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Abstract 

Background:  Re-randomisation trials involve re-enrolling and re-randomising patients for each new treatment 
episode they experience. They are often used when interest lies in the average effect of an intervention across all the 
episodes for which it would be used in practice. Re-randomisation trials are often analysed using independence esti-
mators, where a working independence correlation structure is used. However, research into independence estima-
tors in the context of re-randomisation has been limited.

Methods:  We performed a simulation study to evaluate the use of independence estimators in re-randomisation 
trials. We focussed on a continuous outcome, and the setting where treatment allocation does not affect occurrence 
of subsequent episodes. We evaluated different treatment effect mechanisms (e.g. by allowing the treatment effect to 
vary across episodes, or to become less effective on re-use, etc), and different non-enrolment mechanisms (e.g. where 
patients who experience a poor outcome are less likely to re-enrol for their second episode). We evaluated four differ-
ent independence estimators, each corresponding to a different estimand (per-episode and per-patient approaches, 
and added-benefit and policy-benefit approaches).

Results:  We found that independence estimators were unbiased for the per-episode added-benefit estimand in all 
scenarios we considered. We found independence estimators targeting other estimands (per-patient or policy-bene-
fit) were unbiased, except when there was differential non-enrolment between treatment groups (i.e. when different 
types of patients from each treatment group decide to re-enrol for subsequent episodes). We found the use of robust 
standard errors provided close to nominal coverage in all settings where the estimator was unbiased.

Conclusions:  Careful choice of estimand can ensure re-randomisation trials are addressing clinically relevant ques-
tions. Independence estimators are a useful approach, and should be considered as the default estimator until the 
statistical properties of alternative estimators are thoroughly evaluated.
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Introduction
Re-randomisation trials can be used to evaluate inter-
ventions in multi-episode settings, where some patients 
require treatment on more than one occasion [1–6]. In 

re-randomisation trials, patients are re-enrolled and re-
randomised for each new treatment episode they expe-
rience (providing they continue to remain eligible). The 
number of times each patient is enrolled is not speci-
fied by the design, but instead is based on the number 
of treatment episodes they experience during the trial 
[4]. The two key design requirements for re-randomisa-
tion trials are that (i) patients are only re-enrolled when 
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the follow-up period from their previous enrolment is 
complete; and (ii) randomisations for the same patient 
are independent [4].

The use of re-randomisation can increase efficiency, 
as a larger number of available treatment episodes are 
enrolled [3–5], and can also help to address questions 
about the average effect of the intervention across all 
episodes for which it would be used in practice [1]. Re-
randomisation trials have been used to evaluate inter-
ventions for sickle cell pain crises (where patients are 
re-randomised for each new pain crisis) [7], severe 
asthma exacerbations (where patients are re-ran-
domised for each new exacerbation) [8], influenza vac-
cines (where patients are re-randomised for each new 
influenza seasons) [9], in-vitro fertilisation (where par-
ticipants are re-randomised for each new cycle) [10], 
and pre-term birth (where participants are re-ran-
domised for each new pregnancy) [11].

Independence estimators have been proposed for re-
randomisation trials, where a working independence 
correlation structure is used [1, 4], and this approach 
is commonly used in practice [5]. However, prior meth-
odological work around these estimators is limited. 
First, previous work has primarily focussed on the set-
ting where the treatment effect is the same across all 
patients and episodes [2, 4, 6]. However, this may not 
always be the case in practice; for instance, the inter-
vention may become more or less effective the more 
often it is used, or patients with more severe underly-
ing conditions may be both predisposed to experience 
a larger number of episodes, and always have worse 
responses to treatment.

Second, most research has been in the setting where 
there is no differential non-enrolment (i.e. in the set-
ting where the same type of patients from each treat-
ment group re-enrols for subsequent episodes). 
However, this may not always be the case in practice; 
for instance, in open-label trials where patients are 
aware of their treatment allocation, their probability 
of re-enrolling may be affected by the combination of 
prior treatment allocation as well as their response to 
treatment.

Third, the use of robust standard errors which allow for 
clustering have been proposed [1], however their use has 
never been empirically evaluated for re-randomisation 
trials.

Finally, most previous literature has focussed on an 
estimator which targets a per-episode added-benefit 
estimand, which represents the average treatment effect 
across episodes, over and above any benefit from previ-
ous assignment to the intervention [1]. This evaluation 

is warranted, as this is the estimator which is most com-
monly used in practice [5]; however, other estimands 
have been proposed [1], and it would be of interest to 
evaluate the use of independence estimators for these 
alternate estimands.

The purpose of this paper is to comprehensively evalu-
ate the use of independence estimators in re-randomi-
sation trials using a large simulation study. In particular, 
we will evaluate their use (i) for different estimands; 
(ii) under non-constant treatment effect mechanisms; 
(iii) under differential non-enrolment; and (iv) in con-
junction with robust standard errors. For simplicity, we 
focus on a setting where patients experience a maxi-
mum of two episodes, and where the outcome of inter-
est is continuous. We also focus on the setting where the 
interventions under study do not affect whether future 
episodes occur (i.e. patients would experience the same 
number of episodes during the trial period regardless of 
which treatments they are allocated to), though we note 
re-randomisation trials can also be used when this is not 
the case.

Methods
Notation
We briefly summarise some of the notation that will be 
used in this article. Some further notation is introduced 
in later sections as required.

Let i index patient, and j index the episode number 
within the trial. Then, let Yij denote the outcome for 
patient i at episode j, and Zij denote their treatment allo-
cation (0 = control, 1 = intervention). 

∼

Zij is the patient’s 
‘treatment history’, which denoates their treatment allo-
cations in their previous episodes (e.g. 

∼

Z13 would be the 
vector (Z11, Z12)). Then, let Y

(

Zij=0,Z̃ij=Z̃ij

)

ij
 represent the poten-

tial outcome under Z = 0 and treatment history 
∼

Zij =
∼
zij . 

For clarity, we drop subscripts inside the brackets, as 
these are the same as subscripts on the outside of the 
brackets; for example, Y

(

Z=1,Z̃=z̃
)

ij
 is the same as Y

(

Zij=1,Z̃ij=Z̃ij

)

ij
 .

Finally, let Mi be the number of episodes for which 
patient i is enrolled in the trial, MT be the total num-
ber of episodes enrolled, and MT(j) be the total number 
of patients for whom Mi = j (i.e. the number of patients 
enrolled for j episodes). There are NT total patients 
enrolled in the trial, and Nj represents the number of 
patients who are enrolled for at least j episodes (i.e. for 
whom Mi ≥ j).

Simulation study
We conducted a large simulation study to evaluate the 
bias and coverage of independence estimators for re-ran-
domisation trials [12]. This simulation study focussed on a 
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setting where patients were enrolled in a trial for a maxi-
mum of two episodes. For most scenarios, we chose param-
eter values that are larger than those we might expect to see 
in practice; this was to ensure that if estimators were biased 
in any scenarios, we would be able to identify it.

We performed three different sets of simulations 
(labelled simulation study 1, 2a, and 2b). We describe the 
estimands, methods of analysis, and performance meas-
ures used across all three simulation studies below, and 
then describe the data generating models for each of the 
three simulation studies.

All simulations were conducted using Stata v15.1.

Estimands
For all simulation scenarios, we used the following four 
estimands, which have been described previously [1]: (a) 
per-episode added-benefit; (b) per-patient added-ben-
efit; (c) per-episode policy-benefit; and (d) per-patient 
policy-benefit.

Descriptions of these estimands are available in 
Table 1, and are described briefly in the sections below; 
full details are available in reference [1]. We calculated 
the true value of each estimand for each simulation 
scenario using the method described in reference [1]; 
for simulation scenario 1, we calculated these values 
analytically, and for simulation scenarios 2a and 2b, 
we calculated these by simulating a single large dataset 
(this process is described further below); the reason we 
used simulation for scenarios 2a and 2b was because 
they involved non-enrolment (i.e. some patients did not 

re-enrol for their 2nd episode), which made the analyti-
cal calculations more challenging.

Per‑episode added‑benefit estimand
The per-episode added-benefit estimand is defined as:

where (IJ)E represents a randomly selected episode 
from the trial (each with equal probability), and so 
Y(IJ )E represents the outcome for a randomly selected 
episode.

In this estimand, each episode is given equal weight. 
It addresses the questions: what is the average treat-
ment effect across episodes, over and above any 
benefit of the intervention from previous episodes? 
Broadly, it measures the benefit of the intervention 
conditional on a shared treatment history (i.e. it meas-
ures the difference in potential outcomes under inter-
vention vs. control, where both potential outcomes 
share a common treatment history), and then takes 
a weighted average of this effect across the different 
treatment histories. Importantly, the treatment effect 
here measures the benefit conferred from treatment in 
the current episode, over and above any benefit car-
ried forward from being assigned intervention in pre-
vious episodes.

βABE = E


Y

�
Z=1,

∼

Z

�

(IJ )E
− Y

�
Z=0,

∼

Z

�

(IJ )E




Table 1  Summary of estimands and estimators. Policy-benefit estimators are based on setting with maximum of two episodes per 
patient

Estimand Definition Description Estimator

Per-episode 
added-benefit

βABE = E


Y

�
Z=1,

∼

Z

�

(IJ)E
− Y

�
Z=0,

∼

Z

�

(IJ)E




Provides the additional effect of being 
assigned the intervention in the current 
episode, over and above the benefit of 
being assigned the intervention in previous 
episodes
Provides an average effect across episodes

β̂ABE =

∑
ij Yij Zij∑
ij Zij

−

∑
ij Yij(1−Zij)∑
ij (1−Zij)

Per-episode 
policy-benefit

βPBE = E


Y

�
Z=1,

∼

Z=
∼

1

�

(IJ)E
− Y

�
Z=0,

∼

Z=
∼

0

�

(IJ)E




Provides the effect of a treatment policy 
where patients are assigned intervention vs. 
control for all episodes
Provides an average effect across episodes

Step 1:
Yij = α+ βZij + γZi,j−1 + δZijZi,j−1 + βepXepij + εij
Step 2:
β̂PBE =

N1
MT

(
β̂
)
+

N2
MT

(
γ̂+ β̂+ δ̂

)

Per-patient 
added-benefit

βABP = E


Y

�
Z=1,

∼

Z

�

(IJ)P
− Y

�
Z=0,

∼

Z

�

(IJ)P




Provides the additional effect of being 
assigned the intervention in the current 
episode, over and above the benefit of 
being assigned the intervention in previous 
episodes
Provides an average effect across patients

β̂ABP =

∑
ij WiYij Zij∑
ij WiZij

−

∑
ij WiYij(1−Zij)∑
ij Wi(1−Zij)

Per-patient policy-
benefit

βPBP = E


Y

�
Z=1,

∼

Z=
∼

1

�

(IJ)P
− Y

�
Z=0,

∼

Z=
∼

0

�

(IJ)P




Provides the effect of a treatment policy 
where patients are assigned intervention vs. 
control for all episodes
Provides an average effect across patients

Step 1:
Yij = α+ βZij + γZi,j−1 + δZijZi,j−1 + βepXepij + εij
using weighted least squares, with weights Wi =

1
Mi

.
Step 2:
β̂PBP =

MT (1)

NT

(
β̂
)
+

MT (2)

NT

(
1
2
β̂+

(
1
2

)(
β̂+ γ̂+ δ̂

))
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Per‑patient added‑benefit estimand
The per-patient added-benefit estimand is defined as:

where (IJ)P represents a randomly selected episode 
from a randomly selected patient (i.e. first a patient is 
randomly selected from the trial, each with equal prob-
ability; and then an episode from within that patient is 
selected, each with equal probability). Then Y(IJ )P repre-
sents the outcome for randomly selected episode from 
a randomly selected patient.

In this estimand, each patient is given equal weight. 
It addresses the question: what is the average treatment 
effect across patients, over and above any benefit of the 
intervention from previous episodes? Broadly, it meas-
ures an average of the patient-specific treatment effects. 
As above, the treatment effect here measures the ben-
efit conferred from treatment in the current episode, 
over and above any benefit carried forward from being 
assigned intervention in previous episodes.

Per‑episode policy‑benefit estimand
The per-episode policy-benefit estimand is defined as:

where ∼Z =
∼

1 denotes the patient has been assigned to 
intervention in all previous episodes (and vice versa for 
∼

Z =
∼

0).
In this estimand, each episode is given equal weight. 

It addresses the question: what is the average treatment 
effect across episodes, where patients are assigned 
intervention for all episodes vs. control for all episodes? 
Broadly, it measures the difference in potential out-
comes under intervention for this and all previous epi-
sodes vs. control for this and all previous episodes.

Per‑patient policy‑benefit estimand
The per-patient policy-benefit estimand is defined as:

βABP = E


Y

�
Z=1,

∼

Z

�

(IJ )P
− Y

�
Z=0,

∼

Z

�

(IJ )P




βPBE = E


Y

�
Z=1,

∼

Z=
∼

1

�

(IJ )E
− Y

�
Z=0,

∼

Z=
∼

0.

�

(IJ )E




βPBP = E


Y

�
Z=1,

∼

Z=
∼

1

�

(IJ )P
− Y

�
Z=0,

∼

Z=
∼

0

�

(IJ )P




In this estimand, each patient is given equal weight. 
It addresses the question: what is the average treat-
ment effect across patients, where patients are assigned 
intervention for all episodes vs. control for all episodes? 
Broadly, it measures the difference in potential out-
comes under intervention for this and all previous epi-
sodes vs. control for this and all previous episodes.

Methods of analysis
We implemented four independence estimators, each 
corresponding to one of the four the estimands listed 
above. Briefly, we used a working independence correla-
tion structure in conjunction with cluster-robust standard 
errors, with patients acting as the cluster [13]. Although 
working correlation structures are typically used in con-
junction with generalised estimating equations, here we 
use them with linear regression models which implicitly 
assume an independence correlation structure. The main 
benefit to using linear regression models here is that infer-
ence can be based on the t-distribution, which is not the 
case with generalised estimating equations.

These estimators are fully described in the sections 
below, and a summary is provided in Table  1. A full 
overview of these estimators is provided in reference 
(1), and details of how these estimators were imple-
mented in Stata is shown in Table 2.

Per‑episode added‑benefit estimator
We used the following estimator, which corresponds to 
a simple difference in means between all intervention 
episodes vs. all control episodes:

This estimator can be re-written to show that it com-
pares intervention vs. control for episodes with a com-
mon treatment history; because this broadly matches 
the estimand (with the key difference being the esti-
mand is based on a comparison of potential outcomes 
from the same patient, whereas the estimator is based 
on a comparison of randomised groups), we expect this 
estimator to be unbiased.

Per‑patient added‑benefit estimator
The per-patient estimator can be obtained by weighting 
each patient by the inverse of their number of episodes, 
i.e. Wi =

1
Mi

:

(1)β̂ABE =

∑
ij YijZij∑
ij Zij

−

∑
ij Yij

(
1− Zij

)
∑

ij

(
1− Zij

)
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Per‑episode policy‑benefit estimator
The policy-benefit estimators can be obtained using 
a two-step approach. In the first step, a causal model is 
specified for the effect of treatment history on the poten-
tial outcomes; then in the second step, estimates of the 
difference in potential outcomes obtained in the first step 
are combined into an overall estimate. We note that the 
exact models used to calculate this effect can vary (par-
ticularly depending on the number of episodes each 
patient experiences, e.g. more complex models would be 
required for trials in which some patients experience >2 
episodes). Here, we described the estimator we used in 
the setting where patients experience a maximum of two 
episodes.

In the first step, we used the following model:

where Zi, j − 1 is the treatment allocation in the previous 
episode (and is set to 0 for j = 1), and Xepij is an indicator 

(2)β̂ABP =

∑
ij WiYijZij∑
ij WiZij

−

∑
ij WiYij

(
1− Zij

)
∑

ij Wi

(
1− Zij

)

(3)
Yij = α+ βZij + γZi,j−1 + δZijZi,j−1 + βepXepij + εij

for episode 2 (i.e. Xepij = 1 for episode 2, and 0 other-
wise). This model allows the effect of the intervention in 
episode 1 to carry forward into episode 2 (the term γ), 
and for the intervention to get more (or less) effective the 
2nd time it is used (the term δ).

Then, in the second step, we use the estimates β̂ , γ̂ , and 
δ̂ to calculate an overall estimate of the policy-benefit 
effect. Here, we estimate the difference in potential out-
comes as β̂ for all first episodes, and as β̂+ γ̂+ δ̂ for all 
second episodes. The formula for the overall estimate is:

This formula weights β̂ and β̂+ γ̂+ δ̂ by the proportion 
of episodes to which they correspond. We have included 
the term Xepij in model [3] even though it is not used 
directly to estimate the treatment effect, as it is associ-
ated with Zi, j − 1, and so can act as a confounder if omit-
ted from the model.

Per‑patient policy‑benefit estimator
The per-patient policy-benefit estimator is obtained in 
the same way as the per-episode policy-benefit estima-
tor, except estimates from model [3] are obtained using 
weighted least-squares, where each patient is weighted by 
the inverse of their number of episodes, Wi =

1
Mi

 . After 
obtaining estimates and calculating the difference in 
potential outcomes for each episode in the same manner 
as above, the overall treatment effect is calculated as:

where MT(j) represents the total number of patients for 
whom Mi = j. In this equation, MT (1)

NT

(
β̂
)
 is the component 

for patients where Mi = 1, and 
MT (2)

NT

(
1

2
β̂+

(
1

2

)(
β̂+ γ̂+ δ̂

))
 is the component for 

patients where Mi = 2 (with 1
2
β̂ being the 1st episode 

component, and 
(
1
2

)(
β̂+ γ̂+ δ̂

)
 being the 2nd episode 

component).

Performance measures
The main aim of this simulation study was to evaluate 
bias, though a secondary aim was to evaluate the cover-
age of 95% confidence intervals in settings where estima-
tors were unbiased. We did not evaluate the precision 
of the different estimators, as each estimator addressed 
a different question and so precision is less relevant in 
deciding between them.

β̂PBE =
N1

MT

(
β̂
)
+

N2

MT

(
γ̂+ β̂+ δ̂

)

β̂PBP =
MT (1)

NT

(
β̂
)
+

MT (2)

NT

(
1

2
β̂+

(
1

2

)(
β̂+ γ̂+ δ̂

))

Table 2  Stata code to implement independence estimators. 
‘y’ denotes patient outcome, ‘z’ denotes treatment allocation, 
‘id’ is a unique identifier for patient, ‘m_i’ denotes the number 
of episodes for which the patient is enrolled in the trial, ‘z_prev’ 
denotes the patient’s treatment allocation in their previous 
episode (and is set to 0 if it is the patient’s first episode), ‘x_ep’ 
is an indicator for episode 2, ‘prop_1st_ep’ and ‘prop_2nd_ep’ 
represent the proportion of episodes in the trial which are 1st 
and 2nd episodes respectively, and ‘prop_has_1ep’ and ‘prop_
has_2ep’ denote the proportion of patients enrolled in the trial 
for one and two episodes respectively. In order to run the above 
code in Stata, ‘prop_1st_ep’, ‘prop_2nd_ep’, ‘prop_has_1ep’, and 
‘prop_has_2ep’ must be saved as Stata local macros

Estimator Stata code

Added-benefit

   Per-episode reg y z, vce (cluster id)

   Per-patient reg y z [pw = 1/m_i], vce (cluster id)

Policy-benefit

   Per-episode reg y z##z_prev x_ep, vce (cluster id)
lincom `prop_1st_ep’*_b[1.z] + ///
`prop_2nd_ep’*(_b[1.z] + _b[1.z_prev] + _b[1.z#1.z_
prev])

   Per-patient reg y z##z_prev x_ep [pw = 1/m_i], vce (cluster id)
lincom `prop_has_1ep’*(_b[1.z]) + `prop_
has_2ep’*((1/2)*(_b[1.z]) + ///
(1/2)*(_b[1.z] + _b[1.z_prev] + _b[1.z#1.z_prev]))
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We measured bias as E
(
β̂
)
− β , where E

(
β̂
)
 repre-

sents the mean of the estimates across all simulation 
replications, and β represents the true value of the esti-
mand. We compared each estimator against its corre-
sponding estimand (i.e. β̂ABE  vs. βABE  , β̂ABP  vs. βABP  , etc). We 
considered any estimator where the Monte Carlo stand-
ard error 95% confidence interval for bias (described 
below) did not include 0 (denoting unbiasedness) to be 
problematic.

We also evaluated coverage of the 95% confidence 
intervals. We defined coverage as the proportion of repli-
cations for which the 95% confidence interval of the esti-
mator contained the true value of the estimand.

For each performance measure (bias, coverage) we also 
assessed the Monte Carlo standard error (MCSE), which 
provides a measure of variability for the estimated per-
formance measure in the simulation study. We present 
the MCSEs as 95% confidence intervals alongside the 
mean bias and coverage, except in cases where this inter-
val was too small to show up on the figure (i.e. when the 
width of the confidence interval was smaller than the size 
of the dot representing the mean bias or coverage), in 
which case we report the range of Monte Carlo standard 
errors for each performance measure across scenarios.

We used 10,000 replications for all simulation 
scenarios.

Simulation study 1: patients enrolled for all episodes they 
experience
Data generating methods
Simulation study 1 is based on a trial of 300 patients; 150 
patients experience one episode during the trial period, 
and 150 experience two episodes (i.e. NT = 300, MT = 450, 
MT(1) = 150, and MT(2) = 150.

The main purpose of this simulation study is to evalu-
ate estimators in the setting where patients are enrolled 

for all episodes they experience; that is, the 150 patients 
who experienced two episodes were enrolled in the trial 
for both episodes (i.e. there are no patients who do not 
re-enrol for their 2nd episode).

We consider six different data generating mechanisms 
(described further below); all were based on the following 
general model for a continuous outcome:

where Xepij is an indicator variable for episode 2, and 
XMi is an indicator variable for patients with Mi = 2. A 
description of the variables in this model are given in 
Table 3 (this table also contains some variables which are 
not in eq. (5), but are used in simulation studies 2a and 
2b. Higher values of the outcome are better.

The parameter α is an intercept, βep and βM are the 
effects of episode 2 and patient type (whether they expe-
rience 1 vs. 2 episodes) on outcome, and βtrt, βTRTxEP, 
βTRTxM, γ, and δ are components of the treatment effect 
(e.g. βTRTxEP is the interaction between treatment allo-
cation and episode number, βTRTxM is the interaction 
between treatment and patient type, and δ is the interac-
tion between treatment allocation in the current episode 
and allocation in the previous episode).

In this study, we considered six different treatment 
effect mechanisms. This involved varying the parameters 
that define the treatment effect (βtrt, βTRTxEP, βTRTxM, γ, 
and δ); values of these parameters for each scenario are 
shown in Table 4, along with the values of the four esti-
mands for each scenario. For each scenario, we set α = 0, 
βtrt = 3, βep = 1, βM = 1, σ2µ = 5 and σ2ε = 5 . We generated 
μi and εij independently; based on the chosen variances, 
the intraclass correlation between episodes from the 

(5)

Yij = α + βtrtZij + βepXepij
+ βMXMi

+ βTRTxEPZijXepij
+ βTRTxMZijXMi

+ γZi,j−1 + δZijZi,j−1 + μi + εij

Table 3  Description of variables used in simulation study 1

Variable Description Method of generation

Yij Continuous outcome for patient i in episode j Generated based on model [5]

Zij Treatment allocation (0 = control, 1 = intervention) for patient i in episode j Bernoulli random variable with probability of 0.5 
(implying simple randomisation

Xepij Indicator for episode 2 NA

XMi Indicator for number of episodes patient experiences (0 = 1 episode, 1 = 2 epi-
sodes); equivalent to Mi

NA

Zi, j − 1 Treatment allocation for patient i in episode j − 1; equal to 0 for episode 1 NA

XPLi Unobserved patient-level binary covariate, which is constant across episodes Bernoulli random variable with probability of 0.5

XELij Unobserved episode-level binary covariate, which can vary across episodes Bernoulli random variable with probability of 0.5

μi Random intercept for patient i ∼ N
(
0, σ2µ

)

εij Random error term for episode j in patient i ∼ N
(
0, σ2ε

)
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same patient is 0.50 (conditional on the other variables in 
the data generating model).

We considered the following treatment effect 
mechanisms:

1.	 Constant treatment effect: the treatment effect is the 
same (βtrt) across all episodes and patients

2.	 Treatment effect varies across episode: the treatment 
effect is different in the 1st episode (βtrt) vs. in the 
2nd episode (βtrt + βTRTxEP)

3.	 Treatment effect varies across patients with differ-
ent values of Mi: the treatment effect is different in 
patients who experience 1 episode (βtrt) vs. those who 
experience 2 episodes (βtrt + βTRTxM).

4.	 Treatment effect carries forward into the 2nd epi-
sode: patients who receive intervention in the first 
episode have better outcomes in their 2nd episode 
(by the amount γ)

5.	 Treatment becomes less effective on re-use: patients 
receiving the intervention for the 1st time have a dif-
ferent treatment effect (βtrt) than those receiving the 
intervention for the 2nd time (βtrt + δ)

6.	 Treatment effect varies across episodes, across 
patients with different values of Mi, carries for-
ward, and becomes less effective on re-use: the 
treatment effect is βtrt for patients who experience 
one episode. For patients who experience two epi-
sodes, the treatment effect is βtrt + βTRTxM in the 1st 
episode, βtrt + βTRTxM + βTRTxEP in the 2nd episode 
for patients receiving the intervention for the first 
time (i.e. who received control in their 1st episode), 
and βtrt + βTRTxM + βTRTxEP + δ in the 2nd episode 
for patients receiving the intervention for the 2nd 
time (i.e. received intervention in their 1st episode). 
Patients who receive the intervention in the first epi-
sode also have better outcomes in their 2nd episode, 
by the amount γ.

We note that under certain treatment effect mecha-
nisms, the values of certain estimands will coincide. 
Briefly, the added-benefit and policy-benefit estimands 
will coincide when treatment history does not influence 
either the outcome or treatment effect in the current epi-
sode, and the per-episode and per-patient estimands will 
coincide when the cluster size is not informative [14–19], 
i.e. when a patient’s average treatment effect across epi-
sodes does not depend on the number of episodes they 
experience. For further details on when estimand values 
will coincide, see reference (1).

Simulation study 2a: some patients do not re‑enrol 
for their 2nd episode
Data generating methods
The main purpose of this simulation study is to evaluate 
estimators when some of the patients who experience 
two episodes do not re-enrol in the trial for their second 
episode. For example, this may occur if patients find the 
trial procedures, such as number of follow-up visits, too 
burdensome; if they were disappointed at their treatment 
allocation in the first episode; or they experienced a poor 
outcome in their first episode.

As before, this simulation study is based on a trial of 
300 patients; 150 patients experience one episode dur-
ing the trial period, and 150 experience two episodes. 
All patients enrol for their first episode, but a subset 
of patients who experience two episodes do not re-
enrol for their second episode. Therefore, NT = 300 
and MT(1) = 150, however MT(2) < 150 and MT < 450; the 
exact values of MT(2) and MT vary across simulation 
replications.

We simulated data by first generating outcomes for all 
450 episodes (regardless of whether they were enrolled in 
the trial for their 2nd episode) using model [6] below, and 
then generated an indicator for each episode to denote 
whether it was enrolled in the trial or not using model 

Table 4  Simulation parameters and estimands for different scenarios in simulation study 1. For all scenarios, we set α = 0, βtrt = 3, 
βep = 1, βM = 1, σ2µ = 5 and σ2ε = 5

Parameters Estimand values

Scenario βTRTxEP βTRTxM γ δ βABE βABP βPBE βPBP

Scenario 1: Constant treatment effect 0 0 0 0 3 3 3 3

Scenario 2: Treatment effect varies across episode 1.5 0 0 0 3.5 3.38 3.5 3.38

Scenario 3: Treatment effect varies across patients with different values of Mi 0 3 0 0 5 4.5 5 4.5

Scenario 4: Treatment effect carries forward 0 0 1 0 3 3 3.33 3.25

Scenario 5: Treatment becomes less effective on re-use 0 0 0 -3 2.5 2.63 2 2.25

Scenario 6: Treatment effect varies across episodes, across patients with differ-
ent values of Mi, carries forward, and becomes less effective on re-use

1,5 3 1 -3 5 4.5 4.83 4.38
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[7] below. We then performed analysis only on the sub-
set of enrolled episodes. We used six different treatment 
effect mechanisms (based on model [6] below) and five 
different non-enrolment mechanisms (based on model 
[7] below), leading to 6 × 5 = 30 total scenarios. The dif-
ferent treatment effect and non-enrolment scenarios are 
described below.

We generated continuous outcomes from the model:

This model is identical to model [5] from simulation 
study 1, except it contains two additional terms: XPLi and 
XELij , which are unobserved binary covariates, with XPLi 
being a patient-level covariate which does not vary across 
episodes, and XELij being an episode-level covariate 
which can vary across episodes for the same patient; we 
use the subscript PL to denote ‘patient-level’, and EL to 
denote ‘episode-level’. The purpose of including XPLi and 
XELij in this model is to allow differential non-enrolment 
to be generated (this is explained further below). We used 
positive values for βXPL and βXEL , so that patients or epi-
sodes where XPLi = 1 or XELij = 1 have better outcomes 
than if XPLi or XELij are 0; exact values of βXPL and βXEL for 
each scenario are shown in Table 5.

In the subset of patients with two episodes, we gen-
erated each patient’s probability of not re-enrolling for 
the second episode on a linear scale using the following 
model:

where Rij denotes whether patient i was enrolled for 
their j th episode (0 = not enrolled, 1 = enrolled). Note that 
Ri2 = 0 for patients who only experience one episode, and 

(6)

Yij = α + βtrtZij + βepXepij
+ βMXMi

+ βTRTxEPZijXepij

+ βTRTxMZijXMi
+ γZi,j−1 + δZijZi,j−1 + βXPL

XPLi

+ βXEL
XELij

+ μi + εij

(7)

P
(

Ri2 = 0
)

= αR2 + γR2Zi,j−1 + β
R2

XPL
XPLi

+ β
R2

XEL
XELi2

+ δ
R2

Xpl
Zi,j−1XPLi

+ δ
R2

Xel
Zi,j−1XELi2

Ri1 = 1 for all patients. We use the superscript R2 for param-
eters to indicate that these parameters relate to the prob-
ability of not being re-enrolled for the 2nd episode. We set 
αR2 = 0.05 and γR2 = 0.10 for all scenarios. This implies 
that all patients have a non-zero probability of not re-enroll-
ing for their second episode, and that patients who received 
intervention in episode 1 are more likely to not re-enrol 
than those in the control group (irrespective of XPLi and 
XELi2 ). Values for other parameters are shown in Table 5.

In the models above, we use XPLi as a marker of the 
patient’s outcome in episode 1, and XELi2 as a marker 
for the patient’s expected outcome in episode 2; that is, 
larger values of βR2XPL

 denote that patients with better out-
comes in episode 1 are less likely to re-enrol in the trial 
for their 2nd episode, and larger values of βR2XEL

 denote 
that patients with better expected outcomes in episode 2 
are less likely to re-enrol for that episode.

As stated above, we used six treatment effect mecha-
nisms and five non-enrolment mechanisms. We used the 
same six treatment effect mechanisms as used in simula-
tion study 1 (shown in Table  4), apart from the addition 
of XPLi and XELij to the model (as shown in model [6]). All 
other parameter values were the same as in Table 4, though 
the estimand values differed (these are described below). 
The five non-enrolment scenarios are shown in Table 5.

For each scenario, we calculated estimands based on 
the set of episodes enrolled in the trial. We calculated the 
true value of each estimand by generating a single large 
dataset of 1,000,000 patients (1,500,000 episodes), and 
then excluding episodes according to model [7] above. 
We then generated both added-benefit and policy-bene-
fit potential treatment effects for each episode, and cal-
culated the true value of the relevant estimand based on 
these. These estimand values are shown in the supple-
mentary material.

Simulation study 2b: further exploring bias associated 
with per‑patient and policy‑benefit estimators 
under non‑enrolment scenarios 4 and 5
We developed simulation study 2b to further explore some 
of the results from simulation study 2a, pertaining to bias 

Table 5  Parameters for different episode 2 non-enrolment scenarios (simulation study 2a). For all scenarios, we set αR2 = 0.05 and 
γR2 = 0.10

Scenario βXPL βXEL β
R2
XPL

β
R2
XEL

δ
R2
Xpl δ

R2
Xel

Scenario 1 – Non-enrolment depends on previous treatment allocation 0 0 0 0 0 0

Scenario 2 – Non-enrolment depends on previous treatment allocation and previous outcome 10 0 0.25 0 0 0

Scenario 3 – Non-enrolment depends on previous treatment allocation and baseline prognosis at episode 2 0 10 0 0.25 0 0

Scenario 4 – Non-enrolment is differential between treatment groups based on previous outcome 10 0 0 0 0.5 0

Scenario 5 – Non-enrolment is differential between treatment groups based on baseline prognosis at episode 2 0 10 0 0 0 0.5



Page 9 of 13Kahan et al. BMC Med Res Methodol          (2021) 21:235 	

in the per-patient and policy-benefit estimators under cer-
tain non-enrolment mechanisms. We generated outcomes 
and non-enrolment in the same way as in simulation study 
2a, but used a wider range of parameter values in order to 
assess how large the relevant parameter values needed to 
be in order for bias to become apparent. Full details of the 
data generation methods, parameter values, and results 
are available in the supplementary material.

Results
Simulation study 1: patients enrolled for all episodes they 
experience
Results are shown in Fig. 1. All estimators were unbiased 
and provided close to nominal coverage in all scenarios.

Simulation study 2a: some patients do not re‑enrol 
for their 2nd episode
Results are shown in Figs.  2 and 3. The per-episode 
added-benefit estimator was unbiased across all scenar-
ios, and had close to nominal coverage. The per-patient 
and policy-benefit estimators were unbiased across most 
scenarios, however, we identified several sources of bias 
which we discuss further below. Coverage of 95% con-
fidence intervals was close to nominal for all settings in 
which estimators were unbiased.

The per-patient added-benefit estimator was biased for 
non-enrolment scenario 4, where non-enrolment was dif-
ferential across treatment groups based on previous out-
come. We also identified a small bias in non-enrolment 
scenario 5 (where non-enrolment is differential across 
treatment groups based on prognosis at episode 2) under 
treatment effect scenarios 3 and 6 (when the size of the 
treatment effect varied across patients with different val-
ues of Mi). This bias was much smaller than that seen in 
non-enrolment scenario 4, but may still be large enough 
to cause concern.

The policy-benefit estimators (both per-patient and 
per-episode) were biased in non-enrolment scenarios 4 
and 5. This occurred despite the fact that these estima-
tors correctly modelled the causal effect of the previ-
ous treatment allocation on the outcome and treatment 
effect. This bias was a result of the model providing 
biased estimates of the parameter γ in these scenarios 
(which represents the effect of the previous allocation 
on outcome); because this parameter is used to con-
struct policy-benefit estimates, these in turn will also be 
biased.

In these scenarios, episode 1 intervention patients with 
good outcomes were less likely to re-enrol for episode 2. 
At episode 2 therefore, most patients with a good out-
come would have been allocated control in the previous 
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Fig. 1  Bias and coverage of independence estimators in simulation study 1. PE = per-episode; PP = per-patient; AB = added-benefit; 
PB = policy-benefit. Error bars are 95% confidence intervals based on Monte Carlo standard errors. Scenario 1: Constant treatment effect. Scenario 
2: Treatment effect varies across episode. Scenario 3: Treatment effect varies across patients with different values of Mi. Scenario 4: Treatment effect 
carries forward. Scenario 5: Treatment becomes less effective on re-use. Scenario 6: Treatment effect varies across episodes, across patients with 
different values of Mi, carries forward, and becomes less effective on re-use
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episode. This created a false association between pre-
vious treatment allocation and outcome, which led to 
biased estimates of γ.

Interestingly, the per-patient policy-benefit estima-
tor had negligible bias for non-enrolment scenario 
4; this is likely because the per-patient estimator is 
biased upwards in this scenario, and the policy-bene-
fit estimator is biased downwards, and the two biases 
cancel each other to some degree; however, under 
different parameter values it is likely that one of the 
biases would overtake the other, and the estimator 
would be biased. This is explored further in simulation 
study 2b below.

Simulation study 2b: further exploring bias associated 
with per‑patient and policy‑benefit estimators 
under non‑enrolment scenarios 4 and 5
Full results are available in the supplementary material. 
Briefly, the policy-benefit estimators were biased when 
either XPLi or XELij had strong associations with both 
outcome and probability of non-enrolment. When either 
association was small, bias was minimal, except when the 
other association was extremely large.

Similarly, the per-patient added-benefit estima-
tor was biased when XPLi had a strong association 
with both outcome and probability of non-enrolment; 
when either of these associations were small, bias 
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Fig. 2  Bias in estimators across different treatment effect and non-enrolment scenarios for simulation study 2a. Monte Carlo standard errors ranges: 
per-episode added-benefit 0.003–0.006; per-episode policy-benefit 0.004–0.008; per-patient added-benefit 0.003–0.006; per-patient policy-benefit 
0.004–0.007. Treatment effect scenario 1: Constant treatment effect. 2: Treatment effect varies across episode. 3: Treatment effect varies across 
patients with different values of Mi. 4: Treatment effect carries forward. 5: Treatment becomes less effective on re-use. 6: Treatment effect varies 
across episodes, across patients with different values of Mi, carries forward, and becomes less effective on re-use. Non-enrolment scenario 1: 
non-enrolment depends on previous treatment allocation. 2: Non-enrolment depends on previous treatment allocation and previous outcome. 
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was negligible, except when the other association was 
extremely large.

Unlike in simulation study 2a, we found the per-
patient policy-benefit estimator was biased in certain 
settings, indicating that the two competing biases will 
not always cancel out.

As expected, the per-episode added-benefit estimator 
was unbiased in all scenarios.

Discussion
In this article we report results from a large simulation 
study evaluating the use of independence estimators 
in re-randomisation trials. We found that the per-epi-
sode added-benefit estimator was unbiased across all 
scenarios considered. The per-patient estimators and 

policy-benefit estimators were also unbiased under 
the assumption of no differential non-enrolment (pro-
vided the causal model was correctly specified for the 
policy-benefit estimator). Furthermore, we found that 
the use of a robust standard error provided close to 
nominal coverage in all settings where the estimator 
was unbiased. These results suggest that the re-ran-
domisation design alongside an independence estima-
tor is a potentially useful option to estimate relevant 
treatment effects in multi-episode settings, though 
if per-patient or policy-benefit estimators are used it 
may be useful to conduct sensitivity analyses to evalu-
ate how robust results are to violations of the above 
assumptions [20]. Furthermore, since most analyses 
of re-randomisation trials have used an independence 
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per-episode added-benefit estimator, this article pro-
vides reassurance that reported results from these trials 
are unbiased.

The results in this article are based on simulation, and 
so are limited to the specific simulation scenarios studied. 
We used a wide range of treatment effect mechanisms 
and non-enrolment scenarios, and the results agree with 
previous analytical results [1]. However, it is possible the 
results found here may not apply to other settings, for 
instance when the sample size is very small [4]. It would 
also be of interest to evaluate these methods in a re-anal-
ysis of a published re-randomisation trial. This design is 
still quite new, and there are few published trials in the 
literature. However, further methodological work show-
ing the design can provide robust answers may lead to an 
increased uptake.

In this paper we focussed on the setting where the 
interventions under study do not affect whether future 
episodes occur. This is a plausible assumption for some 
trials (e.g. a trial of high-dose Ibuprofen to manage pain 
in acute sickle cell pain crises [21], where Ibuprofen will 
not influence whether participants experience subse-
quent pain episodes), but will almost certainly be false 
in other trials (e.g. a trial of in vitro fertilisation, where a 
treatment success precludes further treatment episodes). 
In other settings this assumption will be unknown (e.g. 
in a trial using a drug to treat symptoms from severe 
asthma exacerbations, where it is unknown whether the 
underlying mechanism of the intervention may delay or 
even prevent subsequent exacerbations). If treatment 
does affect the occurrence of subsequent episodes, then 
the policy-benefit and per-patient estimands defined in 
this paper are no longer valid and so estimation of these 
effects would lead to results with no clear interpretation. 
However, the per-episode added-benefit estimand still 
applies to the setting where treatment affects subsequent 
episodes [1]. Therefore, if re-randomisation is being used 
in a setting where it is possible that treatment may affect 
occurrence of future episodes, we recommend using a 
per-episode added-benefit treatment effect, to ensure 
results are valid and interpretable.

Further extensions to the work in this paper would 
be useful. In particular, it would be useful to compare 
re-randomisation to alternative designs. For instance, a 
cluster design, where participants are assigned to inter-
vention for all episodes vs. control for all episodes, may 
be a more robust way to estimate policy-benefit esti-
mands. However, cluster designs may be affected by 
selection bias, where patients decide not to re-enrol 
based on knowledge of which treatment group they are 
in. This is not an issue in re-randomisation trials, as they 
are randomised between treatments at each re-enrolment 
(though of course, participants may not re-enrol due to 

past treatments). Further work comparing these designs 
would therefore be useful.

It would also be useful to evaluate whether alterna-
tives to independence estimators, such as mixed-effects 
models, are suitable. Previous research has found they 
can be biased when the treatment effect carries forward 
into subsequent episodes, however it is not known how 
well these models work under other treatment effect 
mechanisms, such as when the treatment effect varies 
across patients or across episodes. We only considered a 
setting where patients were enrolled for a maximum of 
two episodes; it would be useful to evaluate policy-ben-
efit estimators in the setting where patients experience 
a larger number of episodes, particularly as specifying 
an appropriate causal model in these settings will be 
more challenging. We found that robust standard errors 
worked well in the settings considered, however our pri-
mary concern was bias of estimated, and we designed the 
simulation study with this in mind. Follow-up simulation 
studies designed to specifically address the issue of robust 
vs model-based standard errors would be useful. Finally, 
as discussed above, we only considered the setting where 
treatment allocation does not affect the occurrence of 
subsequent episodes; it would be of interest to extend 
the policy-benefit and per-patient estimands to settings 
where this is not the case.

Conclusions
Careful choice of estimand can ensure re-randomisation 
trials are addressing clinically relevant questions. Inde-
pendence estimators are a useful approach, and should 
be considered as the default estimator until the statisti-
cal properties of alternative estimators are thoroughly 
evaluated.
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