 1 shows the effect estimation performance of the
proposed method, as well as other methods, under
scenarios of different true effects of the intermediate event
(B.= -1 or B,=1) and different shape parameters of the
Weibull distribution of the intermediate event time and
the outcome time (v=0.8, 1.0, 1.2). The covariate sce-
nario (iii) and covariate effect ratio w = 0.67 were set in all
scenarios. For methods LM1-LM4, the landmark time was
trar =2 months. It shows that under all scenarios, the
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estimation performance of the proposed new methods
(exCox3 and LM3) is the closest to the performance
benchmark provided by methods exCox4 and LM4. Exist-
ing methods exCoxl and LM1 bring large bias to the
effect estimate. That is, the proposed new methods could
remarkably reduce the estimation bias of existing methods
by the susceptible subpopulation pre-identification
process. However, when the LRM is employed in the sus-
ceptible pre-identification (methods exCox2 and LM2),
the estimation performance is not satisfactory. The reduc-
tion of the estimation bias by methods exCox2 and LM2
is tiny. So we conclude that the RITI method performs
better in identifying the susceptible than the LRM. This is
because the former uses more information than the latter
when identifying the susceptible. Both the incidence part
and the conditional survival function of the mixture cure
model are used in the RITI method while only the inci-
dence part is used in the LRM. Additionally, we observe
that when the intermediate event has a harmful effect on
the outcome (f3,=1), the performance gap between the
proposed method LM3 and the benchmark method LM4
is smaller than that in the case of 5, = — 1. In other words,
the new method LM3 is more recommended to be used
in the effect estimation of a harmful intermediate event.
There are two common characteristics between the
proposed methods and existing methods. (a) Compared
to the benchmark methods exCox4 and LM4, methods
exCox1-exCox3 and LM1-LM3 provide numerically lar-

ger point estimates of the effect (i.e., /;’Z), which is char-
acterized by the larger BIAS in Fig. 1. Because in the
setting of this paper, the inclusion of the insusceptible
subpopulation reduces the hazard of the outcome in the
event-free group. In the case of 5, = -1 (5,=1), i.e,, the
intermediate event has a protective (harmful) effect on
the outcome, the decrease of the hazard of the outcome
in the event-free group leads to the decrease (increase)
of the hazard gap between the event group and the
event-free group, leading to the underestimation (over-
estimation) of the protective (harmful) effect further. In

both cases, the effect estimate (3,), as well as the BIAS,
is numerically larger. (b) When the proportion of the
susceptible in the study population increases, the estima-
tion biases of methods exCox1l-exCox3 and LM1-LM3
gradually decrease to the level of methods exCox4 and
LM4, respectively, since the impact of the insusceptible
population is fading away. In addition, we observe that
the estimation bias of method exCox4 is close to zero in
all scenarios, which is not true for method LM4. This
demonstrates that without the mix of the insusceptible
subpopulation, the extended Cox regression method
could provide a more accurate effect estimate than the
landmark method, which has also been reported in the
literature [4].
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Fig. 1 BIAS of the effect estimate under scenarios with different 8, and different v. 3, is the true effect of the intermediate event on the
outcome, v is the shape parameter of the Weibull distribution of the intermediate event time and the outcome time, and (%) is the proportion
of the susceptible in the study population

A

When it comes to the estimation performance of the  Specifically, the estimation biases of methods LM1-LM4

proposed method and other methods under scenarios of are consistently positive when f,= - 1. In the case of
different 3, and v, we find that the estimation biases of f,=1, the estimation bias of the benchmark method
methods exCox1-exCox4 are similar in scenarios of f3, = LM4 is always negative, while the estimation biases of

-1 and S, =1, which is not true for methods LM1-LM4. methods LM1-LM3 go from positive to negative,
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Fig. 2 BIAS and MSE of the effect estimate under covariate scenarios (i)-(iii)

eventually, approaching to the bias of method LM4, as
the proportion of the susceptible increases. From the es-
timation bias of method LM4, we conclude that without
the mix of the insusceptible, the landmark method un-
derestimates the effect, whether protective or harmful, of
the intermediate event. This is because the landmark
method groups the patients based on the intermediate
event status at the landmark time, which leads to
misclassification to some extent. The misclassification

reduces the gap between the event group and the event-
free group and decreases the effect difference between
groups. The shape parameter of the Weibull distribution
(v) has a small impact on the estimation performances
of methods exCox1-exCox4 and LM1-LM4. With the in-
crease of v, the estimation biases of methods LM1-LM4
increase, but to a very small extent. For example, in the
case of 5,= -1 and r=10%, the estimation bias of
method LM4 increases from 0.37, 0.45 to 0.49 with v
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Fig. 3 BIAS and MSE of the effect estimate under scenarios of different covariate effect ratios (w)

_

changing from 0.8, 1.0 to 1.2. Because with the increase
of v, the intermediate event occurs later, the landmark
method would produce more misclassification and lead
to larger estimation bias. For methods exCox1-exCox3,
the estimation biases also increase with v. For example,
in the case of 5,= -1 and r=10%, the estimation bias
of method exCox3 increases from 0.82, 0. 83 to 0.84
with v changing from 0.8, 1.0 to 1.2. This is because

more susceptible patients could not experience the inter-
mediate event due to the later occurrence of the event,
the susceptibilities of more patients are left to be pre-
dicted, which would lead to larger bias.

From Fig. 1, we observe that the effect of the intermedi-
ate event (f3,) and the shape parameter of the Weibull dis-
tribution (v) have a small impact on the estimation
performance difference among methods exCox1-exCox4
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Fig. 4 BIAS and MSE of the effect estimate under scenarios of different landmark times (t;,)

and LM1-LM4. Therefore, in the following figures, the 0.67 in all scenarios. For methods LM1-LM4, the land-
results under the scenarios of 8, = —1 and v=0.8, 1.2 are  mark time was f;;; = 2 months. As described in the part
not displayed for visual clarity and space-saving,. of “Simulation Setting”, there are four categorical covari-

Figure 2 shows the estimation performance of ates in covariate scenario (i). Two of them are
methods exCox1-exCox4 and LM1-LM4 under different  substituted by continuous covariates in covariate sce-

covariate scenarios. The covariate effect ratio was w = nario (ii). In covariate scenario (iii), two more
p
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Fig. 5 BIAS and MSE of the effect estimate in cases of small sample sizes
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continuous covariates are added compared to covariate
scenario (i) while two more categorical covariates are
added compared to covariate scenario (ii). The results
show that the proposed method reduces the estimation
bias of existing methods in all scenarios, though the
magnitude of the bias reduction varies with the covariate
scenarios. Compared to covariate scenario (i), the per-
formance superiority of the proposed method over exist-
ing methods is greater in covariate scenario (ii). This is
because the continuous covariates contain more infor-
mation than categorical covariates, the susceptible pre-
identification is more accurate in covariate scenario (ii).
It is observed that the estimation BIAS and MSE of
method exCox2 are larger than those of method exCox1
in covariate scenario (i). A reason is that the LRM in
method exCox2 classifies more insusceptible patients
into the susceptible, which leads to a larger insusceptible
proportion in the predicted susceptible subpopulation
than in the entire population. Therefore, the LRM for
the insusceptible pre-identification is not reliable.

When comparing the results in covariate scenarios (ii)
and (iii), we find the performance difference among
methods exCox1-exCox4 and LM1-LM4 are similar but
the BIAS and MSE are larger in covariate scenario (iii).
The reason is that with the same sample size, the
increase of covariates decreases the statistical power.
Compared to covariate scenarios (ii), the two categorical
covariates added in covariate scenario (iii) do not im-
prove the accuracy of the susceptible pre-identification.

On the contrary, the proposed method exCox3 performs
better in covariate scenario (iii) than in covariate
scenario (i). It is also true for method LM3 when the
susceptible proportion is not too small (r>30%) since
the two continuous covariates added in scenario (iii) in-
creases the accuracy of the susceptible pre-identification.
However, when r=10%, the method LM3 performs a
little better in covariate scenario (i) than in covariate
scenario (iii), which could be attributed to the relatively
small sample size in covariate scenario (iii).

To sum up, the proposed new method could reduce
the bias caused by the mix of the insusceptible subpopu-
lation by pre-identifying the susceptible. More covari-
ates, especially continuous covariates, could increase the
effect of the susceptible pre-identification process. How-
ever, both the covariate number and the sample size im-
pact the estimation performance of the proposed
method. The decrease of the estimation bias caused by
the increase of the covariate number may be neutralized
by the increase of the estimation bias caused by the rela-
tive decrease of the sample size. Therefore, rather than
increasing the covariate number, more discriminative
covariates should be included in the insusceptible pre-
identification process.

Figure 3 shows the BIAS and MSE of the effect esti-
mate of methods exCox1-exCox4 and LM1-LM4 under
the covariate scenario (ii) with different covariate effect
ratios. For methods LM1-LM4, the landmark time was
tra = 2 months. It is observed that the BIAS and MSE of
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Fig. 7 BIAS and MSE of the effect estimate using stochastic and deterministic procedures of RITI method
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the effect estimate of methods exCoxl-exCox3 and
LM1-LM3 decrease with the increase of the covariate
effect ratio (w). This is because when w being closer to
one, the heterogeneity between the insusceptible and
susceptible subpopulations decreases, and the impact of
including the insusceptible patients in analysis decreases.
In all considered scenarios, the performance of the
proposed method is still better than that of the existing
methods and is closer to the performance benchmark.
The results in Fig. 3 also confirm the robustness of the
proposed method to the covariate effect ratio.

The BIAS and MSE of the effect estimate of methods
LM1-LM4 under covariate scenario (ii), covariate effect
ratio w = 0.67, and different landmark times are shown
in Fig. 4. It shows that the superiority of the proposed
method over existing methods is consistent in different
landmark times. Nevertheless, the landmark time influ-
ences the estimation performance of all methods, espe-
cially in the case of a small susceptible rate. Specifically,
the BIAS of the effect estimate of the method LM4 is
closer to zero at later landmark times, though to a small
extent. It is on account of the less misclassification at
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later landmark times. The estimation performances of
methods LM1-LM3 are closer to the performance
benchmark provided by the method LM4 at early land-
mark times. In addition, for methods LM1-LM4, the
MSE of the effect estimate increases with the landmark
time when the proportion of the susceptible is small.
This is because more data are discarded from the ana-
lysis at later landmark times, which leads to smaller
sample sizes and potential loss of power.

To examine the small sample performance of the pro-
posed method, we conducted a simulation study with
sample sizes of 200, 400, and 600. Considering that pa-
tients with outcome occurred before the landmark time
are excluded from the analysis for the landmark method,
which makes the sample size smaller, we used extended
Cox regression to estimate the effect among the identi-
fied susceptible subpopulation. The true effect of the
intermediate event f,=1, shape parameter of the
Weibull distribution v = 1.0, covariate effect ratio w = 0.67,
and the covariate scenario (ii) were set in the simulation.
The results are shown in Fig. 5.

It shows that the superiority of the proposed method
over existing methods maintains with the small sample
size. The effect estimate of the proposed method exCox3
is more accurate than that of the methods exCoxl-
exCox2. Besides, the sample size has little effect on the
BIAS of the effect estimate. While the MSE of the effect
estimate decreases slightly with the sample size, espe-
cially in the case of a small susceptible rate (r<30%),
which could be attributed to the increased power with
larger sample sizes.

In the case of N =200, we have considered only the
scenarios of the susceptible rate r>30% instead of
r>10%. Because the number of susceptible patients is
about 20 and the number of the observed intermediate
event might fall into the single digits when r = 10%, which
is unlikely to provide sound conclusions in reality.

For patients without the intermediate event, the pro-
posed RITI method determines whether the patient is
susceptible to the intermediate event according to
whether the residual intermediate event time could be
calculated. In essence, the susceptibility is determined by
a Bernoulli distribution with the probability of

e +i(_:)§z)cg|s:1,x)’ which we call the stochastic proced-

ure. In this sense, an alternative is to take 0.5 as the

cutoff point and classify a patient as insusceptible if
1-7(x;)
1-7(x;)+7(x;)S(Ceis=1.x;)

tic procedure. In Fig. 6 and Fig. 7, we compare the sto-
chastic procedure and the deterministic procedure with
0.5 as the cutoff point of the proposed RITI classification
method in terms of the subpopulation classification per-
formance and the effect estimation accuracy, respect-
ively. The simulation was conducted under covariate

> 0.5, which we call the determinis-

Page 15 of 19

scenarios (i)-(iii) since the covariates could influence the
classification performance and the effect estimation as
illustrated in Fig. 2. We set the true effect 5, =1, the
shape parameter of the Weibull distribution v = 1.0, and
the covariate effect ratio @ =0.67 in all scenarios. The
landmark time was t;,; =2 months when estimating the
effect with the landmark method.

In Fig. 6, the subpopulation classification performance
is evaluated by the Youden index [41], which is calcu-
lated by adding the rate that the susceptible are correctly
classified as susceptible to the rate that the insusceptible
are correctly classified as insusceptible, then subtracting
one from that value. The larger the Youden index, the
more reliable the classification. Figure 6 shows that the
stochastic and deterministic procedures have compar-
able classification performances. That is, the classifica-
tion is not very sensitive to the stochastic cutoff. When
the susceptible rate is small, the stochastic procedure
produces more accurate classification than the determin-
istic procedure while the deterministic procedure out-
performs the stochastic procedure when the susceptible
rate is large.

By in-depth exploration, we find that when the suscep-

tible rate in the population is small, the value of
1-7(x)
l—rr(x)+n()$Sx(Ce\s:1,x)

intermediate event exhibits a negative skew distribution.
Many susceptible patients with the censored interme-
diate event are incorrectly categorized into the insus-
ceptible group based on the 0.5 cutoff point of the
deterministic procedure. Particularly, under the covariate
scenario (i), nearly all the susceptible patients with the

1-7(x)
1-7(x)+1(x)S(Ce|s=1,x) >0

.5 in the case of r<30%, the deterministic procedure
with 0.5 as the cutoff point has little effect in identifying
the susceptible. Only the susceptible patients with the
observed intermediate event are included in the analysis.
In this case, the stochastic procedure identifies more
susceptible patients since there is a chance for patients

for susceptible patients without the

censored intermediate event have

with Lom(x) > 0.5 to be classified as suscep-

X)+7(x)S(Ce[s=1,x)

tible. On the contrary, with the increase of the suscep-
1-77(x)

+7(x)S(Ce|s=1,x

patients without the intermediate event gradually ex-
hibits positive skew distributions. Most of the suscep-
tible patients with the censored intermediate event are
categorized into the susceptible group based on the 0.5
cutoff point of the deterministic procedure.

Figure 7 shows that the effect estimate by the stochas-
tic procedure of the proposed RITI classification method
is more accurate than that based on the deterministic
procedure when the susceptible rate in the study popula-
tion is small. With the increase of the susceptible rate,
the estimation performances based on the two

tible rate, the value of ey ) for susceptible
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procedures are comparable while the deterministic
procedure shows a little superiority over the stochastic
procedure.

Combining Fig. 6 and Fig. 7, we find that the more ac-
curate classification of the stochastic procedure in small
susceptible rate scenarios provides much more accurate
effect estimates, while the classification superiority of
the deterministic procedure in large susceptible rate
scenarios has little help in improving the accuracy of the
effect estimate. The possible reason is that when the sus-
ceptible rate is small, the sample size of the susceptible
subpopulation is small, and then the effect estimate is
more sensitive to the classification accuracy. From the
perspective of the purpose of the study, i.e., obtaining a
more accurate effect estimate, the deterministic proced-
ure with 0.5 as the cutoff point may not be appropriate
for all cases, while the stochastic procedure of the RITI
classification method is widely applicable and has
relatively robust and well performance.

For the stochastic procedure of the RITI classification
method, a potential concern might be the reproducibility
of the effect estimate as different analysts could make
different classifications due to the stochastic cutoff. To
investigate the possible variation of the effect estimate,
we generated 100 classification datasets by identifying
the susceptible patients with the stochastic procedure
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based on one simulated dataset and obtained the effect
estimates separately. Based on the same simulated data-
set, the effect estimate with the benchmark methods
(exCox4 and LM4) and the effect estimate with the de-
terministic procedure of the RITI classification method
were also calculated. The scatter plot of the 100 effect
estimates with the stochastic procedure, the benchmark
estimate, as well as the corresponding effect estimate
with the deterministic procedure are shown in Fig. 8.
We find that the variation of the effect estimate based
on the stochastic procedure of the RITI classification
method decreases with the susceptible rate. When the
susceptible rate is not too small (i.e., r>30%), the esti-
mates are close to each other. That is, the estimate based
on the stochastic procedure changes little with analysts.
In the case of r=10%, the variation of the estimate is
not negligible. However, when r=10%, the average esti-
mate with the stochastic procedure is closer or similarly
close to the benchmark estimate in comparison with that
of the deterministic procedure. Especially, for method
exCox3, all the estimates based on the stochastic proced-
ure are much closer to the benchmark estimate when
r=10% (shown in Fig. 8(a)). Considering the estimate
based on small sample sizes is not robust enough for the
overall inference, the slight variation of the estimate in
the case of r=10% is still acceptable. Therefore, the
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Fig. 8 Scatter plot of effect estimates with the stochastic procedure of RITI based on one dataset. Based on one simulated dataset generated in
the setting of Fig. 7, 100 classification datasets and the corresponding effect estimates (denoted by red dot) were obtained with the stochastic
procedure of the RITI classification method. The short black solid lines represent the mean value of the 100 effect estimates. The effect estimates
with the deterministic procedure of the RITI classification method (denoted by *) and the benchmark method (denoted by %) based on the
same dataset were also illustrated for comparison purposes. Methods used on the top panel (a): exCox3-RITl (Stochastic), exCox3-RITI (Deterministic),
and exCox4 (Benchmark); the bottom panel (b): LM3-RITI (Stochastic), LM3-RITI (Deterministic), and LM4 (Benchmark)
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reproducibility issue of the stochastic procedure has a
negligible impact on the conclusion of the analysis.

Case study

Mycosis fungoides (MF) is a common cutaneous T cell
lymphomas (CTCLs). Advanced-stage patients have dis-
mal prognoses, with a life expectancy fewer than 4 years.
However, more than 80% of patients at early-stage (IA
or IB) will have an indolent lifelong course free of dis-
ease progression [42]. The susceptible patients would ex-
perience the disease progression or death within 10
years. The tumor clone frequency (TCF) in lesional skin
(> 25%), disease stage (IB versus IA), and age (> 60 years)
are sensitive factors to predict which patient might pro-
gress and the progress/death time [43]. In this instance,
the inclusion of the insusceptible patients may lead to
biased effect estimation of the disease progression on
survival. According to de Masson’s work [43], we simu-
lated the TCF, disease stage, age, susceptibility to pro-
gress, progress time for susceptible patients, and death
time for all MF patients in a dataset. Then the proposed
method (exCox3-RITI) and two existing methods
(exCox1 and exCox2-LRM) were applied to estimate the
effect of the disease progression on survival. The results
are shown in Table 3. Parameter setting and consider-
ations for the simulated dataset, as well as the SAS
codes, are in Additional file 1.

As shown in Table 3, the proposed method (exCox3-
RITI) provides a more accurate estimate of the effect of
“progress” on survival than the existing two methods
(exCox1 and exCox2-LRM), which is in line with the
simulation results. The effect of the disease progress
estimated by exCox3-RITI is more close to the real
value, with a small bias. Ignoring the insusceptible
patients and including all patients in the analysis (exCox1)
bring large bias to the effect estimation. Susceptible
patient pre-identification via the LRM is not reliable and
does not improve the effect estimation accuracy of the
disease progress (exCox2-LRM).

Discussion

In this paper, we aim to estimate the effect of the time-
varying intermediate event on the outcome when there
is an insusceptible fraction to the intermediate event in
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the study population. Existing methods neglect the exist-
ence of the insusceptible subpopulation, which brings
bias to the effect estimate. An improved new method is
proposed, in which the susceptible identification is per-
formed firstly using the RITI method. Then the effect of
the intermediate event on the outcome is estimated via
the extended Cox regression and landmark methods
based on the predicted susceptible population.

The simulation study in various scenarios demon-
strates that the proposed effect estimation method based
on the susceptible subpopulation pre-identification
dramatically reduces the estimation bias of existing
methods. Based on the real susceptible subpopulation,
the extended Cox regression could provide an unbiased
estimate of the effect, while the landmark method un-
derestimates the effect, whether protective or harmful, of
the intermediate event, which is consistent with the re-
sults in Mi’s research [4]. When the insusceptible sub-
population is included in the analysis of the extended
Cox regression and landmark methods, the effect esti-
mate is biased and the bias increases with the proportion
of the insusceptible. The susceptible subpopulation pre-
identification in the proposed method helps to reduce the
impact of the insusceptible subpopulation and improve
the effect estimation accuracy significantly.

When it comes to the method for the susceptible sub-
population pre-identification, the proposed RITI method
shows great superiority to the existing classification
method, i.e, the LRM method. The estimation bias of the
proposed method is smaller than that of the method where
the LRM is used to identify the susceptible. Particularly,
when the intermediate event has a harmful effect on the
outcome and the effect is estimated via the landmark
method, the result based on the susceptible subpopulation
identified by the LRM is contrary to reality. So the RITI
method is more reliable than the LRM method. That is be-
cause the RITI method takes advantage of both the inci-
dence and time information of the intermediate event while
the LRM only uses the incidence information of the inter-
mediate event. By exploiting more information, the RITI
method distinguishes the insusceptible and the susceptible
more accurately. In addition, the comparison between the
stochastic procedure and the deterministic procedure with
0.5 as the cutoff point of the RITI classification method

Table 3 The effect of the disease progression on the survival of MF patients

Variables Real exCox1 (Existing) exCox2-LRM (Existing) exCox3-RITI (Proposed)
szed B, P value B, P value B, P value
TCF 16 1.006 <0.001 1335 <0.001 2286 <0.001
Stage 09 0431 <0.001 0.841 <0.001 1.258 <0.001
Age 0.7 1.356 <0.001 1.115 <0.001 1.067 < 0.001
Progress 20 3.139 <0.001 3.575 <0.001 2724 <0.001
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illustrates that the stochastic procedure is widely applicable
with relatively robust and well performance. Despite the re-
producibility issue, the impact is negligible on the conclu-
sion of the analysis. Therefore, the stochastic procedure of
the RITI method is more recommended. In cases that
reproducibility is seriously concerned, the deterministic
procedure could also be adopted if the susceptible rate is
large. Despite the much-reduced bias of the effect estimate,
the performance of the proposed method is not perfect.
There are still insusceptible patients in the identified sus-
ceptible subpopulation, which leads to a gap between the
effect estimate to the real value.

Covariates used in identifying the susceptible subpopula-
tion have a major influence on the performance of the pro-
posed method because they can affect the identification
accuracy directly. The estimation performance of the pro-
posed method is closer to the performance benchmark
when there are more covariates, especially continuous co-
variates, because of the more accurate susceptible subpopu-
lation pre-identification. However, the estimation bias of
the new method is jointly affected by covariates and the
sample size. Under the same sample size, more covariates
could increase the identification accuracy, but at the same
time would lead to increased bias because of the decreased
statistical power. In cases with the same number of covari-
ates, the continuous covariates are more helpful in distin-
guishing the insusceptible and the susceptible compared to
the categorical covariates. Therefore, continuous covariates
with high discrimination ability should be included to make
the proposed method perform better. Besides, the hetero-
geneity of the effect of covariates on the outcome in insus-
ceptible and susceptible subpopulations has an impact on
the effect estimation performance of all considered
methods. The estimation bias is larger when the effect het-
erogeneity increases since the impact of including the in-
susceptible in the analysis increases. For methods that
estimate the effect via the landmark time, the estimation
bias is smaller at later landmark time. Because less mis-
classification occurs at the later landmark time. Both the
effect heterogeneity of the covariates and the landmark
time have little impact on the performance superiority of
the proposed method over the existing methods.

The improved method we proposed in this paper
hopes to perform the effect estimation in the right popu-
lation to reduce the bias caused by the mix of the insus-
ceptible subpopulation. The susceptible subpopulation
pre-identification is the core idea we proposed and the
RITI method based on the fitted mixture cure model is
the tool we used to achieve the pre-identification. The
simulation study confirms the superiority of the im-
proved method. However, the estimation bias could be
reduced but could not be erased by the proposed
method since the RITI classification method could not
separate heterogeneous subgroups completely. Other
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methods such as the more flexible nonparametric cure
models [21] and latent class models [44, 45] could be
resorted to improve the pre-identification accuracy. The
extension of the proposed method with time-dependent
covariates and more flexible models will be pursued in
our future research.

Conclusions

Based on the pre-identification of the susceptible, the
proposed new method could improve the effect estima-
tion accuracy of the intermediate event on the outcome
when there is an insusceptible fraction to the intermediate
event in the study population.
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