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Abstract 

Background With continuous outcomes, the average causal effect is typically defined using a contrast of expected 
potential outcomes. However, in the presence of skewed outcome data, the expectation (population mean) may 
no longer be meaningful. In practice the typical approach is to continue defining the estimand this way or transform 
the outcome to obtain a more symmetric distribution, although neither approach may be entirely satisfactory. Alter‑
natively the causal effect can be redefined as a contrast of median potential outcomes, yet discussion of confound‑
ing‑adjustment methods to estimate the causal difference in medians is limited. In this study we described and com‑
pared confounding‑adjustment methods to address this gap.

Methods The methods considered were multivariable quantile regression, an inverse probability weighted (IPW) esti‑
mator, weighted quantile regression (another form of IPW) and two little‑known implementations of g‑computation 
for this problem. Methods were evaluated within a simulation study under varying degrees of skewness in the out‑
come and applied to an empirical study using data from the Longitudinal Study of Australian Children.

Results Simulation results indicated the IPW estimator, weighted quantile regression and g‑computation implemen‑
tations minimised bias across all settings when the relevant models were correctly specified, with g‑computation 
additionally minimising the variance. Multivariable quantile regression, which relies on a constant‑effect assumption, 
consistently yielded biased results. Application to the empirical study illustrated the practical value of these methods.

Conclusion The presented methods provide appealing avenues for estimating the causal difference in medians.

Keywords Causal inference, Skewed outcomes, Potential outcomes, Difference in medians, Confounding, Quantile 
regression, Inverse probability weighted, Propensity scores, G‑computation

Introduction
Causal inference is a central goal of health research, 
aiming to assess how intervening on a given exposure 
impacts an outcome of interest [1]. In a perfect rand-
omized controlled trial (i.e., with no loss to follow-up) 
causal effects can in principle be directly estimated by 
comparing the average outcome in those randomised to 
each exposure level. However, in observational studies 
estimation of causal effects requires more sophisticated 
methods, in particular to adjust for potential confound-
ing due to the lack of randomisation.

With continuous outcomes, the average causal effect is 
typically defined as a contrast of the expected (i.e., popu-
lation mean) potential outcome under exposure versus 
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under no exposure. This is usually defined in more detail 
by specifying the target trial we seek to emulate with 
observational data [2, 3]. However, epidemiological stud-
ies may suffer from skewed outcome measures, for which 
the expectation may no longer be interpretable as the 
central value of the distribution (i.e., the point in the dis-
tribution such that there is a 50% chance of a data point 
lying above it). Examples of skewed outcomes are abun-
dant in health research, particularly in areas using scale 
scores for measurement (e.g., self-reported quality of life 
via the PedsQL [4], childhood behaviour via the SDQ 
[5]), time-to-event outcomes in the absence of censoring 
(e.g., survival time), or duration of events (e.g., breast-
feeding duration).

When faced with this challenge in practice, there are 
two predominant approaches - continue to define the 
estimand as a contrast of expected potential outcomes, 
or transform the outcome to obtain a more symmetric 
distribution for which the expectation is interpretable as 
the central value. Both approaches have their advantages, 
although neither may be entirely satisfactory in many 
practical settings. Defining the estimand using expected 
potential outcomes may be appropriate when the expec-
tation is of direct interest, allowing established con-
founding-methods to be applied [1]. However, the utility 
of this estimand is context-dependent, and may not be 
the optimal choice if the central value of the outcome 
distribution is of primary interest. Transformation of the 
outcome to be more symmetrically distributed could be 
an alternative solution. However, this relies on a suitable 
transformation existing (which may not be feasible for 
highly skewed distributions) and makes interpretation 
of the causal effects more complex than interpretation in 
the original scale (e.g., log-years instead of years).

An appealing alternative could be to define the causal 
effect using a contrast of median potential outcomes (i.e., 
the causal difference in medians). In fact, the causal effect 
has been generally defined as a contrast of any functional 
of the distributions of counterfactual outcomes under 
different exposure values [6]. However, despite being a 
widely acknowledged concept, there is limited availabil-
ity and awareness of confounding-adjustment methods 
to estimate the causal difference in medians in practice. 
An immediate suggestion may be to use multivariable 
quantile regression as explored previously [7, 8], although 
this relies on the strict constant-effect assumption (i.e., a 
constant causal effect across confounder substrata) which 
may be too simplistic in practice. A handful of previous 
studies have acknowledged the need for less restrictive 
methods, e.g., g-methods, and presented derivations 
of approaches to estimate causal effects as contrasts of 
distribution quantiles more generally. A study by Zhang 
et  al. (2012) derived a number of methods - a quantile 

regression estimator, an inverse probability weighted 
estimator, and a stratified estimator using propensity 
scores [7]. A more recent study in the field of environ-
mental science defined a novel “overlap weighting” esti-
mator using a class of balancing weights from functions 
of the propensity score model to weight each group to 
a selected target population [8]. These approaches are 
singly robust (i.e., relying on correct specification of the 
respective model), with a handful of doubly robust meth-
ods [7, 9–11] also proposed.

Despite their greater ease in understanding and imple-
mentation relative to doubly robust methods, application 
of these singly robust methods for estimating the causal 
difference in medians remains scarce in epidemiological 
research. The current discussion and evaluation of such 
methods is relatively limited, which has potentially led 
to a lack of awareness in their existence. Furthermore, to 
the best of our knowledge, the use of g-computation in 
the context of medians has not been widely discussed, let 
alone studied in relation to other approaches. In addition, 
there has been limited investigation of how these meth-
ods perform in realistic settings across various scenarios, 
specifically in terms of the degree of skewness in the out-
come which has only been explored minimally and not 
for all the methods considered here [8].

In this paper we aim to describe, evaluate and com-
pare singly robust confounding-adjustment methods to 
estimate the causal difference in medians, intending to 
increase understanding of their utility and encourage 
application in practice where appropriate. We focus on 
singly robust methods due to their wider accessibility and 
ease of implementation, thus aiming to bridge the gap 
into practice where appropriate. We revisit existing dou-
bly robust methods for the causal difference in medians 
within the Discussion section of this manuscript.

We begin this paper by defining the causal effect of 
interest alongside an illustrative example from the Longi-
tudinal Study of Australian Children (LSAC) [12], before 
outlining the confounding-adjustment methods consid-
ered. We then report findings from a simulation study 
motivated by the LSAC example, in addition to demon-
stration of the methods applied to the LSAC data. We 
conclude by summarising the key findings, strengths, 
limitations and practical recommendations.

Defining the causal effect using medians
Consider an observational study with continuous 
skewed outcome variable Y, a binary exposure variable 
A, and a vector of K confounder variables C . We assume 
C includes only binary or continuous variables, noting 
that categorical confounders can be represented as a 
set of binary indicators. For simplicity of discussion, we 
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have restricted A to be binary and assume that no vari-
able is subject to missingness.

The example used throughout this paper involves 
data from 4882 children from a nationally representa-
tive longitudinal cohort study (LSAC) [12, 13]. Chil-
dren aged 4-5 years were recruited in 2004 (wave 1; 
approved by the Australian Institute of Family Studies 
Ethics Committee), with follow-ups every two years in 
subsequent waves. The example investigation exam-
ined the impact of maternal mental health on a child’s 
behaviour in early childhood in Australian families. 
The exposure (A) was a binary indicator of probable 
serious maternal mental illness, with the outcome (Y) 
being the child’s behavioural difficulties as measured by 
the Strengths and Difficulties Questionnaire [5] (SDQ). 
Higher SDQ scores indicate increased behavioural diffi-
culties, with scores being positively skewed in the gen-
eral population of Australia children, for which LSAC 
is a representative sample (see Supplementary Fig.  1 
for distribution of SDQ in LSAC). Potential confound-
ers ( C ) included demographic information about the 
child and mother (see Table  1 for a full description of 
all variables).

We define Y a to be the potential outcome when the 
exposure is set to level a. In the LSAC example, Y a rep-
resents the SDQ score for a child when their mother 
is set to have a probable serious mental illness ( a = 1 ) 
or not ( a = 0 ). Here we define the shorthand nota-
tion ma to denote the median (med) potential outcome 
under exposure level A = a , such that ma = med[Y a] 
and ma ∈ R . Therefore, the causal difference in medi-
ans, denoted by δ , is defined as the difference between 
the median potential outcomes under the two exposure 
levels:

For the LSAC example, δ represents the difference in 
median SDQ scores if all children were exposed to mater-
nal mental health problems compared to if none of them 
were exposed.

The causal difference in medians is identifiable from 
observational data under the assumptions of consistency, 
conditional exchangeability given C and positivity hence-
forth referred to as assumptions (1-3) (see Supplemen-
tary Material S2 for further detail), as has been shown 
elsewhere [8, 16]. Whether these assumptions hold in 
practice is a matter of debate, however, for the remainder 
of this paper we assume these conditions do hold.

Confounding‑adjustment methods
Under the aforementioned assumptions, the causal dif-
ference in medians δ can in principle be estimated from 
observable data using methods that adjust for potential 
confounding. Here we introduce the confounding-adjust-
ment methods investigated in our study, focusing on 
their implementation in practice.

Multivariable quantile regression
Multivariable generalised linear regression is a common 
approach to estimate the average causal effect, adjusting 
for confounding through conditioning on the confound-
ers. To estimate δ , a natural adaptation is to use multivar-
iable quantile regression (QR); a method for modelling 
the quantiles of the distribution of a random variable 
conditional on a set of covariates [17]. When applying 
this approach, a QR model is fitted for the outcome varia-
ble Y conditional on both the exposure A and confounder 
variables C , with the τ th quantile of Y modelled as

(1)δ = med Y a=1 −med Y a=0 = m1 −m0.

Table 1 Overview of variables from the Longitudinal Study of Australian Children (LSAC) example [12, 13] examining the impact of 
maternal mental health on a child’s behavioural difficulties in early childhood. The exposure and confounders were recorded at wave 1 
(2004), with the outcome variable recorded at wave 3 (2008)

Role Variable Values and additional details

Outcome Y Behavioural difficulties score Range 0‑40; Strengths & Difficulties Questionnaire [5]

Exposure A Probable serious maternal mental illness Yes:A = 1/No:A = 0 ; Yes defined as a K10 score < 4 [14, 15]

Confounders C Sex of child Male/Female

Whether the child has siblings Yes/No

Child’s physical functioning score Range 0‑100; Pediatric Quality of Life Inventory [4]

Behavioural difficulties score (baseline) Range 0‑40; Strengths & Difficulties Questionnaire [5]

Maternal age Recorded in years

Maternal smoking status Yes/No

Maternal risky alcohol consumption Yes/No; Yes defined as > 2 standard alcoholic drinks per day

Maternal completion of high school Yes/No

Family financial hardship score Range 0‑6

Consistent parenting score Range 1‑5
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By setting τ = 0.5 , the coefficient of the expo-
sure variable β1(0.5) encodes the difference in the 
conditional median outcome between exposure 
groups for every level of C (confounder strata), i.e., 
med[Y |A = 1,C = c] −med[Y |A = 0,C = c] . Under 
assumptions (1-3), the assumption of a constant causal 
difference in medians across confounder strata and 
assuming the QR model is correctly specified, the esti-
mated exposure coefficient β̂1(0.5) has been shown to be 
a consistent estimator for the causal effect δ [8].

Quantile regression is a widely-applied and accessible 
method in practice, with implementation readily avail-
able in statistical software (e.g., the quantreg package in R 
[18]). However, the assumption of a constant causal effect 
across confounder strata may be too simplistic, and thus 
less-restrictive confounding-adjustment methods may be 
required in practice.

IPW estimator
An alternative approach uses the framework of inverse 
probability weighting (IPW) to create a pseudo-popula-
tion in which the distribution of C is balanced between 
exposure groups, such that the association between A 
and Y in the pseudo-population provides an unbiased 
estimate for the causal effect of A on Y [19, 20]. To create 
the pseudo-population, observations are re-weighted in a 
way that is inversely proportional to the probability of the 
observed exposure conditional on the confounding vari-
ables via calculation of inverse probability (IP) weights. 
These probabilities are estimated from a model for the 
propensity score (PS) defined as π(c) = P(A = 1|C = c).

A study by Zhang et al. (2012) derived an IPW estima-
tor for the causal difference in medians and other quan-
tiles of the potential outcome distribution [7]. Applying 
this approach in the context of medians, ma is estimated 
as the solution to the equation

where Ŵa,i denotes the estimated weight for observation 
i = 1, . . . , n under exposure level Ai = a . The weights 
are defined as Wa,i = I(Ai = a)/[nP(Ai = a|ci)] and cal-
culated using estimates of the propensity score, π̂(c) , 
obtained via a suitable regression model (e.g., a logistic 
regression model for A conditional on C ). Following the 
suggestion of Zhang et  al. (2012), normalised weights 
Ŵ ∗

a,i are preferred to improve finite-sample performance 
[7], and are calculated by dividing each weight by the sum 

(2)Qτ (Y |A,C) = β0(τ )+ β1(τ )A+ βT
3 (τ )C ,

(3)
n

∑

i=1

Ŵa,iI(Yi ≤ ma) = 0.5,

of all weights in the associated exposure group (see Sup-
plementary Material S3 for mathematical formulation 
and further details).

To obtain the estimates m̂1 and m̂0 , Equation 3 is solved 
for each exposure level a. In practice, statistical software 
can be used to solve this equation (e.g., via the uniroot 
function in R). Under assumptions (1-3) and assuming 
that the propensity score model is correctly specified, 
the difference between these two values consistently esti-
mates the causal difference in medians δ.

Weighted quantile regression
An alternative implementation of IPW uses IP weights 
to fit a weighted quantile regression (QR) model, weight-
ing the score equations of the regression as opposed to 
the observed outcomes (as is done via the IPW estimator 
described above). Using this approach, a univariable QR 
model for the τ th quantile of Y is specified as

and fit using the IP weights estimated as outlined for 
the IPW estimator above. By setting τ = 0.5 , the coeffi-
cient of the exposure variable encodes the difference in 
medians between each exposure level in the pseudo-pop-
ulation. Under assumptions (1-3) and assuming the pro-
pensity score model is correctly specified, the estimate 
β̂∗
1 (0.5) has been shown to be a consistent estimator for 

the causal difference in medians δ [8].
Unlike the previous IPW estimator, which needs to 

be hand-coded at present, implementation of weighted 
QR is readily available within software packages (e.g., 
using the weights argument within the rq function in R 
[18, 21]).

G‑computation
G-computation is another popular confounding-adjust-
ment method, arising from the g-formula which states 
that under assumptions (1-3), the marginal density of Y a 
can be identified from observable data as [22]

which is equivalent to E[fY |A,C(y|a,C)] where the outer 
expectation is over C , where f denotes a density function. 
Intuitively, the right-hand side is standardising the condi-
tional density under an exposure value to the distribution 
of the confounders in the whole sample, thus addressing 
the imbalance in confounders between exposure groups 
due to non-randomisation, which enables a contrast under 
exposure values comparable. This result can be used to 
identify any functional of the marginal density of Y a.

(4)Qτ (Y |A) = β∗
0 (τ )+ β∗

1 (τ )A,

(5)fY a(y) =
∑

c

fY |A,C (y|a, c)fC(c),
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When interest is in the median potential outcome ma , 
the g-formula implies that ma can be identified as the 
solution to

Here we note the term inside the integral is the 
expectation of a density, and thus the median poten-
tial outcome is not identified by a simple aggregation 
across the sample (i.e., the median of the conditional 
medians or expectations). Instead, estimation of ma 
using g-computation requires estimation of the condi-
tional density within the integral. Next we describe two 
possible implementations of g-computation for estima-
tion of ma - a Monte Carlo integration-based approach 
and an approximate approach, denoted as g-comp (MC) 
and g-comp (approx), respectively.

G‑comp (MC)
The first implementation, g-comp (MC), uses Monte 
Carlo simulation to perform draws from the density 
fY a(y) , which can then be used to estimate ma [23]. 
Specifically, we posit a model for the conditional den-
sity of Y given A = a and C . We then repeatedly draw 
from the expectation over C of this density, i.e., corre-
sponding to draws from fY a(y) (based on Equation  5). 
The median potential outcome under exposure value a 
is estimated as the median of these draws [23].

Implementing this approach requires a model for 
the distribution of Y conditional on A and C (referred 
to as the outcome model). In the context of a skewed 
outcome, one possible approach is to assume that the 
conditional distribution of Y given A and C follows an 
approximate log-normal distribution, with the mean of 
the underlying normal distribution dependent on A and 
C . The g-comp (MC) method would therefore be imple-
mented as follows: 

1. Fit a linear model for log(Y) conditional on A and C 
to the observed data.

2. Using the fitted linear model, obtain predictions of 
the mean outcome (on the log scale) for every obser-
vation (where i = 1, ..., n ) twice: 

(a) Set each observation to be exposed 
(i.e., set Ai = 1 ) to obtain predictions 
µ̂1
i = Ê[log(Yi)|Ai = 1,C i = ci] , i = 1, ..., n.

(b) Set each observation to be unexposed 
(i.e., set Ai = 0 ) to obtain predictions 
µ̂0
i = Ê[log(Yi)|Ai = 0,C i = ci] , i = 1, ..., n.

(6)
∫ ma

−∞

E[fY |A,C (y|a,C)]dy = 0.5.

3. For a = 0, 1 , repeatedly perform R draws for each 
observation from a log-normal distribution para-
metrised with the mean (on the log scale) equal to 
µ̂a
i  and standard deviation σ̂ equal to the estimated 

residual deviance of the model fitted in step 1.
4. For a = 0, 1 , the sample median of the combined R 

samples drawn for each of the n observations is used as 
an estimate of the median potential outcome ( m̂a ) [23].

G‑comp (approx)
In practice, the above approach may be computationally 
intensive, particularly for a data set with a large num-
ber of observations. Therefore, an alternative approach, 
g-comp (approx), approximates E[fY |A,C(y|a, c)] by 
obtaining estimates of it across a grid of candidate y val-
ues, denoted as y∗ , and then solves Equation  6 numeri-
cally to obtain the estimated median potential outcome. 
This approach again requires a model for the conditional 
distribution of Y given A and C (e.g., a log-normal model 
as above).

When implementing this approach, steps 1 and 2 are 
performed as outlined for the g-comp (MC) approach. 
For a = 0, 1 and for each candidate y∗ , we then estimate 
f̂Y |A,C(y

∗|a, ci) for each record i by assuming a log-nor-
mal density with the mean (on the log scale) equal to µ̂a

i  
and standard deviation σ̂ (as defined in step 3 above). 
Averaging the conditional densities over the sample 
yields the estimated expectation for candidate value y∗:

By repeating this process for every candidate value 
y∗ , the expectation within the integral in Equation  6 
is estimated across the range of Y. This integral is then 
approximated by adding up these values cumulatively, 
and finding the minimum value of y∗ for which this sum 
is equal to 0.5 to estimate ma.

For both g-computation implementations, the dif-
ference between the estimates m̂1 and m̂0 consistently 
estimates the causal difference in medians under assump-
tions (1-3) and assuming that the outcome model is cor-
rectly specified [23].

Standard error estimation
Previous recommendations have advised that standard 
errors and confidence intervals (CI) be estimated using 
bootstrap procedures for ease of implementation [7]. 
In this study, we use this approach for all confounding-
adjustment methods (using the percentile bootstrap 
method).

(7)Ê[fY |A,C (y
∗|a, c)] =

1

n

n
∑

i=1

f̂Y |A,C (y
∗|a, ci).



Page 6 of 11Shepherd et al. BMC Medical Research Methodology          (2023) 23:288 

Simulation Study
A simulation study was conducted motivated by the 
LSAC example to evaluate and compare the performance 
of the five confounding-adjustment methods described in 
a realistic setting and under varying degrees of skewness 
in the outcome variable.

Design of the simulation study
We generated 1000 datasets consisting of 1000 records 
for each of four skewness scenarios considered. For each 
scenario, dataset and record, five confounder variables 
Ck for k = 1, . . . , 5 (three binary and two continuous), a 
binary exposure A and a skewed continuous outcome Y 
were generated based on variables in the LSAC data set. 
Unless otherwise stated, the parameters of the data gen-
erating distributions were set to values estimated from 
the LSAC dataset (see Supplementary Table  1 for a full 
outline of the variables generated and their generating 
distribution). Values for A were generated from a bino-
mial distribution with success probability defined by 
a logistic regression model including C as main effects. 
Values for log(Y) were generated from a normal distribu-
tion with the mean defined by a linear regression model 
including A and C as predictors. Different skewed dis-
tributions in Y were established by setting the standard 
deviation in the generating normal distribution for log(Y) 
to σ = 0.75, 1, 1.25, 1.5 signifying increasing skewness 
scenarios which we denote as Scenarios 1 to 4, respec-
tively. Values for log(Y) were exponentiated to obtain the 
outcome value Y, with the distribution of Y being posi-
tively skewed (see Supplementary Fig. 2 for the distribu-
tion of the simulated outcome variables). Here we note 
that σ characterises other properties of the outcome 
distribution beyond the measure of skewness (e.g., the 
variance depends on σ ). Therefore, findings across skew-
ness scenarios are not expected to behave in a monotonic 
pattern.

Data was generated under two different confounding 
settings - weak confounding bias (approximately 10% rel-
ative bias in the unadjusted estimate relative to the true 
value) and strong confounding bias (approximately 20% 
relative bias). Modifications to confounder coefficients in 
the outcome-generating model (originally based on the 
LSAC dataset) were used to achieve this (e.g., increasing 
or decreasing the coefficient as required) for both con-
founding settings.

The true causal difference in medians δ in each scenario 
was computed by empirical methods [8] (see Supplemen-
tary Material S4 and Supplementary Table 2 for further 
details and true values used). The exposure coefficient in 
the outcome-generating model was modified to ensure 
the true value was large enough to be estimable with the 

given sample size with adequate power (approximately 
80%) in an unadjusted analysis.

The five confounding-adjustment methods were 
applied to each simulated dataset to estimate δ , along-
side an unadjusted contrast of sample medians across 
exposure groups. Specific details about model specifica-
tions and implementation are provided in Supplementary 
Material S4, although here we note that both the propen-
sity score model and outcome model were correctly spec-
ified (i.e., consistent with the data generation approach).

For each confounding strength and skewness scenario, 
metrics assessing the performance of each method were 
calculated using the formulae in Morris et al. (2019) [24]. 
For each method, we reported the bias (defined as the dif-
ference between δ̂ and the true value δ , averaged over the 
1000 samples) in absolute and relative terms (reported as 
a percentage); the empirical standard error (the square 
root of the variance of the estimates δ̂ across the 1000 
samples); the model-based standard error (the estimated 
standard errors averaged over the 1000 samples); the rel-
ative error in standard errors (defined as the difference 
between the model-based standard errors and empirical 
standard error relative to the empirical standard error; 
reported as a percentage); and the coverage probability 
(estimated as the percentage of the 1000 95% confidence 
intervals that contained the true value δ ). Monte Carlo 
standard errors were estimated for each metric. All analy-
sis was conducted in R 4.0.2 [21], using the quantreg [18] 
and boot [25, 26] packages within self-developed code 
(available at https:// github. com/ daisy shep/ CI- media ns. 
git), with the IPW estimator implemented using R code 
supplied in the method’s source paper [7].

Results from the simulation study
The distribution of absolute bias in estimates is presented 
in Fig. 1, where it is seen that the range of absolute bias 
increases with increasing skewness for both confound-
ing strengths. Estimates obtained using multivariable QR 
were biased across all skewness scenarios (relative bias 
range: 6.6% to 8.1% weak confounding, 9.0% to 14.4% 
strong confounding; Table  2); an expected result given 
the method’s strict assumption of a constant causal effect 
across stratum which did not hold in the data generat-
ing mechanism. In contrast, methods which relaxed this 
assumption (the IPW estimator, weighted QR and both 
implementations of g-computation) performed well 
across both confounding strength settings, with minimal 
relative bias in estimates for δ (relative bias < 5% in the 
majority of skewness scenarios). Both g-comp (MC) and 
g-comp (approx) had similar relative bias to one another 
across all simulation scenarios (i.e., differing by < 0.1% 
between implementations), with g-comp (approx) being 
quicker computationally to implement. Performance of 

https://github.com/daisyshep/CI-medians.git
https://github.com/daisyshep/CI-medians.git
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the weighted approaches (weighted QR and IPW estima-
tor) was not as similar to one another (i.e., relative bias 
differing by < 2.2%), although both methods yielded min-
imal relative bias in estimates. None of these four meth-
ods consistently outperformed the other in terms of bias, 
with all methods generally estimating a similar degree of 
relative bias within each simulation setting (combination 
of confounding strength and skewness scenario).

Both g-comp approaches yielded lower empirical 
standard errors comparatively to all other methods 
across all settings, whilst the IPW approaches (IPW 
estimator and weighted QR) had the largest variance 
across methods. Therefore, results indicated that both 
g-comp approaches minimised the bias and variance 
simultaneously.

There was little bias in estimating the standard error 
(SE) with the bootstrap for all methods, with a slight 
overestimation for the IPW and weighted QR estimator. 
In all settings, the coverage probability was close to nom-
inal level for all confounding-adjustment methods (range: 
93.60% to 97.70%).

Application to LSAC
Methods were applied to the LSAC data using com-
plete cases only ( n = 3245 ), with specific details about 
their implementation provided in Supplementary Mate-
rial S5. All methods estimated the median SDQ score to 
be higher if children were exposed to maternal mental 
health problems than the median SDQ score if they were 

not exposed (Fig.  2), suggesting moderately increased 
behavioural problems as a result of maternal mental ill-
ness. Estimated effects were more consistent across the 
methods than observed within the simulation study, 
although multivariable QR yielded lower estimates 
of δ than the other methods. The IPW estimator and 
weighted QR produced equal point estimates and boot-
strap CIs as did the g-computation approaches, which 
estimated a slightly smaller causal effect comparatively.

Discussion
In the presence of skewed outcome data, defining the 
causal effect as a contrast of expected potential out-
comes or transforming the outcome may not be optimal 
when the central value of the outcome distribution is of 
interest. In these cases, defining the causal effect using 
a contrast of median potential outcomes may be more 
appropriate. Despite being a widely acknowledged con-
cept, there is scarce availability and awareness of con-
founding-adjustment methods to estimate this parameter 
in non-randomised studies. A handful of previous stud-
ies have proposed approaches to estimate causal effects 
defined as contrasts of distribution quantiles more gener-
ally [7, 8], but investigation of these methods and their 
application in health and medical studies remain scarce.

In this paper we aimed to address this gap by describing 
and evaluating methods identified from previous litera-
ture (multivariable quantile regression [8], an IPW esti-
mator [7] and weighted quantile regression [8]) alongside 

Fig. 1 Bias in estimates of the causal difference in medians obtained under each method, for each skewness scenario and confounding setting 
in the simulated datasets (1000 datasets per skewness scenario). Scenarios 1 to 4 consider increasing levels of skewness, with Scenario 1 
corresponding to the weakest and Scenario 4 corresponding to the highest skewness
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Table 2 Performance of confounding‑adjustment methods across confounding and skewness scenarios in the simulation study with 
maximum Monte Carlo standard errors (SE) provided in the table footnote (see Supplementary Table 3 for all Monte Carlo SEs)

Confounding Skewness 
scenario

Method Absolute bias Relative bias (%) Empirical SE Model SE Error SE (%) Coverage (%)

Weak 1 Unadjusted 0.090 10.07 0.369 0.381 3.21 94.60

QR 0.059 6.63 0.384 0.375 ‑2.24 94.80

IPW estimator ‑0.004 ‑0.48 0.442 0.454 2.78 94.90

Weighted QR ‑0.023 ‑2.53 0.440 0.453 2.98 95.20

G‑comp (MC) ‑0.026 ‑2.91 0.308 0.298 ‑3.18 93.70

G‑comp (approx) ‑0.026 ‑2.90 0.308 0.298 ‑3.16 93.60

Weak 2 Unadjusted 0.123 10.08 0.526 0.528 0.32 94.90

QR 0.099 8.13 0.540 0.517 ‑4.35 94.20

IPW estimator 0.050 4.09 0.625 0.640 2.43 93.70

Weighted QR 0.023 1.91 0.621 0.636 2.54 94.20

G‑comp (MC) 0.006 0.48 0.436 0.420 ‑3.60 94.00

G‑comp (approx) 0.006 0.45 0.436 0.420 ‑3.62 93.90

Weak 3 Unadjusted 0.160 10.00 0.684 0.727 6.27 95.60

QR 0.114 7.14 0.693 0.695 0.31 94.70

IPW estimator 0.019 1.17 0.806 0.870 7.94 95.00

Weighted QR ‑0.020 ‑1.23 0.803 0.864 7.62 95.20

G‑comp (MC) ‑0.016 ‑1.00 0.550 0.563 2.47 95.20

G‑comp (approx) ‑0.015 ‑0.97 0.550 0.563 2.40 95.10

Weak 4 Unadjusted 0.193 10.09 0.833 0.894 7.24 96.80

QR 0.133 6.95 0.864 0.842 ‑2.62 95.50

IPW estimator 0.123 6.45 1.032 1.098 6.40 95.30

Weighted QR 0.081 4.22 1.017 1.091 7.24 95.50

G‑comp (MC) 0.062 3.25 0.695 0.712 2.40 95.00

G‑comp (approx) 0.063 3.28 0.694 0.710 2.20 94.90

Strong 1 Unadjusted 0.171 20.17 0.391 0.398 1.66 93.20

QR 0.098 11.58 0.398 0.390 ‑2.10 94.30

IPW estimator 0.003 0.31 0.441 0.466 5.75 95.40

Weighted QR ‑0.017 ‑1.95 0.440 0.464 5.33 95.30

G‑comp (MC) ‑0.023 ‑2.65 0.308 0.306 ‑0.93 94.10

G‑comp (approx) ‑0.023 ‑2.67 0.308 0.306 ‑0.86 94.10

Strong 2 Unadjusted 0.240 20.05 0.544 0.568 4.40 94.00

QR 0.117 9.81 0.556 0.556 ‑0.03 95.00

IPW estimator 0.030 2.55 0.621 0.673 8.34 96.00

Weighted QR 0.004 0.33 0.617 0.670 8.61 95.40

G‑comp (MC) ‑0.025 ‑2.08 0.446 0.441 ‑1.22 94.30

G‑comp (approx) ‑0.025 ‑2.10 0.446 0.440 ‑1.22 94.00

Strong 3 Unadjusted 0.307 20.11 0.729 0.734 0.72 93.50

QR 0.219 14.39 0.726 0.709 ‑2.32 93.70

IPW estimator 0.117 7.68 0.847 0.897 5.89 95.40

Weighted QR 0.082 5.35 0.843 0.891 5.77 95.50

G‑comp (MC) 0.076 4.97 0.570 0.579 1.62 95.10

G‑comp (approx) 0.075 4.93 0.569 0.579 1.75 95.20

Strong 4 Unadjusted 0.420 20.02 1.004 1.052 4.76 95.10

QR 0.189 8.98 1.002 0.993 ‑0.88 94.50

IPW estimator 0.038 1.81 1.189 1.252 5.37 95.50

Weighted QR ‑0.009 ‑0.43 1.180 1.241 5.19 95.50

G‑comp (MC) ‑0.028 ‑1.34 0.759 0.806 6.11 95.40

G‑comp (approx) ‑0.028 ‑1.32 0.760 0.791 4.12 95.70

Maximum Monte Carlo SE (performance measure): 0.038 (absolute bias), 0.018% (relative bias), 0.010 (empirical SE), 0.029 (model SE), 6.956% (relative error in model 
SE), 0.796% (coverage)
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two implementations of g-computation that, to the best 
of our knowledge, have not been widely described in the 
context of a study like LSAC or studied alongside other 
methods. The confounding-adjustment methods inves-
tigated were selected and described with a key focus on 
their accessibility and ease of implementation in a practi-
cal setting, with code made available, to encourage their 
use in practice where applicable.

Results from the simulation study indicated varied per-
formance of the confounding-adjustment methods when 
estimating the causal difference in medians. As antici-
pated, the multivariable QR was too simplistic for the 
realistic setting reflected in our simulated datasets and 
produced biased estimates. The IPW estimator, weighted 
QR and both implementations of g-computation yielded 
estimates with minimal bias, with g-computation 
additionally minimising the variance in estimates; an 
expected observation as IPW estimates tend to be more 
variable than those obtained via g-computation [27]. We 
also note that the g-comp (approx) implementation was 
computationally more efficient than g-comp (MC) pro-
vided a suitable y∗ range was used.

These findings need to be interpreted in light of the 
fact that under our data generation approach, both the 
propensity score model (used for the IPW estimator and 
weighted QR) and outcome model (used for g-computa-
tion) were correctly specified; a critical assumption when 
applying the singly robust methods as noted by Zhang 
et al. (2012) in the case of IPW [7]. However, in the con-
text of the medians, the outcome model for g-computa-
tion relates to specifying a model for the whole outcome 
density. In practice, correctly specifying this model may 
be harder to achieve than a correctly specified propensity 

score model, and thus could be considered a stronger 
assumption than for the weighted methods.

A strength of this work was the design of our simula-
tion study motivated by the LSAC example, allowing us 
to investigate the performance of these methods in a real-
istic scenario. Further we investigated varying skewness 
scenarios alongside two different strengths of confound-
ing bias resulting in a more complex and realistic study 
than those explored in previous papers [7]. Additionally, 
our inclusion of the g-computation approach (under two 
implementations) in an accessible and clear manner, has 
brought light to a little discussed approach.

A potential limitation of our study was the restriction 
to singly robust methods only, which rely on correct 
specification of the respective model. Previous studies 
have presented a handful of promising doubly robust 
methods, which combine both a model for the outcome 
and a model for the exposure and rely on only one of 
the models being correctly specified to obtain a consist-
ent estimator [7, 9–11]. Doubly robust methods have 
not yet been evaluated in a range of complex and real-
istic scenarios as is done here for singly robust methods. 
Furthermore, their implementation is not as accessible or 
readily available in software as the singly robust methods 
presented here, and therefore their application remains 
scarce in practice. Both of these factors would be useful 
to pursue in future work. We also note that the outcome 
distributions explored within this study were all heavily 
right-skewed, so results may represent an extreme rep-
resentation of the methods’ performance under heavily 
skewed outcome data.

Finally, we reiterate the need for the causal estimand 
of interest to be driven by the research question at hand. 

Fig. 2 Estimates for the Longitudinal Study Of Australian Children (LSAC) example [12, 13] obtained under each confounding‑adjustment method, 
where δ̂ = m̂1 − m̂0 is the estimated difference in median SDQ scores if all children were exposed to maternal mental health problems compared 
to if none of them were exposed. Point estimates and their corresponding 95% confidence intervals are presented alongside the figure
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Even in the presence of skewed outcome data, it may be 
appropriate or preferred to define the causal effect using 
a contrast of expected potential outcomes. Alternatively, 
if a conditional average treatment effect is of relevance 
or interest in a particular application, the skewness of 
the marginal outcome distribution may not be a consid-
eration as the conditional distribution may not be skewed 
anymore.

Conclusion
When estimating the causal difference in medians, the 
IPW estimator, weighted QR and both implementations 
of g-computation present promising approaches, pro-
vided a richly specified model is used such that correct 
specification of the propensity score model or outcome 
model is likely. Implementations of the IPW estima-
tor and weighted QR methods are readily available and 
accessible (e.g., rq function in R [21], open-source code 
of the IPW estimator [7]). Implementations of the g-com-
putation approach are not as readily available, but we 
have provided source code which can guide practition-
ers in the implementation of this method (available at 
https:// github. com/ daisy shep/ CI- media ns. git). Overall, 
these methods provide appealing alternatives for estimat-
ing the causal difference in medians and avoid the strin-
gent constant-effect assumption of multivariable quantile 
regression, enhancing our capability to obtain meaning-
ful causal effect estimates with skewed outcome data.
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