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Analysis of multivariate longitudinal 
substance use outcomes using multivariate 
mixed cumulative logit model
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Abstract: Background: Longitudinal assessments of usage are often conducted for multiple substances (e.g., ciga-
rettes, alcohol and marijuana) and research interests are often focused on the inter-substance association. We propose 
a multivariate longitudinal modeling approach for jointly analyzing the ordinal multivariate substance use data.

Methods: We describe how the binary random slope logistic regression model can be extended to the multi-
category ordinal outcomes. We also describe how the proportional odds assumption can be relaxed by allowing 
differential covariate effects on different cumulative logits for multiple outcomes. Data are analyzed from a P01 study 
that evaluates the usage levels of cigarettes, alcohol and marijuana repeatedly across 8 measurement waves during 7 
consecutive years.

Results: 1263 subjects participated in the study with informed consent, among whom 56.6% are females. Males and 
females show significant differences in terms of the time trend for substance use. Specifically, males showed steeper 
trends on cigarette and marijuana use over time compared to females, while less so for alcohol. For all three sub-
stances, age effects appear to be different for different cumulative logits, indicating the violation of proportional odds 
assumption.

Conclusions: The multivariate mixed cumulative logit model offers the most flexibility and allows one to examine 
the inter-substance association when proportional odds assumption is violated.

Keywords: Mixed cumulative logit model, Multivariate longitudinal outcomes, Non-proportional odds assumption, 
Substance usage
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Background
Usage levels of multiple substances (e.g., cigarettes, 
alcohol and marijuana) are often collected together and 
repeatedly over time [1]. These longitudinal outcomes 
may be modeled using univariate approaches, such as 
univariate mixed effect models or univariate general-
ized estimating equations [2, 3]. However, research ques-
tions often arise in investigating the inter-substance 
association of these multiple substances and therefore a 
multivariate longitudinal model offers a more desirable 

alternative. The multivariate longitudinal approach allows 
the test of whether increases / decreases in use of one 
substance are associated with increases / decreases in 
another substance of interest, or the test of whether a 
potential intervention effect is the same / different across 
multiple substances [4].

A major challenge for the multivariate longitudi-
nal approach is that the measurement scales of these 
products may be different. For example, the usage level 
of cigarette may be collected in terms of the num-
ber of cigarettes smoked per day, while frequency of 
binge drinking per week for alcohol. A practical way 
to “standardize” these measurement scales is to treat 
them as ordinal [5–7]. Specifically, the usage levels 
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of these products can be summarized in terms of no, 
low, moderate, and high use, corresponding to, for 
example, 0, 1–3, 4–20, 20+ days of use within the last 
30 days. Therefore, a multivariate modeling approach 
for ordinal longitudinal data will be considered.

Ordinal models characterize the cumulative com-
parisons of usage levels, i.e., no vs any use, no and low 
use vs moderate and high use, no to moderate use vs 
high use [8]. It is common to assume that covariates 
have the same effect on these cumulative compari-
sons, which is often known as the proportional odds 
assumption. However, for substance use outcomes, 
this assumption may not be reasonable [9, 10]. For 
example, suppose that there are four categories as 
mentioned above (no, low, moderate and high use), a 
potential intervention may be successful in increasing 
the probability of moving from high to moderate use, 
but not from low to no use. That is to say, the effects of 
the intervention (i.e., the covariate) vary for different 
cumulative comparisons, where it would be observed 
when we compare no, low and moderate use vs high 
use, but would not be observed when we compare no 
vs any use. This flexibility allows covariate effects to 
vary across the lowest and highest levels of substance 
use and is unique to the non-proportional odds ordi-
nal model. Thus, we believe that a longitudinal (non-
proportional odds) ordinal model for multivariate 
outcomes is a viable approach for jointly modeling the 
usage levels for multiple substances.

Marginal models that focus on estimating the pop-
ulation averaged covariate effects, such as the Gen-
eralized Estimating Equations (GEE) can be used 
for longitudinal ordinal data. Heagerty and Zeger 
[11] extended the traditional GEE model (for con-
tinuous response) to accommodate correlated ordinal 
responses. Alternative to the class of marginal models, 
conditional models directly model the subject spe-
cific covariate effect using random effects. Hedeker 
and Gibbons [12] proposed a mixed effects model for 
analyzing ordinal longitudinal responses via probit 
and logistic link functions. Hedeker and Gibbons [13] 
then extended the model to accommodate multiple 
random effects to allow for both inter and intra-indi-
vidual variations. Liu and Hedeker [14] extended the 
mixed effects item response theory model to allow for 
three-level multivariate ordinal outcomes without pro-
portional odds assumption, but this model can only 
handle random intercept or item factor loading. In this 
paper, we describe and illustrate the use of an extended 
ordinal mixed model for analyzing multi-wave usage 
levels of multiple substances (cigarettes, alcohol and 
marijuana).

Methods
For ordinal categorical outcomes, the mixed cumulative 
logit model is often constructed by first extending the 
binary logistic regression model to accommodate more 
than two categories, and then augmenting the cumulative 
logit model with subject level random effects. Parameter 
estimation in mixed cumulative logit models is compu-
tationally intensive since marginal likelihood needs to be 
integrated with respect to random effects and estimators 
are updated iteratively. In this article, we will focus on the 
application of the model rather than parameter estima-
tion methods.

Suppose K (K ≥ 2) outcomes are repeatedly measured 
over time in a longitudinal study and each outcome has 
C ordinal levels. Let Y k

ij  denote the k-th (k = 1, …, K) out-
come for subject i (i = 1, …, N) on occasion j (j = 1, …, ni). 
In the simple case of multivariate binary outcomes, i.e., 
Y k
ij  takes on values of either 0 or 1, mixed logistic regres-

sion model can be written in terms of the log odds of 
Pr(Y k

ij = 1):

In the left-hand side, the ratio 
Pr
(
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of a “1” outcome, and its log log
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 is also called the logit transfor-

mation. The log odds log
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 measures the 

possibility of a “1” outcome vs a “0” outcome, and is 
positive when Pr

(

Y k
ij = 1

)

> 0.5 , i.e., when “1” is more 
likely than “0”, negative vice versa. In terms of the 
regression coefficients, all β ‘s are superscripted with k, 
meaning that these are the coefficients for the k-th out-
come, among which βk0 is the intercept, βk1 is the coeffi-
cient for time tij, βk2 is the coefficient for the subject level 
covariate xi (also called time-invariant covariate, e.g., 
gender), and βk3 is the coefficient for the occasion level 
covariate  xij (also called time varying covariate, e.g., 
positive affect that can change during the study). The 
subject and occasion level covariates can be distin-
guished by their subscripts, i.e., whether the values vary 
by subject (subscripted by i) or across subject and occa-
sion (subscripted by both i and j). Without loss of gener-
ality, the above model can incorporate more covariates 
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- either at subject or occasion level, or interactions 
between any two covariates. The random effect vector 
(

νki ,µ
k
i

)

 represents the effect of subject i on the log odds 
of a “1″ outcome at baseline occasion (tij = 0) and its 
change over time (slope), and is often assumed to follow 
a bivariate normal distribution with 0 mean vector and 
covariance Σνμ in univariate approach. For multivariate 
models, however, the multivariate random effects vector 
Wi =

(

ν1i ,µ
1
i , ν

2
i ,µ

2
i , . . . , ν

K
i ,µ

K
i

)

 is assumed to follow a 
2 K dimensional multivariate normal distribution with 0 
mean vector and a covariance matrix Σw, allowing cor-
related random effects across different outcomes. It is 
assumed that 

(

νki ,µ
k
i

)

 is representative of subject level 
characteristics that can be obtained from the repeated 
measurements. The randomness and distributional 
assumption of 

(

νki ,µ
k
i

)

 or Wi separates the mixed effects 
models from fixed effects models, which treat 

(

νki ,µ
k
i

)

 
as model parameters (i.e., fixed instead of random) that 
can only be estimated using individual data. Model (1) is 
also called random slope logistic regression model 
because there are both random intercept and random 
slope in the model.

Extending Model (1) for ordinal outcome Y k
ij  with a 

total of C + 1 (C ≥ 1) categories, we model the cumulative 

odds 
Pr
(

Y k
ij≤c

)

1−Pr
(

Y k
ij≤c

) (c = 0, …, C-1) using multivariate mixed 

cumulative logit model:

for c = 0, …, C-1. The intercept βk0c is now subscripted 
with c and is used to model the marginal frequencies in 
the C ordered categories. In Model (2), the cumulative 
odds of Pr
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)

 (rather than Pr
(

Y k
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)

 ) is used, 
and thus positive values of the regression coefficients 
( βk1, β

k
2, β

k
3 ) indicate a negative association between the 

outcome Yk and corresponding covariate. That is to say, 
large values of Yk is less likely to be observed with large 
values of the covariate. In the aforementioned example 
with 4 ordered categories, if no, low, moderate and heavy 
substance use is coded as 0, 1, 2 and 3 respectively, a pos-
itive coefficient would indicate that larger values of the 
covariate are more likely to be observed with lower usage 
levels. The bivariate random effects vector 

(
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 char-
acterizes the subject level deviation at baseline occasion 
and change across the follow-up occasions, and is 
assumed constant across the C-1 cumulative odds mod-
els. Instead of assuming that 
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across K outcomes as in the univariate approach, Model 
(2) assumes that Wi =

(
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1
i , ν

2
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2
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)

 follows 
the 2 K dimensional multivariate Gaussian distribution as 
described in Model (1).

Model (2) adopts the proportional odds assumption 
since the coefficient vector ( βk1, β

k
2, β

k
3 ) is constant across 

the C-1 cumulative comparisons, i.e., ( βk1, β
k
2, β

k
3 ) is not 

subscripted with c. This implies that effects of the covari-
ates are the same across the C-1 cumulative comparisons. 
Suppose again that with 4 ordered categories, no, low, 
moderate and heavy substance use is coded as 0, 1, 2 and 
3 respectively. We obtain the following cumulative logits 
model:

The above models imply that for one unit increase in 
time, the odds of being in a lower category (012 vs 3, 01 
vs 23, and 0 vs 123) multiple by exp.(βk1 ). As a result, there 
are 3 intercepts and only one set of regression coefficients 
to be estimated. Therefore, proportional odds assump-
tion can greatly simplify the cumulative logit model by 
estimating a single effect for each covariate throughout 
all cumulative comparisons.
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comparisons, mixed cumulative logit models that do not 
assume proportional odds will be considered. Peterson 
and Harrel [15] and Ierza [16] developed the ordinal mod-
els via logit and probit link functions with non-propor-
tional odds for univariate cross-sectional data. Hedeker 
and Mermelstein [17] proposed the ordinal mixed logistic 
regression model with non-proportional odds for univari-
ate longitudinal data. Extending the univariate models in 
Hedeker and Mermelstein, we propose a multivariate 
approach that is able to incorporate the correlation among 
multiple outcomes through random intercepts and slopes, 
as described in Model (3):

for c = 0, …, C-1. The only difference of Model (3) com-
pared to Model (2) is that the regression coefficients 
( βk1c, β

k
2c, β

k
3c ) now carry the c subscript and indicate the 

effect of the covariates on the c-th cumulative logits. In 
the above example of no, low, moderate and heavy use 
(coded as 0, 1, 2, 3) for the k-th substance, the non-pro-
portional odds model becomes

where the coefficient vector ( βk12, β
k
22, β

k
32 ) indicates the 

effect of covariates when compare no, low and moderate 
use vs heavy use (i.e., 0, 1, 2 vs 3), while ( βk10, β

k
20, β

k
30 ) 

indicates the effect when compare no vs any use (i.e., 0 vs 
1, 2, 3) for the k-th outcome, and the two sets of coeffi-
cient vectors are allowed to be different. The non-pro-
portional odds model relaxes the homogeneous covariate 
effect assumption and offers more flexibility in substance 
use modeling. It is worth noting that Model (3) also 
allows “partial” proportional odds, where only a subset of 
the coefficients vary across the cumulative logits and 
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others remain constant. For example, it is possible that 
the time trends for heavy use (vs no, low and moderate 
use) is different from the trends for no use (vs low, mod-
erate and heavy use), i.e., only βk1c vary across the cumula-
tive logits while 

(

βk21, β
k
22

)

 remain the same. The “partial” 
proportional odds model is a special case of the non-pro-
portional model.

Results
Here we describe the use of multivariate mixed cumu-
lative logit model in analyzing the substance use data. 
In the example data set, the usage levels of cigarettes, 
alcohol and marijuana were collected for 1263 subjects 
across 8 measurement waves (baseline, 6, 15, 24, 48, 60, 
72 and 84 months). For each substance, the usage level 
was recoded as a 5-level ordinal outcome. Cigarette use 
was characterized by the number of days smoked during 
the last 30 days (0 = 0 days, 1 = 1–3 days, 2 = 4–10 days, 
3 = 11–20 days, 4 = 21+ days). Both alcohol and mari-
juana use were characterized by the level of use in the 
past 3 months (0 = 0 times, 1 = once a month or less, 
2 = > 1 a month but < 1 a week, 3 = > 1 a week but not 
daily, 4 = everyday). Therefore, for all three substances, 
the 0 category represents no use, while the highest cat-
egory represents daily or near-daily use. Overall, subjects 
provided an average of 6.8 observations (per substance) 
across waves, with 87% of subjects providing 5 or more 
observations. Detailed breakdown of the expanded age 
brackets, attrition and raw breakdowns for the outcome 
variables are provided in Additional file 1: Table A1.1 to 
A1.3 in Appendix A1.

As recommended in McArdle [18] and others, we use 
age instead of study wave as our time variable. Observa-
tions are binned into half-year age intervals from 13.5–
14.0 years at the low end, to 26.0–26.5 years at the high 
end (i.e., a total of 25 half-year age bins). We then treat 
age in years, relative to the first bin, as our age variable (0 
to 13 years) in the analysis.

Figure 1 shows the proportion of subjects in each age 
band and usage level category, tabulated for males and 
females, respectively. In general, as subjects grow older, 
the proportions of individuals in 0, 1 and 2 categories 
(corresponding to no, low and moderate use) decrease 
for both males and females, while those for categories 3 
and 4 (corresponding to heavy and near-daily use) first 
increase and then decrease, indicating that proportional 
odds assumption might not hold for this data set. In addi-
tion, the decrease of individual proportion in category 
1 (no use), as well as the increase in category 4 (near-
daily use) seem to be sharper for males than for females, 
indicating possible interaction effects between gender 
and age. Details containing the number and proportion 
of males and females in each age band and usage level 
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category are provided in Additional file  1: Table  A2.1 
of the Appendix A2. Statistical test results for propor-
tional odds assumption are provided in Additional file 1: 
Table A3.1 of the Appendix A3.

To better illustrate the implications from Fig.  1, 
observed cumulative logits from “no vs any use” (0 vs 
1,2,3,4) to “no to heavy use vs daily or near-daily use” 
(0,1,2,3 vs 4) were plotted for males and females, under 
each substance use and age band. The first cumulative 
logit compared the possibility of a 0 category vs those 
for 1,2,3 and 4 categories, i.e., no use vs any use, while 
the last cumulative logit compared the possibility of 
0,1,2 and 3 categories vs that for category 4, i.e., no use 
to heavy use vs near-daily or daily use. As Fig.  2 indi-
cates, there is clearly an age / time effect since all cumu-
lative comparisons decreased with age. However, for all 
substance use and all cumulative comparisons, males 
had sharper decrease from “13.5 - 18.0” to “18.0 – 22.5”, 
while shallower decrease from “18.0–22.5” to “22.5 – 
26.5”, compared to females, indicating differential time 
trends between genders and potential interaction effects 
between age and gender. In addition, different cumula-
tive comparisons showed heterogeneous time trends, 
with less reduction over age for the first cumulative com-
parison (0 vs 1,2,3,4), and more reduction for the last 
cumulative comparison (0,1,2,3 vs 4). Details about the 

cumulative odds and logits for all cumulative compari-
sons are provided in Additional file 1: Table A4.1 of the 
Appendix A4.

To formally examine these implications, consider the 
multivariate random slope model:

where c = 0,1,2,3. βk0c indicates the fixed-effects inter-
cept for the c-th cumulative comparison of the k-th out-
come; βk1c and βk2c indicate the effects of age and gender; 
βk3c indicates the interaction effect of age and gender, 
i.e., the differential time trends for males and females; 
νki  is the random subject intercept, indicating the influ-
ence of subject i on the cumulative logits at baseline, 
while µk

i  is the random subject slope, indicating the 
influence of subject i on the change of cumulative log-
its over time for the k-th outcome. The dependence of 
fixed effects parameters β on c, i.e., the subscript of c in 
β, relaxes the proportional odds assumption and pro-
vides separate effects estimation for each cumulative 
comparison. Utilizing the multivariate approach, we 
assume that Wi =

(

ν1i ,µ
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i , ν
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i ,µ

K
i

)

 follows the 

(4)

log

⎡⎢⎢⎢⎣

Pr
�
Y k
ij
≤ c

�

1 − Pr
�
Y k
ij
≤ c

�
⎤
⎥⎥⎥⎦
= βk

0c
+ βk

1c
ageij + βk

2c
genderi + βk

3c
ageij ∗ genderi + νk

i
+ μk

i
ageij

Fig. 1 Proportion of males and females in each substance usage level and age band. Usage level 0 indicates never use, and level 4 indicates daily or 
near-daily use



Page 6 of 9Lin et al. BMC Med Res Methodol          (2021) 21:239 

2 K dimensional multivariate Gaussian distribution as 
described in Model (1), allowing correlation among the 
usage levels in cigarettes, alcohol and marijuana.

Parameter estimates are performed in SuperMix [19], 
which uses full maximum likelihood estimation. Full esti-
mation results, including parameter estimates, standard 
errors and p-values for each cumulative logit model and 
each substance is provided in Additional file  1: Appen-
dix A5. For space and visualization, we provide Fig.  3 
below of the estimated cumulative probabilities for the 
three substances by gender. In each subplot, the highest 
logistic curve represents the cumulative probability of 
any use (categories 1 to 4 vs category 0, or equivalently, 
Pr(Y ≥ 0)), and the lowest logistic curve represents the 
cumulative probability of daily or near-daily use (catego-
ries 4 vs categories 0 to 3, or equivalently, Pr(Y ≥ 4)). The 
two intermediate curves can be thought to represent low 
and moderate use, respectively. Thus, going from top to 
bottom, the curves represent increasing levels of sub-
stance use.

As depicted in Fig.  3, it is clear that there are signifi-
cant differences between males and females in terms of 
substance use across time. These gender differences are 
almost entirely in terms of the age trends (i.e., slopes 
due to age), with males having steeper trends on all 

curves with the exception of the daily use trends (lowest 
curve) for alcohol and marijuana. These gender differ-
ences in trends are more pronounced for cigarettes and 
marijuana, and less so for alcohol. Thus, while both gen-
der groups have relatively similar use levels at baseline 
(age 13.5–14.0), large gender differences emerge as age 
increases. Both gender groups have increasing slopes due 
to age for all curves and substances, except that females 
show non-significant or minimally increasing trends for 
all levels of marijuana use, and for any use of cigarettes 
(highest curve). Concerning daily or near-daily use (the 
lowest curve), these were relatively flat with the noted 
exception of cigarettes for males, which showed a rather 
dramatic increase across age. For all others, the probabil-
ity of daily use remained low. Contrasting the different 
substances, it is clear that the patterns for alcohol, espe-
cially, are quite different. Interestingly, alcohol showed 
the highest levels of any, low, or moderate use (top three 
curves, respectively), but the lowest levels of daily use 
(lowest curve), relative to cigarettes and marijuana.

In addition, Model (4) allows one to examine the inter-
substance association, i.e., the associations among sub-
stance use, in terms of the random subject intercept 
and age effects. Table 1 shows the estimated correlation 
matrix for the 6 random effects: random subject intercept 

Fig. 2 Observed cumulative logits for all cumulative comparisons and substance use over age, for males and females. Usage level 0 indicates never 
use, and level 4 indicates daily or near-daily use
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and slope for cigarettes (CigInt, CigAge), alcohol (AlcInt, 
AlcAge), and marijuana (MarijInt, MarijAge). The cor-
relations of intercepts are all large and positive, with 
the strongest association between baseline alcohol and 
marijuana use (r = 0.804). Similarly, the age effects are 
positively associated, though not quite as large, with 
the strongest association between age-related changes 
in alcohol and marijuana (r = 0.503). All associations 
between intercepts and age effects are negative, meaning 
that subjects with lower/higher initial use have greater/
lesser age effects. This is likely due to ceiling effects of 
measurement, meaning that subjects with higher initial 
levels cannot increase their levels to the same degree as 
subjects with lower initial levels.

Discussion
In this paper, we have described a multivariate approach 
for analyzing longitudinal substance use data with a focus 
on mixed cumulative logit models with non-proportional 
odds assumption. Our goal is to relax the proportional 
odds assumption which is widely adopted by many sta-
tistical models. Proportional odds ordinal models assume 
homogeneous covariate effect across all cumulative 
comparisons, which, however, might not be appropriate 
in the context of substance use research. For example, a 

potential intervention strategy might be able to decrease 
substance use from the middle category, but not at the 
highest outcome category. In dealing with ordinal sub-
stance use data in practice, issues often arise as where to 
dichotomize the ordinal outcomes. For example, whether 
low use of cigarettes is defined as 1–3 days of smoking in 
the last 30 days, or 1–5 days of smoking in the last 30 days, 
would impact the proportional odds models since these 
models only estimate one set of covariate effect for all 
cumulative logits. The non-proportional odds cumulative 
logit model presented in this paper overcomes this issue 
by estimating one set of covariate effect for each cumu-
lative comparison and thus solves the issue caused by 
inconsistent dichotomizing thresholds. Testing whether 
a covariate has homogeneous effect across all cumula-
tive comparisons is sometimes of particular interest, and 
when proportionality cannot be assumed, our method 
provides a practical alternative. Brant [20] constructed 
a number of goodness-of-fit measures for assessing the 
proportional odds assumption and provided a data exam-
ple for illustration.

Another advantage of our proposed model is the 
jointly modeling of multiple substances via random 
effects. The proposed multivariate approach allows 
both the inter-substance correlation of the usage 

Fig. 3 Estimated cumulative probability of substance use from any use (highest curve) to daily or near-daily use (lowest curve) for females and 
males over time
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levels and the correlation of baseline usage as well as 
its change over time. For inter-substance correlation, 
the usage level of one substance (such as cigarettes) is 
often associated with that of another substance (such 
as alcohol or marijuana) for an individual. This is likely 
due to person specific behavior or traits that cannot 
be observed from the data. Including subject random 
effects for each substance and allow them to be corre-
lated provides a subject specific modeling strategy and 
allows the estimation of subject-specific as well as sub-
stance-specific covariate effects. The proposed model 
includes both subject level random intercept and slope 
for each substance, and allow them to be correlated 
both for a specific substance and across substances. 
Correlation between the baseline usage level and its 
change over time is often observed for survey data and 
is sometimes called the ceiling effects, which describes 
the phenomenon that subjects with higher/lower levels 
at baseline cannot increase/decrease their levels to the 
same degree compared to those with lower/higher ini-
tial levels. The estimated covariance matrix (or correla-
tion matrix) for the multi-dimensional random effects 
provides a quantitative measurement for the inter-sub-
stance association as well as the association between 
baseline usage and change over time.

In the example data set, individuals were measured at 
up to 8 waves during the entire study. Modeling the sub-
stance use outcomes via mixed effects model framework 
does not require balanced data, i.e., individuals are not 
required to be measured at every measurement wave. 
Compared to fixed effects models, both information of 
that individual and individuals in the entire data set were 
used (but were weighted differently) in estimating the 
subject specific covariate effects. The information bor-
rowing across all individuals makes the effect estimates 
more robust in the random effect approach. Using ter-
minologies from the multi-level analysis, the multivari-
ate longitudinal data in our example are structured with 
level 1 occasions and level 2 subjects, where observations 
(level 1) across multiple occasions are nested within sub-
jects (level 2). The same multivariate approach is thus 
applicable to cross-sectional clustered data, where the 

level 1 observations are clustered within the level 2 clus-
ters (such as hospitals and classrooms). However, in this 
situation, only random intercept model will be consid-
ered since observations are not measured repeatedly over 
time.

Parameter estimation in the proposed multivari-
ate mixed cumulative logit model is challenging due to 
the inclusion of multiple random effects and non-pro-
portionality. We provide a sample SuperMix code for 
non-proportional odds model in the Additional file  1: 
Appendix A6. Since multivariate longitudinal studies are 
increasingly used for substance use and behavioral stud-
ies, it is of great importance to develop appropriate sta-
tistical models that can help to interpret the associations 
and shed light on possible mechanisms.

Conclusion
The proposed multivariate mixed cumulative logit model 
offers the most flexibility in jointly modeling multiple 
substance use longitudinally over time. Analyses of the 
P01 data set using the proposed model revealed differ-
ential time trend of substance use between males and 
females, as well as the associations among cigarettes, 
alcohol and marijuana use both at baseline and longitu-
dinally over time.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874- 021- 01444-1.

Additional file 1. 

Acknowledgements
Not applicable.

Authors’ contributions
RM conceptualized the study design and data collection. DH and XL 
developed the multivariate mixed cumulative logit model. XL analyzed and 
interpreted the substance use data. DH and XL contributed in writing the 
manuscript. All authors read and approved the final manuscript.

Funding
This research was supported by the National Cancer Institute of the National 
Institutes of Health under award number P01CA098262 (PI: Mermelstein), 
Shanghai Sailing Program (19YF1402900, PI: Xiaolei Lin) and the General 

Table 1 Estimated correlation of random intercept and age effects for cigarette, alcohol and marijuana use

CigInt CigAge AlcInt AlcAge MarijInt MarijAge

CigInt 1 – – – – –

CigAge −0.277 1 – – – –

AlcInt 0.659 −0.125 1 – – –

AlcAge −0.459 0.198 −0.607 1 – –

MarijInt 0.729 −0.155 0.804 −0.504 1 –

MarijAge −0.326 0.400 −0.339 0.503 −0.415 1

https://doi.org/10.1186/s12874-021-01444-1
https://doi.org/10.1186/s12874-021-01444-1


Page 9 of 9Lin et al. BMC Med Res Methodol          (2021) 21:239  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Projects of Shanghai Science and Technology Commission (21ZR1405000, PI: 
Xiaolei Lin). Its contents are solely the responsibility of the authors and do not 
necessarily represent the official views of NCI, the National Institutes of Health 
or Shanghai Commission of Science and Technology.

Availability of data and materials
The datasets analyzed during the current study are not publicly available due 
to the reason that the study is still ongoing, but are available from Dr. Robin 
Mermelstein on reasonable request.

Declarations

Ethics approval and consent to participate
All procedures were approved by the University of Illinois at Chicago Insti-
tutional Review Board and in accordance with the Declaration of Helsinki. 
Written informed consent was obtained from participants parents and assent 
was obtained from the participants.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Author details
1 School of Data Science, Fudan University, Shanghai, China. 2 Institute 
for Health Research and Policy, University of Illinois at Chicago, Chicago, USA. 
3 Department of Public Health Sciences, University of Chicago, Chicago, USA. 

Received: 18 July 2021   Accepted: 21 October 2021

References
 1. Rose JS, Chassin L, Presson CC, Sherman SJ. Multivariate applications 

in substance use research: new methods for new questions. New York: 
Psychology Press; 2000.

 2. Gibbons RD. Mixed-effects models for mental health services research. 
Health Serv Outcome Res Methodol. 2000;1:91–129.

 3. Homish GG, Edwards EP, Eiden RD, Leonard KE. Analyzing family 
data: a GEE approach for substance use researchers. Addict Behav. 
2010;35(6):558–63.

 4. Holland TR. Multivariate analysis of personality correlates of alcohol and 
drug abuse in a prison population. J Abnorm Psychol. 1977;86(6):644–50.

 5. Dziak JJ, Li R, Zimmerman MA, Buu A. Time-varying effect models for 
ordinal responses with applications in substance abuse research. Stat 
Med. 2014;33(29):5126–37.

 6. McGinley JS, Curran PJ, Hedeker D. A novel modeling framework for 
ordinal data defined by collapsed counts. Stat Med. 2015;34(15):2312–24.

 7. Hedeker D. Methods for multilevel ordinal data in prevention research. 
Prev Sci. 2015;16(7):997–1006.

 8. McCullagh P. Regression Models for Ordinal Data. J R Stat Soc Ser B 
(Methodological). 1980;42(2):109–42.

 9. Bender R, Grouven U. Using binary logistic regression models for ordinal 
data with non-proportional odds. J Clin Epidemiol. 1998;51(10):809–16.

 10. Chen YL, Wu SC, Chen YT, Hsiao PC, Yu YH, Ting TT, et al. E-cigarette use in 
a country with prevalent tobacco smoking: a population-based study in 
Taiwan. J Epidemiol. 2019;29(4):155–63.

 11. Heagerty PJ, Zeger SL. Marginal regression models for clustered ordinal 
measurements. J Am Stat Assoc. 1996;91(435):1024–36.

 12. Hedeker D, Gibbons RD. A random-effects ordinal regression model for 
multilevel analysis. Biometrics. 1994;50(4):933–44.

 13. Hedeker D, Gibbons RD. Longitudinal data analysis. Hoboken, N.J: Wiley-
Interscience; 2006.

 14. Liu LC, Hedeker D. A mixed-effects regression model for longitudinal 
multivariate ordinal data. Biometrics. 2006;62(1):261–8.

 15. Peterson B, Harrell F. Partial Proportional Odds Models for Ordinal 
Response Variables. Journal of the Royal Statistical Society. Series C 
(Applied Statistics). 1990;39(2):205–17.

 16. Ierza J. Ordinal probit: A generalization. Communications in Statistics - 
Theory and Methods. 1985;14(1):1–11.

 17. Hedeker D, Mermelstein RJ. Analysis of longitudinal substance use 
outcomes using ordinal random-effects regression models. Addiction. 
2000;95:S381–94.

 18. McArdle JJ. Latent curve analyses of longitudinal twin data using a 
mixed-effects biometric approach. Twin Research and Human Genetics. 
2006;9(3):343–59.

 19. Hedeker D, Gibbons R, du Toit M, Cheng Y. SuperMix: Mixed Effects Mod-
els: Scientific Software International; 2008.

 20. Brant R. Assessing proportionality in the proportional odds model for 
ordinal logistic regression. Biometrics. 1990;46(4):1171–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


